RESULTS

OF THE

MAGNETICAL AND METEOROLOGICAL OBSERVATIONS

MADE AT

THE ROYAL OBSERVATORY, GREENWICH,

IN THE YEAR

1883:

UNDER THE DIRECTION OF

W. H. M. CHRISTIE, M.A. F.R.S.

ASTRONOMER ROYAL.

PUBLISHED BY ORDER OF THE BOARD OF ADMIRALTY IN OBEDIENCE TO HER MAJESTY'S COMMAND.

LONDON: PRINTED BY EYRE AND SPOTTISWOODE, PRINTERS TO THE QUEEN'S MOST EXCELLENT MAJESTY. FOR HER MAJESTY'S STATIONERY OFFICE.

1885.

`

.

e

.

•

1 N D E X.

Maria de Carlos

. ,

	AGE
INTRODUCTION.	
Personal Establishment and Arrangements	iii
GENERAL DESCRIPTION OF THE BUILDINGS AND INSTRUMENTS	iii
The Magnetical and Meteorological Observatory	iii
Positions of the Instruments	d v
SUBJECTS OF OBSERVATION	vi
MAGNETIC INSTRUMENTS.	
UPPER DECLINATION MAGNET	vii
Its Suspension : Stand : Double Box : Collimator : and Theodolite	vii
Its Collimation Error: Torsion Force of its Suspending Skein	l ix
Determination of the reading of the Azimuthal Circle of the Theodolite corresponding	
to the Astronomical Meridian	ix
Method of Making and Reducing Observations for Magnetic Declination	ix
Lower Declination Magnet	\boldsymbol{x}
General principle of Photographic Registration	xi
Arrangements for recording the Movements of the Declination Magnet	xii
	xiii
Horizontal Force Magnet	xiv
Magnet Carrier: Suspension Skein: Suspension Pulleys	xiv
Plane Mirror, Telescope, and Scale for Eye-observation	xv
Adjustment of the Magnet	cvii
Eye-observations : Photographic Record	viii
Scale for measurement of Ordinates of the Photographic Curve	viii
<i>Temperature coefficient</i>	xix
Vertical Force Magnet	xix
Supporting frame, Carrier, and Knife-edge	xx
Plane Mirror, Telescope, and Scale for Eye-observation	xx
Time of Vibration in the Vertical and Horizontal Planes	
	xxi
	cxi i
	rxii
	xiii
	xiii
	_
	xiv

				I	ND	E	x.											
1				. –														P.
INTRODUCT	[ON—continu	ed.																
EARTH CU	RRENT APPAI	ATUS	• •			•	•	•	•	•		•	•	•	•	•	•	\boldsymbol{x}
Earth C	onnexions: A	Vire Cir	rcuits		•		÷	•	•	•	•	•	•	•	•	•	•	x
Arrange	ments for Pho	otograpi	hic Re	gistra	tion	•	•	•	•	•	•	•	•	•	•	•	•	· x
MAGNETIC R	EDUCTIONS											•						x
		•••		•••	•	•	•	•	•	•	•	•	•	•	•	•	•	
	of the Photog	-			•	•	•	•	•	•	•	•	•	•	•	•	•.•	xx
	terms of Gau				•	£ 74	•	•	• ກ	•		•	· 	•	•	T.	•	x
	Analysis of the tical Force	: Durn	ai Ine	quain	ies o	j m	agn	etic	De	cun	acu)11, 1	aor	izon	iui	ror		a and a
	ncai Force Disturbances d	· ·	· ·	••••	•	•	•	•	•	•	•	•	•	•	<i>,</i> •	•	xxi	x and x
•	les of the diffe					•••••	• • J		•	• mati	•	Val	•	• far	Ji	An	•	x
Absolute			uyneii	<i>c 14</i>	men	is, u	na		mpu	ruu	ve	rui	ues	JUN	_ ui			and xx
	ring to the Pl	• •	• •	•	•••	•	•	•	•	•	•	•	•	•	•	itid	uu	unu xx
Moles Tejer	ring to the 11	uies	•••	• •	•	•	•	•	•	•	٠	•	•	•	•	•	•	iti
METEOBOLOG	ical Instrum	ENTS																
	tons mornon											-						
~	BAROMETER	•••	••	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	x_{i}
	ion : Diamete	-			•		-		-		• '	•	٠	• .	•	•	•	\boldsymbol{x}_{i}
Correctio	on for Index 1	Error :	Comp	arison	ı witl	h Ke	ew l	Star	nda	rd	•	٠	•	• .	•	•	•	x
PHOTOGRA	PHIC BAROME	TER														2		xx
Arrange	ments for Pho	toaraph	ic Re	aistra	tion													xx
-	nation of the S	_				·	•		•			•	•		•			xa
	<i>y</i>			• •	•	•	•	•	•	•	•		•.	•	·	•		
DRY AND '	WET BULB TI	HERMOM	ETERS	s		•			•		•	• `	•	•	•	•	•	xx
Revolvin	g Frame : Sta	ındard	Therr	nomet	er	•		•		•	•	•	•	•	•	xx	xvi (and xxx
Correctio	ons for Index .	Error .	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	xxx
PHOTOGRAM	HIC DRY ANI) WET	Bulb	Тне	RMON	IETE	RS	•		•	•	•	•	•		•		xx:
RADIATION	THERMOMETH	ERS .																xxx
				•	•	•	•		•	•	•	•	•		•	•	•	
EARTH TH	ERMOMETERS	• •	• •	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	xx
THAMES TI	HERMOMETERS		• •										•	•		•		xx
Osler's Ar	TEMONETED						,											
	f registering t	he Dire	ection	 and i	Dross	1110	of t	• ho	Win	· nd	•	•	•	•	• *	•	•	
Its Rain-		ne Dire			1000	arc	<i>oj 1</i>		,, ,,		•	•	•	•	•	•	•	
100 100000		 R	•	•••	•	•	•	•	•	•	•	•	•		•.	•	•	•
ROBINSON'S		.	•••	•••	•	•	•	•	•	•	•	•	•	•	•	•	•	
Robinson's	-		• •	• •	•	•	•	•	•	•		•	•	•	•	•	•	
Robinson's Rain-Gaug	ES	•••							-		•							x
Rain-Gaug Electrome	TER	•••		• •	•	•	•	•	•					•	•	•		
RAIN-GAUG Electrome Instrume	TER nt employed :	•				•	• •	•	•	•	•	•	•	•	•	•	•	
RAIN-GAUG Electrome Instrume Method o	TER nt employed : of collecting th	he Elect	tricity	of th		nosp	oher	e	•	•	•	•	•	•	• •	•	•	x
RAIN-GAUG Electrome Instrume Method o	TER nt employed :	he Elect	tricity	of th		nosp		e	•	•	•	• •	• •	•	• • •	•	•	x
RAIN-GAUG Electrome Instrume Method o System o	TER nt employed : of collecting th	he Elect	tricity	of th		nosp	·	e	•	•	•	•	•	•		•	•	x x a a

INTRODUCTION—concluded.	PAGE
METEOROLOGICAL REDUCTIONS	xlv xlv
Deduction of the Temperature of the Dew-Point, and of the degree of Humidity	and xlvii xlviii to l
Meteorological Averages	l
Observations of Luminous Meteors	li
RESULTS OF MAGNETICAL AND METEOROLOGICAL OBSERVATIONS IN TABULAR ARRANGEMENT:	
Results of the Magnetical Observations	(i)
TABLE I.—Mean Magnetic Declination West for each Astronomical Day .<	(ii)
TABLE II.—Monthly Mean Diurnal Inequality of Magnetic Declination West	(ii)
TABLE IIIMean Horizontal Magnetic Force (diminished by a Constant) for each Astro-	
nomical Day	(iii)
TABLE IV Means of Readings of the Thermometer placed within the box inclosing the	
Horizontal Force Magnet, for each Astronomical Day	(iv)
TABLE V.—Monthly Mean Diurnal Inequality of Horizontal Magnetic Force	(v)
TABLE VIMonthly Means of Readings of the Thermometer placed within the box	
inclosing the Horizontal Force Magnet, at each of the ordinary Hours of Observation	(v)
TABLE VIIMean Vertical Magnetic Force (diminished by a Constant) for each Astro-	
nomical Day	(vi)
TABLE VIIIMeans of Readings of the Thermometer placed within the box inclosing the	
Vertical Force Magnet, for each Astronomical Day	(vii)
TABLE IX.—Monthly Mean Diurnal Inequality of Vertical Magnetic Force	(viii)
TABLE XMonthly Means of Readings of the Thermometer placed within the box in-	
closing the Vertical Force Magnet, at each of the ordinary Hours of Observation	(viii)
TABLE XIMean Magnetic Declination, Horizontal Force, and Vertical Force in each	. ,
Month	(ix)
TABLE XIIMean Diurnal Inequalities of Magnetic Declination, Horizontal Force, and	
Vertical Force, for the year	(x)
TABLE XIIIDiurnal Range of Declination and Horizontal Force on each day, as deduced	
from the Twenty-four Hourly Measures of Ordinates of the Photographic Register .	(x i)
TABLE XIV Monthly Mean Diurnal Range of Declination and Horizontal Force	(x i)
TABLE XVValues of the Coefficients in the Periodical Expression	
$V_t = m + a_1 \cos t + b_1 \sin t + a_2 \cos 2t + b_2 \sin 2t + \&c.$	
for the Magnetic Diurnal Inequalities	(xii)
TABLE XVI.—Values of the Coefficients and Constant Angles in the Periodical Expressions—	
$V_t = m + c_1 \sin(t + \alpha) + c_2 \sin(2t + \beta) + \&c.$	
$V_{t'} = m + c_1 \sin(t' + \alpha') + c_2 \sin(2t' + \beta') + \&c.$	
for the Magnetic Diurnal Inequalities	(xiii)
TABLE XVII.—Separate Results of Observations of Magnetic Dip TABLE XVIII.—Monthly and Yearly Means of Magnetic Dip, and General Mean	(xiv)

PAGE

	PAGI
RESULTS OF MAGNETICAL AND METEOROLOGICAL OBSERVATIONS—continu	
TABLE XIX.—Determination of the Absolute Horizontal Magnetic Force	(xvi)
MAGNETIC DISTURBANCES AND EARTH CURRENTS	(xvii)
Brief description of Magnetic Movements (superposed on the ordinary diurnal movement) exceeding 3' in Declination, 0.001 in Horizontal Force, or 0.0003 in Vertical Force, taken from the Photographic Register	(x v iii)
Explanation of the Plates of Magnetic Disturbances and Earth Currents	(xxiv)
	(2211)
PLATES I. TO XVIII, photo-lithographed from tracings of the Photographic Registers of Mag- netic Disturbances and Earth Currents.	
Results of Meteorological Observations	(xxv)
Daily Results of Meteorological Observations	(xxvi)
Highest and Lowest Readings of the Barometer	(1)
Absolute Maxima and Minima Readings of the Barometer for each Month	(lii)
Monthly Results of Meteorological Elements	(liii)
Monthly Mean Reading of the Barometer at every Hour of the Day	(liv)
Monthly Mean Temperature of the Air at every Hour of the Day	(liv)
Monthly Mean Temperature of Evaporation at every Hour of the Day	(lv)
Monthly Mean Temperature of the Dew-Point at every Hour of the Day	(lv)
Monthly Mean Degree of Humidity at every Hour of the Day	(lvi)
Total Amount of Sunshine registered in each Hour of the Day in each month	(lvi)
Earth Thermometers :	•
(I.) Reading of a Thermometer whose bulb is sunk to the depth of 25.6 feet (24 French feet) below the surface of the soil, at Noon on every Day	(lvii)
(II.) Reading of a Thermometer whose bulb is sunk to the depth of 12.8 feet (12 French feet) below the surface of the soil, at Noon on every Day	(lvii)
(III.) Reading of a Thermometer whose bulb is sunk to the depth of 6.4 feet (6 French	
feet) below the surface of the soil, at Noon on every Day	(lviii)
(IV.) Reading of a Thermometer whose bulb is sunk to the depth of 3.2 feet (3 French	~ /
feet) below the surface of the soil, at Noon on every Day	(lix)
(V.) Reading of a Thermometer whose bulb is sunk to the depth of 1 inch below the surface of the soil, at Noon on every Day	(l x)
(VI.) Reading of a Thermometer within the case covering the Deep-sunk Thermom eters, whose bulb is placed on a level with their scales, at Noon on every Day	(lxi)
Abstract of the Changes of the Direction of the Wind, as derived from the Records of Osler's Anemometer	(lxii)
Mean Hourly Measures of the Horizontal Movement of the Air in each Month, and Greatest and Least Hourly Measures, as derived from the Records of Robinson's Anemometer	(lxvii)
	· ·/
Mean Electrical Potential of the Atmosphere, from Thomson's Electrometer, for each	(1:::)
Civil Day	(lxviii)

RESULTS OF MAGNETICAL AND METEOROLOGICAL OBSERVATIONS—conclude	<i>d</i> .
Monthly Mean Electrical Potential of the Atmosphere, from Thomson's Electrometer,	
at every Hour of the Day	(lxix)
Monthly Mean Electrical Potential of the Atmosphere, from Thomson's Electrometer, on	
Rainy Days, at every Hour of the Day	(lxx)
Monthly Mean Electrical Potential of the Atmosphere, from Thomson's Electrometer, on	
Non-Rainy Days, at every Hour of the Day	(lxxi)
Amount of Rain collected in each Month by the different Rain Gauges	(lxxii)
Observations of Luminous Meteors	(lxxiii)

*

.

PAGE

.

. .

ROYAL OBSERVATORY, GREENWICH.

RESULTS

OF

MAGNETICAL AND METEOROLOGICAL

OBSERVATIONS.

1883.

a

GREENWICH MAGNETICAL AND METEOROLOGICAL OBSERVATIONS, 1883.

GREENWICH MAGNETICAL AND METEOROLOGICAL OBSERVATIONS, 1883.

INTRODUCTION.

§ 1. Personal Establishment and Arrangements.

During the year 1883 the establishment of Assistants in the Magnetical and Meteorological Department of the Royal Observatory consisted of William Ellis, Superintendent, and William Carpenter Nash, Assistant, who had the aid usually of four Computers. The names of the Computers who were employed at different times during the year are, John A. Greengrass, William Hugo, Ernest E. McClellan, Frank Finch, and Frederick C. Robinson.

Mr. Ellis controls and superintends the whole of the work of the Department. Mr. Nash is charged generally with the instrumental adjustments, the determination of the values of instrumental constants, and the more delicate magnetic observations. He also specially superintends the Meteorological Reductions. The routine magnetical and meteorological observations have been in general made by the Computers.

§ 2. General Description of the Buildings and Instruments of the Magnetical and Meteorological Observatory.

The Magnetical and Meteorological Observatory was erected in the year 1838. Its northern face is distant about 170 feet south-south-east from the nearest point of the South-East Dome, and about 35 feet south from the carpenters' workshop. On its east stands the New Library (erected at the end of the year 1881), in the construction of which non-magnetic bricks were used, and every care was taken to exclude The Magnetical and Meteorological Observatory is based on concrete iron. and built of wood, united for the most part by pegs of bamboo; no iron was intentionally admitted in its construction, or in subsequent alterations. Its form is that of a cross, the arms of the cross being nearly in the directions of the cardinal magnetic points as they were in 1838. The northern arm is longer than the others, and is separated from them by a partition, and used as a computing room; the stove which warms this room, and its flue, are of copper. The remaining portion, consisting of the eastern. southern, and western arms, is known as the Upper Magnet Room. The upper declination magnet and its theodolite for determination RA 5625. a 2

iv INTRODUCTION TO GREENWICH MAGNETICAL OBSERVATIONS, 1883.

of absolute declination, are placed in the southern arm, an opening in the roof allowing circumpolar stars to be observed by the theodolite for determination of the position of the astronomical meridian. Both the magnet and its theodolite are supported on piers built from the ground. In the eastern arm is placed the Thomson electrometer for photographic record of the variations of atmospheric electricity, its water cistern being supported by a platform fixed to the western side of the southern arm, near the ceiling. The Standard barometer is suspended near the point of junction of the southern and western arms. The sidereal clock, Grimalde and Johnson, is fixed at the junction of the eastern and southern arms, and there is in addition a mean solar chronometer, McCabe No. 649, for general use. A mean solar clock (Molyneux), transferred from the Astronomical Department, was set up in the northern arm during the year 1883.

Until the year 1863 the horizontal and vertical force magnets were also located in the Upper Magnet Room, the upper declination magnet being up to that time employed for photographic record of the variations of declination, as well as for absolute measure of the element. But experience having shown that the horizontal and vertical force magnets were subject in the upper room to too great variations of temperature, a room known as the Magnet Basement was in the year 1864 excavated below the Upper Magnet Room, and the horizontal and vertical force magnets, as well as a new declination magnet for photographic record of declination, were mounted therein, in order that they might be less exposed to changes of temperature. The Magnet Basement is of the same dimensions as the Upper Magnet Room. The lower declination magnet and the horizontal force and vertical force magnets, as now located in the Basement, are used entirely for record of the variations of the respective magnetic elements. The declination magnet is suspended in the southern arm, immediately under the upper declination magnet, in order that the position of the latter should not be affected thereby; the horizontal and vertical force magnets are placed in the eastern and western arms respectively, in positions nearly underneath those which they occupied when in the Upper Magnet Room. All are mounted on or suspended from supports carried by piers built from the ground. A photographic barometer is fixed to the northern wall of the Basement, and an apparatus for photographic registration of earth currents is placed near the southern wall of the eastern arm. A mean solar clock of peculiar construction for interruption of the photographic traces at each hour is fixed to the pier which supports the upper declination theodolite. Another mean solar clock is attached to the western wall of the southern arm. On the northern wall, near the photographic barometer, is fixed the Sidereal standard clock of the Astronomical Observatory, Dent 1906, communicating with the chronograph and with clocks of the Astronomical Department by means of underground wires. This clock is placed in the Magnet Basement, because of its nearly uniform temperature.

BUILDINGS AND INSTRUMENTS.

The Basement is warmed when necessary by a gas stove (of copper), and ventilated by means of a large copper tube nearly two feet in diameter, which receives the flues from the stove and all gas-lights and passes through the Upper Magnet Room to a revolving cowl above the roof. Each of the arms of the Basement has a well window facing the south, but these wells are usually closely stopped.

A platform erected above the roof of the Magnet House is used for the observation of meteors. The sunshine instrument and a rain gauge are placed on a table on this platform.

An apparatus for naphthalizing the gas used for the photographic registration is mounted in a small detached zinc-built room adjacent to the computing room on its western side.

To the south of the Magnet House, in what is known as the Magnet Ground, is an open shed, consisting principally of a roof supported on four posts, under which is placed the photographic dry-bulb and wet-bulb thermometer apparatus. On the roof of this shed there is fixed an ozone box and a rain gauge, and close to its northwestern corner are placed the earth thermometers, the upper portions of which, projecting above the ground, are protected by a small wooden hut. About 25 feet to the west of the photographic thermometers is situated the thermometer stand carrying the thermometers used for eye observations, and adjacent thereto on the north side are several rain gauges.

The Magnet Ground is bounded on its south side by a range of seven rooms, known as the Magnet Offices. No. 1 is used as a general store room, and in it is placed the Watchman's Clock; Nos. 2, 3, and 4 are used for photographic purposes in connexion with the Photoheliograph, placed in a dome adjoining No. 3, on its south side; Nos. 5 and 6 are store rooms. The Dip instrument and Deflexion apparatus remained in Office No. 7 until the spring of the present year 1883, when they were removed to the New Library. Previous to adopting this new position, observations with the magnet used in Deflexion experiments were made both in Office No. 7 and in the New Library, from which it appeared that its time of vibration was identical in both positions. This change became necessary in consequence of the proximity of the new building in which the Lassell reflecting telescope was in course of erection. Communication being made between the new Lassell building and Office No. 7, the latter became available as an ante-room and means of approach to that building.

To the south of the Magnet House, in what is known as the Magnet Ground, are placed the thermometers for solar and terrestrial radiation; they are laid on short grass, and freely exposed to the sky.

Two Anemometers, Osler's, giving continuous record of direction and pressure of wind and amount of rain, and Robinson's, giving continuous record of velocity,

vi INTRODUCTION TO GREENWICH MAGNETICAL OBSERVATIONS, 1883.

are fixed, the former above the north-western turret of the Octagon Room (the ancient part of the Observatory), the latter above the small building on the roof of the Octagon Room.

On 1883 March 3 the iron tube of the Lassell reflecting telescope was brought into the South Ground, and on March 9 the iron work supports of the same. On December 31 the iron work of the dome was brought into the same ground. A careful examination of the magnetic registers on each of these occasions shows that no disturbance of the declination, horizontal force, or vertical force magnets was caused by the location of these masses of iron in the South Ground, at a distance of more than 100 feet from the magnets.

Regular observation of the principal magnetical and meteorological elements was commenced in the autumn of the year 1840, and has been continued, with some additions to the subjects of observation, to the present time. Until the end of the year 1847 observations were in general made every two hours, but at the beginning of the year 1848 these were superseded by the introduction of the method of photographic registration, by which means a continuous record of the various elements is obtained.

For information on many particulars concerning the history of the Magnetical and Meteorological Observatory, especially in regard to alterations not recited in this volume, which from time to time have been made, the reader is referred to the Introduction to the Magnetical and Meteorological Observations for the year 1880 and previous years, and to the Descriptions of the Buildings and Grounds, with accompanying Plans, given in the Volumes of Astronomical Observations for the years 1845 and 1862.

§ 3. Subjects of Observation in the year 1883.

These comprise determinations of absolute magnetic declination, horizontal force, and dip; continuous photographic record of the variations of declination, horizontal force, and vertical force, and of the earth currents indicated in two distinct lines of wire; eye observation of the ordinary meteorological instruments, including the barometer, dry and wet bulb thermometers, and radiation and earth thermometers; continuous photographic record of the variations of the barometer, dry and wet bulb thermometers, and electrometer (for atmospheric electricity); continuous automatic record of the direction, pressure, and velocity of the wind, and of the amount of rain; registration of the duration of sunshine, and amount of ozone; observation of some of the principal meteor showers; general record of ordinary atmospheric changes of weather, including numerical estimation of the amount of cloud; and other occasional phenomena.

§ 4. Magnetic Instruments.

UPPER DECLINATION MAGNET AND ITS THEODOLITE.—The upper declination magnet is by Meyerstein of Göttingen: it is a bar of hard steel, 2 feet long, $1\frac{1}{2}$ inch broad, and about $\frac{1}{4}$ inch thick, and is employed solely for the determination of absolute declination. The magnet carrier was also made by Meyerstein, since however altered by Troughton and Simms; the magnet is fixed therein by two pinching screws. To a stalk extending upwards from the magnet carrier is attached the torsion circle, which consists of two circular brass discs, one turning independently on the other on their common vertical axis, the lower and graduated portion being firmly fixed to the stalk of the magnet carrier; to the upper portion carrying the vernier is attached, by a hook, the suspension skein. This is of silk, and consists of several fibres united by juxtaposition, without apparent twist; its length is about 6 feet.

The magnet, with its suspending skein, &c., is carried by a braced wooden tripod stand, whose feet rest on slates covering brick piers, built from the ground and rising through the Magnet Basement nearly to the roof. The upper end of the suspension skein is attached to a short square wooden rod, sliding in the corresponding square hole of a fixed wooden bracket. To the upper end of the rod is fixed a leather strap, which, passing over two brass pulleys carried by the upper portion of the tripod stand, is attached to a cord which passes down to a small windlass fixed to the stand. Thus in raising or lowering the magnet, an operation necessary in determinations of its collimation error, no alteration is made in the length of the suspension skein. The magnet is inclosed in a double rectangular wooden box (one box within another), both boxes being covered with gilt paper on their exterior and interior sides, and having holes at their south and north ends; for illumination of the magnet-collimator and for viewing the collimator by the theodolite telescope respectively. The holes in the outer box are covered with glass. The magnet-collimator is formed by a diagonally placed cobweb cross, and a lens of 13 inches focal length and nearly 2 inches aperture, carried respectively by two sliding frames fixed by pinching screws to the south and north arms of the magnet. The cobweb cross is in the principal focus of the lens, and its image in the theodolite telescope is well seen. From the lower side of the magnet carrier a rod extends downwards, terminating below the magnet box in a horizontal brass bar immersed in water, for the purpose of checking small vibrations of the magnet.

The theodolite, by which the position of the upper declination magnet is observed, is by Troughton and Simms. It is planted about 7 feet north of the magnet. The

viii INTRODUCTION TO GREENWICH MAGNETICAL OBSERVATIONS, 1883.

radius of its horizontal circle is 8.3 inches, and the circle is divided to 5', and read, by three verniers, to 5". The theodolite has three foot-screws, which rest in brass channels let into the stone pier placed upon the brick pier which rises from the ground through the Magnet Basement. The length of the telescope is 21 inches, and the aperture of its object glass 2 inches: it is carried by a horizontal transit axis $10\frac{1}{2}$ inches long, supported on Y's carried by the central vertical axis of the theodolite. The eye-piece has one fixed horizontal wire and one vertical wire moved by a micrometer-screw, the field of view in the observation of stars being illuminated through the pivot of the transit-axis on that side of the telescope which carries the micrometer-head. The value of one division of the striding level is considered to be equal to $1^{\prime\prime} \cdot 05$. The opening in the roof of the Magnet House permits of observation of circumpolar stars as high as δ Ursæ Minoris above the pole and as low as β Cephei below the pole. A fixed mark, consisting of a small hole in a plate of metal, placed on one of the buildings of the Astronomical Observatory, at a distance of about 270 feet from the theodolite, affords an additional check on the continued steadiness of the theodolite.

The inequality of the pivots of the axis of the theodolite telescope was found from several independent determinations made at different times to be very small. It appears that when the level indicates the axis to be horizontal the pivot at the illuminated end of the axis is really too low by $1^{\text{div}} \cdot 3$, equivalent to $1'' \cdot 4$.

The value in arc of one revolution of the telescope-micrometer is $1'.34'' \cdot 2$.

The reading for the line of collimation of the theodolite telescope was found, by ten double observations, 1883 June 14, to be 100^r·277, and by ten double observations, 1883 December 12, 100^r·334. The value used throughout the year 1883 was 100^r·250.

The effect of the plane glass in front of the outer box of the declination-magnet at that end of the box towards the theodolite was determined by ten double observations made on 1881 September 8, which showed that in the ordinary position of the glass the theodolite readings were diminished by 18".6. Other sets of observations, made on 1882 September 14 and 1883 December 12, gave 20".1 and 18".9 respectively. The mean of these, 19".2, has been added to all readings throughout the year 1883.

The error of collimation of the magnet collimator is found by observing the position of the magnet, first with its collimator in the usual position (above the magnet), then with the collimator reversed (or with the magnet placed in its carrier with the collimator below), repeating the observations several times. The value used during the year 1883 was 26'. 5".2, being the mean of determinations made on 1879 December 9, 1880 October 26, 1881 September 8, 1883 September 12, and 1883 December 13, giving respectively 26'. 2".2, 25'. 56''.6, 26'. 18''.9, 26'. 15''.0, and 25'. 53''.5. With the collimator in its usual position, above the magnet, the quantity 26'. 5''.2 has to be subtracted from all readings.

UPPER DECLINATION MAGNET.

The effect of torsion of the suspending skein is eliminated by turning the lower portion of the torsion-circle until a brass bar (of the same size as the magnet, and weighted with lead weights to be also of equal weight), inserted in place of the magnet, rests in the plane of the magnetic meridian. The brass bar is thus inserted usually about once a month, and whenever the adjustment is found not to have been sufficiently close, the observed positions of the magnet are corrected for the amount by which the magnet is deflected from the meridian by the torsion force of the skein. Such correction is determined experimentally, with the magnet in position, by changing the reading of the torsion circle by a definite amount, usually 90°, thus giving the skein the same amount of azimuthal twist, and observing, by the theodolite, the displacement in the position of the magnet thereby produced, from which is derived the ratio of the torsion force of the skein to the earth's magnetic force. In this way the torsion force of the skein was, on 1882 September 13, found to be $\frac{1}{126}$ th part of the earth's magnetic force; and, on 1883 December 12, $\frac{1}{137}$ th part. During the year 1883 the plane in which the suspension skein was free from torsion so nearly coincided with the magnetic meridian that no correction of the absolute measures of magnetic declination for deviation from the plane of no torsion was at any time required.

The time of vibration of the upper declination magnet under the influence of terrestrial magnetism was found on 1880 December 29 to be $30^{\circ}.78$, on 1881 September 9, $31^{\circ}.30$, on 1882 September 14, $31^{\circ}.20$, and on 1883 December 13, $31^{\circ}.15$.

The reading of the azimuthal circle of the theodolite corresponding to the astronomical meridian is determined about once in each month by observation of the stars Polaris and δ Ursæ Minoris. The fixed mark is usually observed weekly. The concluded mean reading of the circle for the south astronomical meridian (deduced entirely from the observations of the polar stars), used during the year 1883 for reduction of the observations of the declination magnet, was until September 30, 27°. 3′. 18″.6, and from October 1 to the end of the year, 27°. 3′. 58″.5.

In regard to the manner of making and reducing observations made with the upper declination magnet, the observer on looking into the theodolite telescope sees the image of the diagonally placed cross of the magnet collimator vibrating alternately right and left. The time of vibration of the magnet being about 30 seconds, the observer first applies his eye to the telescope about one minute, or two vibrations, before the pre-arranged time of observation, and, with the vertical wire carried by the telescope-micrometer, bisects the magnet-cross at its next extreme limit of vibration, reading the micrometer. He similarly observes the next following extreme vibration, in the opposite direction, and so on, taking in all four readings. The mean of each pair of adjacent readings of the micrometer is taken, giving three

GREENWICH MAGNETICAL AND METEOROLOGICAL OBSERVATIONS, 1883.

ix

b

INTRODUCTION TO GREENWICH MAGNETICAL OBSERVATIONS, 1883.

x

means, and the mean of these three is taken as the adopted reading. In practice this is done by adding the first and fourth readings to twice the second and third. and dividing the sum by 6. Should the magnet be nearly free from vibration, two bisections only of the cross are made, one at the vibration next before the prearranged time, the other at the vibration following. The verniers of the theodolitecircle are then read. The excess of the adopted micrometer-reading above the reading for the line of collimation of the telescope being converted into arc and applied to the mean circle-reading, and also the corrections for collimation of the magnet and for collimation of the plane glass in front of its box, the concluded circle-reading corresponding to the position of the magnet is found. The difference between this reading and the adopted reading of the circle for the south astronomical meridian gives, when, as is usually the case, no correction for torsion of the skein is necessary, the observed value of absolute declination, afterwards used for determining the value of the photographed base line on the photographic register of the lower declination magnet. The times of observation of the upper declination magnet are usually 1^h. 5^m, 3^h. 5^m, 9^h. 5^m, and 21^h. 5^m of Greenwich mean time, reckoning from noon.

LOWER DECLINATION MAGNET.—The lower declination magnet is used simply for the purpose of obtaining a photographic register of the variations of magnetic declination. It is by Troughton and Simms, and is of the same dimensions as the upper declination magnet, being 2 feet long, $1\frac{1}{2}$ inch broad, and $\frac{1}{4}$ inch thick. The magnet is suspended, in the Magnet Basement, immediately below the upper declination magnet, in order that the absolute measure of declination by the upper magnet should not be affected by the proximity of the lower magnet.

The manner of suspension of the magnet is in general similar to that of the upper declination magnet, the suspension pulleys being carried by a small pier built on one of the crossed slates resting on the brick piers rising up from the ground. The length of free suspending skein is about 6 feet, but, unlike the arrangement adopted for the upper magnet, the skein is itself carried over the suspension pulleys. The position of the azimuthal plane in which the brass bar rests, when substituted for the magnet, is examined from time to time, and adjustment made as necessary, to keep this plane in or near the magnetic meridian, such exact adjustment as is required for the upper declination-magnet not being necessary in this case.

To destroy the small accidental vibrations to which the magnet would be otherwise liable, it is encircled by a damper consisting of a copper bar, about 1 inch square, which is bent into a long oval form, the plane of the oval being vertical; a lateral bend is made in the upper bar of the oval to avoid interference with the suspension piece of the magnet. The effect of the damper is to reduce the amplitude of the oscillation after every complete or double vibration of the magnet in the proportion of 5:2 nearly.

In regard to photographic arrangements, it may be convenient, before proceeding to speak of the details peculiar to each instrument, to remark that the general principle adopted for obtaining continuous photographic record is the same for all instruments. For the register of each indication an accurately turned cylinder of ebonite is provided, the axis of the cylinder being placed parallel to the direction of the change of indication to be registered. If, as is usually the case, there are two indications whose movements are in the same direction, both may be registered on the same cylinder: thus the movements in the case of magnetic declination and horizontal magnetic force, being both horizontal, can be registered on different parts of one cylinder with axis horizontal: so also can two different galvanic earth currents. The movements in the case of vertical magnetic force, and of the barometer, being both vertical, can similarly be registered on different parts of one cylinder having its axis vertical, as also can the indications of the dry-bulb and wet-bulb thermometers. In the electrometer the movement is horizontal, for which a horizontal cylinder is provided, no other register being made on this cylinder.

The cylinder is in each case driven by chronometer or accurate clock-work to ensure uniform motion. The pivots of the horizontal cylinders turn on anti-friction wheels: the vertical cylinders rest on a circular plate turning on anti-friction wheels, the driving mechanism being placed below. A sheet of sensitized paper being wrapped round the cylinder, and a cylindrical glass cover, open at one end, slipped over it, the cylinder so prepared is placed in position, and connected with the clock-movement: it is then ready to receive the photographic record, the optical arrangements for producing which will be found explained in the special description of each particular instrument. In the early part of the year 1883 the cylindrical glass cover (excepting for the electrometer) was discarded, a slender brass clip being henceforth used to hold the sheet in position. The sheets are removed from the cylinders and fresh sheets supplied every day, usually at noon. On each sheet, where necessary, a reference line is also photographed, the arrangements for which will be more particularly described in each special case. All parts of the apparatus and all parts of the paths of light are protected, as found necessary, by wood or zinc casings or tubes, blackened on the inside, in order to prevent stray exterior light from reaching the photographic paper. Charles and an sto

In June 1882 the photographic process for so many years employed, as described in the concluding section of the Introduction to previous volumes, was discarded, and a dry paper process introduced, the argentic-gelatino-bromide-paper, as prepared

xi

xii INTRODUCTION TO GREENWICH MAGNETICAL OBSERVATIONS, 1883.

by Messrs. Morgan and Kidd of Richmond (Surrey), being used with ferrous oxalate development. The greater sensitiveness of this paper permits diminution of the effective surface of the magnet mirrors, and allows also the use of smaller gas flames. In the case of the vertical force magnet the old and comparatively heavy mirror has been replaced by a small and light mirror with manifest advantage, as will be seen in the description of the vertical force magnet. The new paper works equally well at all seasons of the year, and any loss of register on account of photographic failure is now extremely rare.

Referring now specially to the lower declination magnet, there is attached to the magnet carrier, for the purpose of obtaining photographic register of the motions of the magnet, a concave mirror of speculum metal, 5 inches in diameter (reduced by a stop, on the introduction of the new photographic paper, to an effective diameter of about 1 inch), which thus partakes in all the angular movements of the magnet. The revolving ebonite cylinder is $11\frac{1}{2}$ inches long and $14\frac{1}{4}$ inches in circumference: it is supported, in an approximately east and west position, on brass uprights carried by a metal plate, the whole being planted on a firm wooden platform, the supports of which rest on blocks driven into the ground. The platform is placed midway between the declination and horizontal force magnets, in order that the variations of magnetic declination and horizontal force may both be registered on the same cylinder, which makes one complete revolution in 26 hours.

The light used for obtaining the photographic record is that given by a flame of coal gas, charged with the vapour of coal naphtha. A vertical slit about $0^{in} \cdot 3$ long and $0^{in} \cdot 01$ wide, placed close to the light, is firmly supported on the pier which carries the magnet. It stands slightly out of the straight line joining the mirror and the registering cylinder, and its distance from the concave mirror of the magnet is The distance of the axis of the registering cylinder from the conabout 25 inches. cave mirror is 134.4 inches. Immediately above the cylinder, and parallel to its axis, are placed two long reflecting prisms (each 11 inches in length) facing opposite ways towards the mirrors carried by the declination and horizontal force magnets respectively. The front surface of each prism is convex, being a portion of a horizontal cylinder. The light of the declination lamp, after passing through the vertical slit, falls on the concave mirror, and is thence reflected as a converging beam to form an image of the slit on the convex surface of the reflecting prism. by the action of which it is reflected downwards to the paper on the cylinder as a small spot of light. A small azimuthal adjustment of the concave mirror allows the position of the spot to be so adjusted that it shall fall not at the centre of the

cylinder but rather towards its western side, in order that the declination trace shall not interfere with that of horizontal force, which is made to fall towards the eastern side of the cylinder. The special advantage of the arrangement here described is that the registers of both magnets are made at the same part of the circumference of the cylinder, a line joining the two spots being parallel to its axis, so that when the traces on the paper are developed, the parts of the two registers which appear in juxtaposition correspond to the same Greenwich time.

By means of a small prism, fixed near the registering cylinder, the light from another lamp is made to form a spot of light in a fixed position on the cylinder, so that, as the cylinder revolves, a reference or base line is traced out on the paper, from which, in the interpretation of the records, the curve ordinates are measured.

A clock of special construction, arranged by Messrs. E. Dent and Co., acting upon a small shutter placed near the declination slit, cuts off the light from the mirror two minutes before each hour, and lets it in again two minutes after the hour, thus producing at each hour a visible interruption in the trace, and so ensuring accuracy as regards time scale. By means of another shutter the observer occasionally cuts off the light for a few minutes, registering the times at which it was cut off and at which it was again let in. The visible interruptions thus made at definite times in the trace obviate any possibility of error being made by wrong numeration of the hourly breaks.

The usual hour of changing the photographic sheet is noon, but on Sundays, and occasionally on other days, this rule is in some measure departed from. To obviate any uncertainty that might arise on such occasions from the interference of the two ends of a trace slightly longer than 24 hours, it was, as has been mentioned, arranged that one revolution of the cylinder should be made in 26 hours. The actual length of 24 hours on the sheet is about 13.3 inches.

The scale for measurement of ordinates of the photographic curve is thus determined. The distance from the concave mirror to the surface of the cylinder, in the actual path of the ray of light through the prism, is practically the same as the horizontal distance of the centre of the cylinder from the mirror, 134.4 inches. A movement of 1° of the mirror produces a movement of 2° in the reflected ray. From this it is found that 1° of movement of the mirror, representing a change of 1° of magnetic declination, is equal to 4.691 inches on the photographic paper. A small strip of cardboard is therefore prepared, graduated on this scale to degrees and minutes. The ordinates of the curve as referred to the base line being measured for the times at which absolute values of declination were determined by the upper declination magnet, usually four times daily, the apparent value of the base line, as

xiv INTRODUCTION TO GREENWICH MAGNETICAL OBSERVATIONS, 1883.

inferred from each observation, is found. The process assumes that the movements of the upper and lower declination magnets are precisely similar. The separate base line values being divided into groups, usually monthly, a mean base line value is adopted for use through each group. This adopted base line value is written upon every sheet. Then, by the same pasteboard scale, there is laid down, conveniently near to the photographic trace, a new base line, whose ordinate represents some whole number of degrees or other convenient quantity. Thus every sheet carries its own scale of magnetic measure. From the new base line the hourly ordinates (see page *axviii*) are measured.

During the month of March the photographic trace was found on some days to, be evidently anomalous. The cause of this was not at first discovered. Ultimately, on March 31, it was found that an end of the filament of thread attaching the temporary stop, for reduction of the aperture of the magnet mirror, at times touched the cover of the magnet. This being remedied, the anomalous appearances ceased. Examination of the photographs then showed that it would be necessary to reject the declination traces of March 8, 9, 20, 21, 28, 29, and 30 as being untrustworthy. And from June 21 to June 24 there is no available register. On June 21 the suspension skein gave way; it was replaced by a new one, and registration recommenced on June 23, but on account of stretching of the thread the register could not be employed until June 25.

HORIZONTAL FORCE MAGNET.—The horizontal force magnet, for measure of the variations of horizontal magnetic force, was furnished by Meyerstein of Göttingen, and like the two declination magnets, is 2 feet long, $1\frac{1}{2}$ inch broad, and about $\frac{1}{4}$ inch thick. For support of its suspension skein the back and sides of its brick pier rise through the eastern arm of the Magnet Basement to the Upper Magnet Room, being there covered by a slate slab, to the top of which a brass plate is attached, carrying, immediately above the magnet, two brass pulleys, with their axes in the same east and west line; and at the back of the pier, and opposite to these pulleys, two others, with their axes similarly in an east and west line: these constitute the upper suspension piece, and support the upper portions of the two branches of the suspension skein. The two lower pulleys, having their axes in the same horizontal plane, and their grooves in the same vertical plane, are attached to a small horizontal bar which forms the upper portion of the torsion circle: it carries the verniers for reading the torsion circle, and can be turned independently of the lower and graduated portion of the torsion circle, below which, and in rigid connexion with it, is the magnet carrier.

The suspension skein is led under the two pulleys carried by the upper portion of the torsion circle, its two branches then rise up and pass over the front pulleys of the upper suspension piece, thence to and over the back pulleys, thence descending to a single pulley, round which the two branches are tied: from this pulley a cord goes to a small windlass fixed to the back of the pier. The effective length of each of the two branches of the suspension skein is about 7th 6th. The distance between the branches of the skein, where they pass over the upper pulleys, is 1ⁱⁿ 14: at the lower pulleys the distance between the branches is 0ⁱⁿ 80. The two branches are not intended to hang in one plane, but are to be so twisted that their torsion force will maintain the magnet in a direction very nearly east and west magnetic, the marked end being west. In this state an increase of horizontal magnetic force draws the marked end of the magnet towards the north, whilst a diminution of horizontal force allows the torsion force to draw the marked end towards the south. An oval copper bar, exactly similar to that used with the lower declination magnet, is applied also to the horizontal force magnet, for the purpose of diminishing the small accidental vibrations.

Below the magnet carrier there is attached a small plane mirror to which is directed a small telescope for the purpose of observing by reflexion the graduations of a horizontal opal glass scale, attached to the southern wall of the eastern arm of the basement. The magnet, with its plane mirror, hangs within a double rectangular box, covered with gilt paper in the same way as was described for the upper declination magnet. The numbers of the fixed scale increase from east to west, so that when the magnet is inserted in its usual position, with its marked end towards the west, increasing readings of the scale, as seen in the telescope, denote increasing horizontal force. The normal to the scale that meets the centre of the plane mirror is situated at the division 51 of the scale nearly, the distance of the scale from the centre of the plane mirror being 90.84 inches. The angle between the normal to the scale, which coincides nearly with the normal to the axis of the magnet, and the axis of the fixed telescope is about 38°, the plane of the mirror being therefore inclined about 19° to the axis of the magnet.

To adjust the magnet so that it shall be truly transverse to the magnetic meridian, which position is necessary in order that the indications of the instrument may apply truly to changes in the magnitude of horizontal magnetic force, without regard to changes of direction, the time of vibration of the magnet and the reading of the fixed scale are determined for different readings of the torsion circle. In regard to the interpretation of such experiments the following explanation may be premised.

Suppose that the magnet is suspended in its carrier with its marked end in a magnetic westerly direction, not exactly west but in any westerly direction, and suppose that, by means of the fixed telescope, the reading of the scale is taken. The

xvi INTRODUCTION TO GREENWICH MAGNETICAL OBSERVATIONS, 1883.

position of the axis of the magnet is thereby defined. Now let the magnet be taken out of its carrier, and replaced with its marked end easterly. The terrestrial magnetic force will now act, as regards torsion, in the direction opposite to that in which it acted before, and the magnet will take up a different position. But by turning the torsion circle, and thereby changing the amount and direction of the torsion force produced by the oblique tension of the two branches of the suspending skein, the magnet may be made to take the same position as before, but with reversed direction of poles, which will be proved by the reading of the scale, as seen in the fixed telescope, being the same. The reading of the torsion circle will now be different, the effect of the operation being to give the difference of torsion circle reading for the same position of the magnet axis, but with the marked end opposite ways, without however affording any information as to whether the magnet axis is accurately transverse to the magnet axis be transverse or not.

But there is another observation which will indicate whether the magnet axis is or is not accurately transverse. Let the time of vibration be, in addition, taken in each position of the magnet. Resolve the terrestrial magnetic forces acting on the poles of the magnet each into two parts, one transverse to the magnet, the other longitudinal. In the two positions of the magnet, marked end westerly and marked end easterly, the magnitude of the transversal force is the same, and the changes which the torsion undergoes in a vibration of given extent are the same, and, if there were no other force, the time of vibration would also be the same. But there is another force, the longitudinal force, and when the marked end is northerly this tends from the centre of the magnet's length, and when it is southerly it tends towards the centre of the magnet's length, and in a vibration of given extent this produces force, in one case increasing that due to the torsion, and in the other case diminishing it. The times of vibration will therefore be different. There is only one exception to this, which is when the magnet axis is transverse to the magnetic meridian, in which case the longitudinal force vanishes.

The criterion then of the position truly transverse to the meridian is this. Find the readings of the torsion circle which, with the magnet in reversed positions, will give the same readings of the scale and the same time of vibration for the magnet. With such readings of the torsion circle the magnet is, in either position, transverse to the meridian, and the difference of readings is the difference between the position in which the terrestrial magnetism acting on the magnet twists it one way and the position in which the same force twists it the opposite way, and is therefore double of the angle due to the torsion force of the suspending lines when they, in either position, neutralize the force of terrestrial magnetism.

		The Marked End of the Magnet.													
1880, Day.			West.		East.										
	Torsion- Circle Reading.	Scale Reading.	Difference of Scale Readings for change of 1° of Torsion- Circle Reading.	Mean of the Times of Vibration.	Torsion- Circle Reading.	Scale Reading.	Difference of Scale Readings for change of 1° of Torsion- Circle Reading.	Mean of the Times of Vibration.							
Dec. 31	• 144 145 146 147 148	div. 36.80 45.26 53.15 62.09 70.15	div. 8 • 46 7 • 89 8 • 94 8 • 06	• 21 • 30 21 • 12 20 • 94 20 • 74 20 • 54	° 227 228 229 230 231 232	div. 32 · 52 40 · 07 47 · 35 55 · 32 63 · 26 7 1 · 93	div. 7 * 55 7 * 28 7 * 97 7 * 94 8 * 67	s 20.50 20.62 20.76 20.90 21.00 21.12							

The present suspension skein was mounted on 1880 December 30, and on December 31 the following observations were made :---

From these observations it appeared that the times of vibration and scale readings were sensibly the same when the torsion circle read 146° . 15', marked end west, and 230°. 0', marked end east, the difference being 83°. 45'. Half this difference, or 41°. 52'.5, is therefore the angle of torsion when the magnet is transverse to the meridian. The values similarly found from other sets of observations made on 1882 January 3, 1883 February 16, 1883 December 31, and 1885 January 1, were respectively 42°. 9', 41°. 56', 42°. 1'.5, and 42°. 9'. The value adopted in the reduction of the observations during the year 1883 was 42°. 0'.

The adopted reading of torsion-circle, for transverse position of the magnet, the marked end being west, was 146° throughout the year.

The angle through which the magnet turns to produce a change of one division of scale reading, and the corresponding variation of horizontal force in terms of the whole horizontal force, is thus found.

The length of $30^{\text{div}}\cdot85$ of the fixed scale is exactly 12 inches, and the distance of the centre of the face of the plane mirror from the scale 90.84 inches; consequently the angle at the mirror subtended by one division of the scale is $14'\cdot43''\cdot2$, or for change of one division of scale-reading the magnet is turned through an angle of 7'.21''.6.

The variation of horizontal force, in terms of the whole horizontal force, producing angular motion of the magnet corresponding to change of one division of scale reading = cotan. angle of torsion \times value of one division in terms of radius. Using the numbers above given, the change of horizontal force corresponding to

GREENWICH MAGNETICAL AND METEOROLOGICAL OBSERVATIONS, 1883.

С

xviii INTRODUCTION TO GREENWICH MAGNETICAL OBSERVATIONS, 1883.

change of one division of scale-reading was found to be 0.002378, which value has been used throughout the year 1883 for conversion of the observed scale-readings into parts of the whole horizontal force.

In regard to the manner of making observations with the horizontal force magnet. A fine vertical wire is fixed in the field of view of the observing telescope, across which the graduations of the fixed scale, as reflected by the plane mirror carried by the magnet, are seen to pass alternately right and left as the magnet oscillates, and the scale reading for the extreme points of vibration is easily taken. The hours of observation are usually 1^{h} , 3^{h} , 9^{h} , and 21^{h} of Greenwich mean time. Remarking that the time of vibration of the magnet is about 20 seconds, and that the observer looks into the telescope about 40 seconds before the pre-arranged time, the manner of making the observation is generally similar to that already described for the upper declination magnet.

A thermometer, the bulb of which reaches considerably below the attached scale, is so planted in a nearly upright position on the outer magnet box that the bulb projects into the interior of the inner box containing the magnet. Readings of this thermometer are usually taken at 0^{h} , 1^{h} , 2^{h} , 3^{h} , 9^{h} , 21^{h} , 22^{h} ; and 23^{h} . Its index error is insignificant.

The photographic record of the movements of the horizontal force magnet is made on the same revolving cylinder as is used for record of the motions of the lower declination magnet. And as described for that magnet, there is also attached to the carrier of the horizontal force magnet a concave mirror, 4 inches in diameter, reduced by a stop (on the introduction of the new photographic paper) to an effective diameter of about 1 inch. The arrangements as regards lamp, slit, and other parts are precisely similar to those for the lower declination magnet already described, and may be perfectly understood by reference to that description (pages xii and xiii), in which was incidentally included an explanation of some parts specially referring to register of horizontal force. The distance of the vertical slit from the concave mirror of the magnet is about 21 inches, and the distance of the axis of the registering cylinder from the concave mirror is 136.8 inches, the slit standing slightly out of the straight line joining the mirror and the registering cylinder. The same base line is used for measure of the horizontal force ordinates, and the register is similarly interrupted at each hour by the clock, and occasionally by the observer, for determination of time scale, the length of which is of course the same as that for declination.

The scale for measure of ordinates of the photographic curve is thus constructed. The distance from the concave mirror to the surface of the cylinder, in the actual path of the ray of light through the prism is (as for declination) practically the same as the horizontal distance of the centre of the cylinder from the mirror, or

VERTICAL FORCE MAGNET.

136.8 inches. But, because of the reflexion at the concave mirror, the double of this measure, or 273.6 inches, is the distance that determines the extent of motion on the cylinder of the spot of light, which, in inches, for a change of 0.01 part of the whole horizontal force will therefore be $273.6 \times \tan$ angle of torsion $\times 0.01$. Taking for angle of torsion 42° . 0' the movement of the spot of light on the cylinder for a change of 0.01 of horizontal force is thus found to be 2:464 inches, and with this unit the pasteboard scale for measure of the curve ordinates for the year 1883 was prepared. The ordinates being measured for the times at which eye observations of the scale were made, combination of the measured ordinates with the observed scale readings converted into parts of the whole horizontal force, gives an apparent value of the base line for each observation. These being divided into groups, mean base line values are adopted, written on the sheets, and new base lines laid down, from which the hourly ordinates (see page xxviii) are measured, exactly in the same way as described for declination.

The indications of horizontal force are in a slight degree affected by the small changes of temperature to which the Magnet Basement is subject. The temperature coefficient of the magnet was determined by artificially heating the Magnet Basement to different temperatures, and observing the change of position of the magnet thereby produced. This process seems preferable to others in which was observed the effect which the magnet, when inclosed within a copper trough or box and artificially heated by hot water or hot air to different temperatures, produced on another suspended magnet, since the result obtained includes the entire effect of temperature upon all the various parts of the mounting of the magnet, as well as on the magnet itself. Referring to previous volumes for details, it is sufficient here to state that from a series of experiments made in the early part of the year 1868 on the principle mentioned, it appeared that when the marked end of the horizontal force magnet was to the west (its ordinary position) a change of 1° of temperature (Fahrenheit) produced a change of .000174 of the whole horizontal force, a smaller number of observations made with the marked end of the magnet east indicating that a change of 1° of temperature produced a change of $\cdot 000187$ of horizontal force, increase of temperature in both cases being accompanied by decrease of magnetic force. It is concluded that an increase of 1° of temperature produces a decrease of .00018 of horizontal force.

VERTICAL FORCE MAGNET.—The vertical force magnet, for measure of the variations of vertical magnetic force, is by Troughton and Simms. It is lozenge shaped, being broad at the centre and pointed at the ends, and is mounted on a solid brick pier capped with stone, situated in the western arm of the basement, its position being nearly symmetrical with that of the horizontal force magnet in the eastern arm.

xix

c 2

xx INTRODUCTION TO GREENWICH MAGNETICAL OBSERVATIONS, 1883.

The supporting frame consists of two pillars, connected at their bases, on whose tops are the agate planes upon which rest the extreme parts of the continuous steel knife edge, attached to the magnet carrier by clamps and pinching screws. The knife edge, eight inches long, passes through an aperture in the magnet. The axis of the magnet is approximately transverse to the magnetic meridian, its marked end being east; its axis of vibration is thus nearly north and south magnetic. The magnet carrier is of iron; at its southern end there is fixed a small plane mirror for use in eye observations, whose plane makes with the axis of the magnet an angle of $52\frac{3}{4}^{\circ}$ nearly. A telescope fixed to the west side of the brick pier supporting the theodolite of the upper declination magnet is directed to the mirror, for observation by reflexion of the divisions of a vertical opal glass scale fixed to the pier that carries the telescope, very near to the telescope itself. The numbers of this fixed scale increase downwards, so that when the magnet is placed in its usual position with the marked end east, increasing readings of the scale, as seen in the telescope, denote increasing vertical force.

The magnet is placed excentrically between the bearing parts of its knife edge, nearer to the southern side, leaving a space of about four inches in the northern part of the iron frame, in which the concave mirror used for the photographic register is planted. Two screw stalks, carrying adjustible screw weights, are fixed to the magnet carrier, near its northern side; one stalk is horizontal, and a change in the position of the weight affects the position of equilibrium of the magnet; the other stalk is vertical, and change in the position of its weight affects the delicacy of the balance, and so varies the magnitude of its change of position produced by a given change in the vertical force of terrestrial magnetism.

In the year 1882 Messrs. Troughton and Simms substituted for the old mirror of 4 inches diameter a much lighter mirror of 1 inch diameter, and also lowered the position of the knife-edge bar with respect to the magnet so as to permit of a diminution of the adjustible counterpoise weights which as well as the mirror appear to largely affect the temperature correction of this balance-magnet. The use of a smaller and much lighter mirror was rendered possible by the much greater sensitiveness of the new photographic paper introduced in 1882 June.

The whole is enclosed in a rectangular box, resting upon the pier before mentioned, and having apertures, covered with glass, opposite to the two mirrors carried by the magnet.

The time of vibration of the magnet in the vertical plane is observed usually about once in each week, or more often should it appear to be desirable. From observations made on 31 days between January 1 and June 29 the time of vibration was found to be 13^s.708; from observations made on 3 days between June 30 and

VERTICAL FORCE MAGNET.

July 2, $17^{s}\cdot 163$; and from observations made on 49 days between July 3 and December 31, $21^{s}\cdot 679$. The time of vertical vibration was increased on June 30 and again on July 3 by slight shift of the screw weight on the vertical stalk in order that equal changes of amplitude in the horizontal and vertical force photographs should more nearly correspond to equal changes of absolute magnetic force.

The time of vibration of the magnet in the horizontal plane is determined by suspending the magnet with all its attached parts from a tripod stand, its broad side being in a plane parallel to the horizon, so that its moment of inertia is the same as when in observation. A telescope, with a wire in its focus, being directed to the plane mirror carried by the magnet, a scale of numbers is placed on the floor, at right angles to the long axis of the magnet, which scale, by reflexion, can be seen in the fixed telescope. The magnet is observed only when swinging through a small arc. Observations made in the way described on 1883 April 4 gave for the time of vibration of the magnet in the horizontal plane = $17^{s} \cdot 171$. This value is used throughout the year 1883.

The length of the normal to the fixed vertical scale that meets the face of the plane mirror is 186.07 inches, and $30^{\text{div}}.85$ of the scale correspond to 12 inches. Consequently the angle which one division of the scale subtends, as seen from the mirror, is 7'. $11^{"}.2$, or the angular movement of the normal to the mirror, corresponding to a change of one division of scale reading, is 3'. $35^{"}.6$.

But the angular movement of the normal to the mirror is not the same as the angular movement of the magnet, but is less in the ratio of the cosine of the angle which the normal to the mirror makes with the magnet to unity, or in the ratio of the sine of the angle which the plane of the mirror makes with the magnet to unity. This angle, as already stated, is $52\frac{3}{4}^{\circ}$, therefore dividing the result just obtained, 3'. $35'' \cdot 6$, by Sin. $52\frac{3}{4}^{\circ}$, the angular motion of the magnet corresponding to a change of one division of scale reading is found to be 4'. $30'' \cdot 9$.

The variation of vertical force, in terms of the whole vertical force, producing angular motion of the magnet corresponding to change of one division of scale reading = cotan. dip $\times \left(\frac{T}{T}\right)^2 \times$ value of one division in terms of radius, in which T is the time of vibration of the magnet in the horizontal plane, and T that in the vertical plane. From January 1 to June 29, assuming $T' = 17^{s} \cdot 171$, $T = 13^{s} \cdot 708$, and dip = 67° . 32', the change of vertical force corresponding to change of one division of scale reading was found to be 0.000852; from June 30 to July 2, with the same value for T', and assuming $T = 17^{s} \cdot 163$, and dip = 67° . $30\frac{1}{2}'$, it was found to be 0.000544; from July 3 to December 31 with the same value for T, and assuming $T = 21^{s} \cdot 679$, and dip = 67° . 31', it was found to be 0.000341. These

xxii INTRODUCTION TO GREENWICH MAGNETICAL OBSERVATIONS, 1883.

values have been severally used during the periods mentioned for conversion of the observed scale readings into parts of the whole vertical force.

The hours of observation of the vertical force magnet are the same as those for the horizontal force magnet, and the method of observation is precisely similar, the time of vertical vibration being substituted for that of horizontal. The wire in the fixed telescope is here horizontal, and as the magnet oscillates the divisions of the scale are seen to pass upwards and downwards in the field of view.

In the same way as described for the horizontal force magnet a thermometer is provided whose bulb projects into the interior of the magnet box. Readings are taken usually at 0^{h} , 1^{h} , 2^{h} , 3^{h} , 9^{h} , 21^{h} , 22^{h} , and 23^{h} . Its index error is insignificant.

The photographic register of the movements of the vertical force magnet is made on a cylinder of the same size as that used for declination and horizontal force, driven also by chronometer movement. The cylinder is here placed vertical instead of horizontal, and opportunity is taken to register on the same cylinder the variations of the barometer. The slit is horizontal, and other arrangements are generally similar to those already described for declination and horizontal force. The concave mirror carried by the magnet is 1 inch in diameter, and the slit is distant from it about 22 inches, being placed a little out of the straight line joining the mirror and the registering cylinder. There is a slight deviation in the further optical arrangements. Instead of a reflecting prism (as for declination and horizontal force) the converging horizontal beam from the concave mirror falls on a system of plano-convex cylindrical lenses, placed in front of the cylinder, with their axes parallel to that of the cylinder. The trace is made on the western side of the cylinder, the position of the magnet being so adjusted that the spot of light shall fall also on the lower part of the sheet. A base line is photographed, and the record is interrupted at each hour by the clock, and occasionally by the observer, for establishment of time scale, in the same way as for the other magnets. The length of the time scale is the same as that for the other magnetic registers.

The scale for measure of ordinates of the photographic curve is determined as follows:—The distance from the concave mirror to the surface of the registering cylinder is 100.2 inches. But the double of this measure, or 200.4 inches, is the distance that determines the extent of motion on the cylinder of the spot of light, which, in inches, for a change of 0.01 part of the whole vertical force, will therefore be = $200.4 \times \tan$ dip $\times \left(\frac{T}{T'}\right)^2 \times 0.01$. Using the values of T, T', and of dip, before given (page *xxi*), the movement of the spot of light on the cylinder for a change of 0.01 of vertical force is thus found to be, for the period January 1 to June 29, 3.089 inches, for the period June 30 to July 2, 4.836 inches, and from July 3 to December 31, 7.718 inches, and with these units the scales for measure

DIP INSTRUMENT.

of the curve ordinates were constructed. Base line values are then determined, and written on the sheets, and new base lines laid down, from which the hourly ordinates (see page *xxviii*) are measured, exactly in the same way as was described for horizontal force.

In regard to the temperature correction of the vertical force magnet, it is only necessary here to say that, according to a series of experiments made in a similar manner to those for the horizontal force magnet (page *xix*), it appeared that an increase of 1° of temperature (Fahrenheit) produced an apparent increase of 0.00020 of vertical force. The value of the coefficient is thus much less than was found in the old state of the magnet with the large mirror, although still not following the ordinary law of increase of temperature producing loss of magnetic power. In practice a nearly uniform temperature is as far as possible maintained.

DIP INSTRUMENT.—The instrument with which the observations of magnetic dip have been made during the year 1883 is that which is known as Airy's instrument. Until the beginning of the month of May it was mounted on a stout block of wood in the Magnet Office No. 7. It was then removed to the New Library and placed on a slate slab supported by a braced wooden stand built up from the ground independently of the floor of the Library. The plan of the instrument was arranged by Sir G. B. Airy so that the points of the needles should be viewed by microscopes and if necessary observed whilst the needles were in a state of vibration, that there should be power of employing needles of different lengths, and that the field of view of each microscope should be illuminated from the side opposite to the observer, in such way that the needle point should form a dark image in the bright field.

The instrument is adapted to the observation of needles of 9 inches, 6 inches, and 3 inches in length. The main portion of the instrument, that in which the needle under observation is placed, consists of a square box made of gun metal (carefully selected to ensure freedom from iron), with back and front of glass. Six microscopes, so planted as to command the points of the three different lengths of needles, are attached to a horizontal axis which allows them to be turned round in the vertical plane so as to follow the points of the needles in the different positions which in observation they take up. The object glasses and field glasses of the microscopes are within the front glass plate, their eye glasses being outside, and turning with them on the same axis. Upon the plane side of each field glass (the side next the object glass and on which the image of the needle point is formed) a scale is etched. And on the inner side of the front glass plate is etched the graduated circle, divided to 10', and read by two verniers to 10". The verniers (thin plates of metal, with notches instead of lines, being thus adapted to transmitted light) are carried by the horizontal axis, inside of the front glass plate, their reading lenses, attached to the same axis, being

xxiv INTRODUCTION TO GREENWICH MAGNETICAL OBSERVATIONS, 1883.

outside. Proper clamp with slow motion is provided. The microscopes and verniers are illuminated by one gas lamp, the light from which falling on eight corresponding prisms is thereby directed to each separate microscope and vernier. The prisms are carried behind the back glass plate on a circular frame in such way that, on reversion of the instrument in azimuth, the whole set of prisms can at one motion of the frame be shifted so as to bring each one again opposite to its proper microscope or vernier.

Since the instrument has been placed in the New Library artificial light has not been employed in making the observation.

The whole of the apparatus is planted upon a circular horizontal plate, admitting of rotation in azimuth: a graduated circle near the circumference of the plate is read by two fixed verniers.

A brass zenith point needle, having points corresponding in position to the three different lengths of dip needles, is used to determine the zenith point for each particular length of needle.

The instrument carries two levels, one parallel to the plane of the vertical circle, the other at right angles to that plane, by means of which the instrument is from time to time adjusted in level. The readings of the first-mentioned level are also regularly employed to correct the apparent value of dip for any small outstanding error of level: the correction seldom exceeds a very few seconds.

The needles in regular use are of the ordinary construction, they are two 9-inch needles, B_1 and B_2 , two 6-inch needles, C_1 and C_2 , and two 3-inch needles, D_1 and D_2 .

The observations were made in the New Library from the beginning of the month of May.

DEFLEXION INSTRUMENT.—The observations of deflexion of a magnet in combination with observations of vibration of the deflecting magnet, for determination of the absolute intensity of magnetism, are made with a unifilar instrument, which, with the exception of some slight modification of the mechanical arrangements, is similar to those issued from the Kew Observatory. Until the beginning of March it was mounted on a block of wood in the Magnet Office No. 7, on the south side of the Dip instrument. It was then moved to the New Library and supported on a slate slab in the same way as the Dip instrument.

The deflected magnet, whose use is merely to ascertain the ratio which the power of the deflecting magnet at a given distance bears to the power of terrestrial magnetism, is 3 inches long, and carries a small plane mirror, to which is directed a telescope fixed to and rotating with the frame that carries also the suspension piece of the deflected magnet: a scale fixed to the telescope is seen by reflexion at the plane mirror. The deflecting magnet is a hollow cylinder 4 inches long, containing in its internal tube a collimator, by means of which in another apparatus its time of vibration is observed. In observations of deflexion the deflecting magnet is placed on the transverse deflection rod, carried by the rotating frame, at the distances 1.0 foot and 1.3 foot of the engraved scale from the deflected magnet, and with one end towards the deflected magnet. Observations are made at the two distances mentioned, with the deflecting magnet both east and west of the deflected magnet, and also with its poles in reversed positions. The fixed horizontal circle is 10 inches in diameter: it is graduated to 10', and read by two verniers to 10''. The March observation and all following observations were made in the New Library.

It will be convenient in this case to include with the description of the instrument an account of the method of reduction employed, in which the Kew precepts and generally the Kew notation are followed. Previous to the establishment of the instrument at the Royal Observatory the values of the various instrumental constants, as determined at the Kew Observatory, were kindly communicated by Professor Balfour Stewart, and have been since used in the reduction of all observations made with the instrument at Greenwich.

The instrumental constants as thus furnished are as follows :----

- The increase in the magnetic moment of the deflecting magnet produced by the inducing action of a magnetic force equal to unity of the English system of absolute measurement = $\mu = 0.00015587$.
- The correction for decrease of the magnetic moment of the deflecting magnet required in order to reduce to the temperature 35° Fahrenheit = q = 0.00013126 $(t - 35) + 0.000000259 (t - 35)^2$: t representing the temperature at which the observation is made.
- Moment of inertia of the deflecting magnet = K. At temperature 30° , log. K = 0.66643: at temperature $90^{\circ} = 0.66679$.
- The distance on the deflection rod from 1^{ft}·O east to 1^{ft}·O west of the engraved scale, at temperature 62°, is too long by 0.0034 inch, and the distance from 1^{ft}·3 east to 1^{ft}·3 west is too long by 0.0053 inch.

The adopted value of K was confirmed in the year 1878 by a new and entirely independent determination made at the Royal Observatory, giving log. K at temperature $30^{\circ} = 0.66727$.

If, in the deflection observation, r = apparent distance of centre of deflecting magnet from deflected magnet, corrected for scale error and temperature (taking expansion of scale for $1^{\circ} = \cdot 00001$), and u = observed angle of deflexion, then putting $A_1 = \frac{1}{2} r^3 \sin u \left\{ 1 + \frac{2\mu}{r^3} + q \right\}$, in which r = 1.0 foot; and $A_2 =$ corresponding expression for r = 1.3 foot; $P = \frac{A_1 - A_2}{A_1 - \frac{A_2}{(1\cdot3)^3}}$; but this is not convenient for logarithmic computation, especially as the logarithms of A_1 and A_2 are, in the calculation, first obtained. The difference between A_1 and A_2 being small, P may be taken

GREENWICH MAGNETICAL AND METEOROLOGICAL OBSERVATIONS, 1883.

d

xxvi INTRODUCTION TO GREENWICH MAGNETICAL OBSERVATIONS, 1883.

equal to (Log. $A_1 - Log. A_2$) $\frac{1 \cdot 69}{(1 \cdot 69 - 1) \mod ulus} = (Log. A_1 - Log. A_2) \times 5 \cdot 64$. A mean value of P is adopted from various observations; then *m* being the magnetic moment of the deflecting magnet, and X the Horizontal component of the Earth's magnetic force, $\frac{m}{X} = A_1 \times \left(1 - \frac{P}{1}\right)$ from observation at distance 1.0 foot, or $= A_2 \times \left(1 - \frac{P}{1 \cdot 69}\right)$ from that at distance 1.3 foot. The mean of these is adopted for the true value of $\frac{m}{Y}$.

For determination, from the observed vibrations, of the value of mX, let $T_1 = \text{time}$ of vibration of the deflecting magnet corrected for rate and arc of vibration, then $T^2 = T_1^2 \left\{ 1 + \frac{H}{F} + \mu \frac{X}{m} - q \right\}$, in which $\frac{H}{F}$ is the ratio of the torsion force of the suspension thread of the deflecting magnet to the earth's directive force. And $mX = \frac{\pi^2 K}{T^2}$. The adopted time of vibration is the mean of 100 vibrations observed immediately before, and 100 observed immediately after the observations of deflexion.

From the combination of the values of $\frac{m}{X}$ and mX, m and X are immediately found. The computation is made with reference to English measure, taking as units of length and weight the foot and grain, but it is desirable to express X also in metric measure. If the English foot be supposed equal to α times the millimètre, and the grain equal to β times the milligramme, then for reduction to metric measure $\frac{m}{X}$ and mX must be multiplied by α^3 and $\alpha^2\beta$ respectively, or X must be multiplied by $\sqrt{\frac{\beta}{\alpha}}$. Taking the mètre as equal to 39.37079 inches, and the gramme as equal to 15.43249 grains, the factor by which X is to be multiplied in order to obtain X in metric measure is $0.46108 = \frac{1}{2.1689}$. The values of X in metric measure thus derived from those in English measure are given in the proper table. Values of X in terms of the centimètre and gramme, known as the C.G.S. unit (centimètre-gramme-second unit), are readily obtained by dividing those referred to the millimètre and milligramme by 10.

EARTH CURRENT APPARATUS.—For observation of the spontaneous galvanic currents which in some measure are almost always discoverable in the earth, and which are occasionally very powerful, two insulated wires having earth connexions at Angerstein Wharf (on the bank of the River Thames near Charlton) and Lady Well for one circuit; and at the Morden College end of the Blackheath Tunnel and the North Kent East Junction of the South-Eastern Railway for the other circuit, have been employed. The connecting wires pass from the Royal Observatory to the Greenwich Railway Station and thence, by kind permission of the Directors of the

EARTH CURRENTS.

South-Eastern Railway Company, along the lines of the South-Eastern Railway to the respective earths, in each case a copper plate. The direct distance between the earth plates of the Angerstein Wharf—Lady Well circuit is 3 miles, and the azimuth of the line, reckoning from magnetic north towards east, 50°; in the Blackheath—North Kent East circuit the direct distance is $2\frac{1}{2}$ miles, and the azimuth, from magnetic north towards west, 46°. The actual lengths of wire in the circuitous courses which the wires necessarily take in order to reach the Observatory registering apparatus are about $7\frac{1}{2}$ miles and 5 miles respectively. The identity of the four branches is tested from time to time as appears necessary.

In each circuit at the Royal Observatory there is placed a horizontal galvanometer, having its magnet suspended by a hair. Each galvanometer coil contains 150 turns of No. 29 copper wire, or the double coil of each instrument consists of 300 turns of wire. They are placed on opposite sides of the registering cylinder, which is of course horizontal. One galvanometer stands towards one end of the cylinder, and the other towards the other end, and each carries, on a light stalk extending downwards from its magnet, a small plane mirror. Immediately above the cylinder are placed two long reflecting prisms which, except that they [are each but half the length of the cylinder, and are placed end to end, are generally similar to those used for magnetic declination and horizontal force, the front convex surface facing opposite ways, each one towards the In each case the light of a gas lamp, mirror of its respective galvanometer. passing through a vertical slit and a vertical cylindrical lens, falls upon the galvanometer mirror, which reflects the converging beam to the convex surface of the reflecting prism, by whose action it is made to form on the paper on the cylinder a small spot of light; thus all the azimuthal motions of the galvanometer magnet are registered. The extent of trace for each galvanometer is thus confined to half the length of the cylinder, which is of the same size as those used for the magnetic registers. The arrangements for turning the cylinder, automatically determining the time scale, and forming a base line are similar to those which have been before described. When the traces on the paper are developed the parts of the registers which appear in juxtaposition correspond, as for declination and horizontal force, to the same Greenwich time, and the scale of time is of the same length as for the magnetic registers.

§ 5. Magnetic Reductions.

The results given in the Magnetic Section refer to the astronomical day, commencing at noon.

xxvii

d 2

xxviii INTRODUCTION TO GREENWICH MAGNETICAL OBSERVATIONS, 1883.

Before proceeding to discuss the photographic records of magnetic declination, horizontal force, and vertical force, they were divided into two groups, one including all days on which the traces showed no particular disturbance, and which therefore were suitable for the determination of diurnal inequality; the other comprising days of unusual and violent disturbance, when the traces were so irregular that it appeared impossible to treat them except by the exhibition of every motion of each magnet through the day. Following the principle of separation hitherto adopted, there are 5 days in the year 1883 which have been classed as days of great disturbance. These are February 24, April 3, 24, September 15 and 16. Other days or periods of lesser disturbance were January 25, 26, February 1, 2, 3, 4, 22, 27, 28, March 1, 2, 26.8^h to 28.8^h, April 19, 25, May 20, 21, June 29.16^h to July 1.16^h, July 8, 9, 10, 11, 29, 30, 31, August 1, 18, September 18, October 5, 16, 19. 6^h to 20^h, 20. 4^h to 11^h, November 1. 4^h to 3. 4^h, 19. 8^h to 20. 8^h, and 21. 13^h to 23. 13^h.

Separating the days of great disturbance, to be spoken of hereafter the photographic sheets for the remaining available days, including those of lesser disturbance, were thus treated. Through each photographic trace a pencil line was drawn representing the general form of the curve, without its petty irregularities. The ordinates of these pencil curves were then measured, with the proper pasteboard scales, at every hour, the measures being entered in a form having double argument, the vertical argument ranging through the 24 hours of the astronomical day, and the horizontal argument through the days of a calendar month, the means of the numbers standing in the vertical columns giving the mean daily value of the element, and the means of the numbers in the horizontal columns the mean monthly value at each hour of the day. Tables I. and II. contain the results for declination, Tables III. to VI. those for horizontal force, with corresponding tables of temperature, and Tables VII. to X. those for vertical force, with corresponding tables of temperature. Table XI. gives the collected monthly values for declination, horizontal force, and vertical force, and Table XII. the mean diurnal inequalities for the year.

The temperature of the horizontal and vertical force magnets was maintained so nearly uniform through each day that the determination of the diurnal inequalities of horizontal and vertical force should possess great exactitude. It was not possible under the circumstances to maintain similar uniformity of temperature through the seasons, a point however of less importance. In preceding years the results for horizontal and vertical force have been given uncorrected for temperature, leaving the correction to be applied when the results for series of years are collected for discussion; but commencing with the year 1883 it has been thought

MAGNETIC REDUCTIONS.

well to add also, in Tables III., V., VII., and IX., results corrected for temperature, in order to render them more immediately available. In Tables XI. and XII., only results corrected for temperature are given. The corrected mean daily and mean hourly values of horizontal force given in Tables III. and V. respectively are obtained by applying to the uncorrected values the correction $(t^{\circ}-32^{\circ}) \times \cdot 00018$, where t° is the temperature (Fahrenheit), and to those of vertical force, Tables VII. and IX., the correction $-(t^{\circ}-32^{\circ}) \times \cdot 00020$. The corrections applied are founded on the daily and hourly values of temperature given in Tables IV., VI., VIII., and X.

In order to economise space the daily values as exhibited in Tables III. and VII., both uncorrected and corrected, have been diminished by constants. The division ______ in these Tables and in Table XI. indicates that the instrument has been disturbed for experiment, or for some adjustment, whereby the continuity of the values has been broken, the constants deducted being different before and after each break. In the interval between two breaks the constant deducted remains the same, and that deducted in Tables III. and VII. from the corrected values differs from that deducted from the uncorrected values by some multiple of 100. In Tables II., V., IX., and XII. the separate hourly values of the different elements have been simply diminished by the smallest hourly value.

The variations of declination are given in the sexagesimal division of the circle, and those of horizontal and vertical force in terms of 00001 of the whole horizontal and vertical forces respectively taken as units. In Tables XI. and XII. they have been also expressed in terms of 00001 of Gauss's absolute unit, as referred to the metrical system of the millimètre-milligramme-second.

The factors for conversion from the former to the latter system of measures are as follows:--

For variation of declination, expressed in minutes, the factor is

H.F. in metrical measure $\times \sin 1' = 1.810 \times \sin 1' = 0.0005265$.

For variation of horizontal force, the factor is

H. F. in metrical measure = 1.810,

and for variation of vertical force

V. F. in metrical measure = H. F. in metrical measure \times tan dip, = 1.810 \times tan 67°. $31\frac{1}{2}' = 4.375$.

The measures as referred to the millimètre-milligramme-second are convertible into measures on the centimètre-gramme-second (C. G. S.) system by dividing by 10.

xxx INTRODUCTION TO GREENWICH MAGNETICAL OBSERVATIONS, 1883.

Tables XIII. and XIV. exhibit respectively the diurnal range of declination and horizontal force on each separate day, as determined from the 24 hourly ordinates of each element measured from the photographic register (as explained on page *xxviii*), and the monthly means of these numbers. The results for horizontal force are corrected for temperature. The monthly means for declination are such as, in the volume for 1881 and in previous volumes, have been given in the final column of Table III.; the daily values have only been given since the year 1882.

The magnetic diurnal inequalities of declination, horizontal force, and vertical force, for each month and for the year, have this year been treated by the method of harmonic analysis. The values of the coefficients contained in Table XV. have been thus computed, O representing the value at 0^{h} , 1 that at 1^{h} , and so on.

 $= \frac{1}{24} (0+1+2\dots 22+23).$ $12 a_1 = 0 - 12 + (\overline{1 + 23} - \overline{11 + 13}) \cos 15^\circ + (\overline{2 + 22} - \overline{10 + 14}) \cos 30^\circ$ $+(\overline{3+21} - \overline{9+15})\cos 45^{\circ} + (\overline{4+20} - \overline{8+16})\cos 60^{\circ}$ + ($\overline{5+19}$ - $\overline{7+17}$) cos 75°. $12 b_1 = 6 - 18 + (\overline{5+7} - \overline{17+19}) \sin 75^\circ + (\overline{4+8} - \overline{16+20} \sin 60^\circ)$ $+ (\overline{3+9} - \overline{15+21}) \sin 45^{\circ} + (\overline{2+10} - \overline{14+22}) \sin 30^{\circ}$ + (1+11 - 13+23) sin 15°. $12 a_2 = \overline{0+12} - \overline{6+18} + (\overline{1+11+13+23} - \overline{5+7+17+19}) \cos 30^\circ$ + $(\overline{2+10+14+22} - \overline{4+8+16+20}) \cos 60^\circ$. $12 b_2 = \overline{3+15} - \overline{9+21} + (\overline{2+4+14+16} - \overline{8+10+20+22}) \sin 60^{\circ}$ + $(\overline{1+5+13+17} - \overline{7+11+19+23}) \sin 30^\circ$. $12 a_3 = \overline{0+8+16} - \overline{4+12+20} + (\overline{1+7+9+15+17+23} - \overline{3+5+11+13+19+21}) \cos 45^\circ$ $12 \ b_3 = \overline{2+10+18} \ - \ \overline{6+14+22} \ + \ (\overline{1+3+9+11+17+19} \ - \ \overline{5+7+13+15+21+23}) \sin 45^\circ.$ $12 a_4 = \overline{0+6+12+18} - \overline{3+9+15+21}$ + $(\overline{1+5+7+11+13+17+19+23} - \overline{2+4+8+10+14+16+20+22}) \cos 60^\circ$. $12 \ b_4 = (\overline{1+2+7+8+13+14+19+20} \ - \overline{4+5+10+11+16+17+22+23}) \sin 60^\circ.$

The values of the coefficients c_1 , and of the constant angles α contained in Table XVI., are then determined by means of the following relations :—

$$\frac{a_1}{b_1} = \tan \alpha \qquad \qquad c_1 = \frac{a_1}{\sin \alpha} = \frac{b_1}{\cos \alpha}.$$

Similarly for c_2 , β , &c.

Finally, the values of the angles α^1 , β^1 , &c. were thus found. Calling the Sun's hour angle east at mean solar noon = h, then—

$$\begin{array}{rcl}
\alpha^1 &=& \alpha + h \\
\beta^1 &=& \beta + 2h \\
\&c. &=& \&c.,
\end{array}$$

a mean value of h for the month being employed.

The values of a_5 and b_5 for the diurnal inequalities for the year were also calculated, but could not be conveniently included in Table XV.; they are as follows:—

1883.	<i>a</i> ₅ .	<i>b</i> ₅ .
Declination	+0.06	-0.01
Horizontal Force	-° • 4	+0.7
Vertical Force	-0. ²	+0.2

é -

In order to give some indication of the accuracy with which the results of observation are represented by the harmonic formula, the sums of squares of residuals remaining after the introduction of m and of each successive pair of terms of the expression on page (xii), corresponding to the single terms of the expressions on page (xiii), have been calculated for the mean diurnal inequalities for the year (columns 1, 2, and 3 of Table XII.). The respective sums of squares of residuals are as follows:—

	For the Year 1		Declination.	Horizontal Force.	Vertical Force.	
Sums of Squares of (, 373·31	456197.1	22969.6
Sums of Squares of I	Residuals after t	he introducti "	a_1 and b_1	155·75 56·13	79094°2 20465°3	4863·6 2418·2
" "	*	" "	$a_2 ext{ and } b_2$ $a_3 ext{ and } b_3$	10.05	3655°2 611°4	368•6 33•5
>> >>		>> >>	a_4 and b_4 a_5 and b_5	0.13 0.08	10°2 1°4	12·6 4·2

SUMS OF SQUARES OF RESIDUALS OF DIURNAL INEQUALITIES.

The unit in the case of horizontal and vertical force being 00001 of the whole horizontal and vertical forces respectively, it thus appears that there would be no advantage in carrying the approximation (Table XV.) beyond the determination of a_4 , b_4 .

As regards Magnetic dip, the result of each separate observation of dip with each of the six needles in ordinary use is given in Table XVII., and in Table XVIII. the concluded monthly and yearly values for each needle.

xxxii INTRODUCTION TO GREENWICH MAGNETICAL OBSERVATIONS, 1883.

The results of the observations for Absolute measure of horizontal force contained in Table XIX. require no special remark, the method of reduction and all necessary explanation having been given with the description of the instrument.

No numerical discussion of Earth Current records is contained in the present volume.

In the treatment of disturbed days it has been the custom in previous years to measure out for each element all salient points of the curves and to print the numerical values. But, commencing with the year 1882, it has been considered preferable to give instead reduced copies of the actual photographic curves (reproduced by photolithography from full-sized tracings of the original photographs), adding thereto copies of the corresponding earth current curves. The registers thus exhibited are those for the days of great and of lesser disturbance mentioned on page *xxviii*.

The plates are preceded by a brief description of *all* significant magnetic motions (superposed on the ordinary diurnal movement) recorded throughout the year. These, in combination with the plates, give very complete information on magnetic disturbances during the year 1883, affording thereby, it is hoped, facilities for making comparison with solar phenomena.

Referring now again to the plates, it may be remarked that on each day, with few exceptions, five distinct registers are given, viz.: declination, horizontal force, vertical force, and the two earth currents, all necessary information for proper understanding of the plates being given in the notes on page (xxiv). No attempt has been made to determine earth current scales in terms of any electrical unit, but it may be stated that the instrumental conditions are similar for the two circuits, excepting that the communicating wire of the E_1 circuit is longer than that of the E_2 circuit in the proportion of 3 to 2, and that the distances between the earth plates of the former and of the latter are in the proportion of 6 to 5.

The indications of horizontal and vertical force are given precisely as registered; they are therefore affected, slightly as compared with the amount of motion on disturbed days, by the small recorded changes of temperature of the magnets. The observed temperatures being inserted on the plates, reference to the temperature coefficients of the magnets, given at page *xix* for horizontal force, and page *xxiii* for vertical force, will show the effect produced. Briefly, an increase of nearly 6° of temperature throws the horizontal force curve upward by 0.001 of the whole horizontal force; an increase of 5° of temperature throws the vertical force curve downward by 0.001 of the whole vertical force.

PLATES OF MAGNETIC DISTURBANCES AND EARTH CURRENTS. xxxiii

The original photographs have been reduced in the proportion of 20 to 11 on the plates, and the corresponding scale values are :---

	LENGTH IN INCHES					
	Of 1° of	()f o·oì of Horizontal		fo.o1 of Vertical Force.		
	Declination throughout the Year.	Force throughout the Year.	January 1 to June 29.	June 30 to July 2.	July 3 to December 31	
On the Photographs -	in. 4.691	in. 2•464	in. 3•089	in. 4 • 836	in. 7.718	
On the Plates -	2.580	1 • 355	1.699	, 2.660	4.242	

The scales actually attached to the plates are, however, so arranged as to correspond with the tables of the magnetic section, that is to say, the unit employed in the case of horizontal force and vertical force is 00001 of the whole horizontal and vertical forces respectively.

But the preceding scale values are not immediately comparable for the different elements, and it will therefore be desirable to refer them all to the same unit, say 0.01 of the horizontal force.

Now, the transverse force represented by a variation of 1° of Declination = $\cdot 0175$ of Horizontal Force

and Vertical Force = Horizontal Force × tan. dip $[dip = 67^{\circ}. 31\frac{1}{2}']$ = Horizontal Force × 2.4172

whence we have the following equivalent scale values for the different elements, as applying to the plates :---

For Declination			For Vertical Force Curve.				
Curve throughout the Year.	Force Curve throughout the Year.	January 1 to June 29.	June 30 to July 2.	July 3 to December 31.			
in.	in.	111.	in.	in.			

It may be convenient to give also comparative scale values for the different systems of absolute measurement, viz.:--

Foot-grain-second, or	British unit, in	n terms of whi	ich Mean	H. F. for 18	383 = 3.926	
Millimètre-milligramme-second, or		,,	"	"	= 1.810	
Centimètre-gramme-second, or			"	"	= 0.1810	
GREENWICH MAGNETICAL AND MET	ECROLOGICAL (Observations	, 1883.		е	

xxxiv INTRODUCTION TO GREENWICH METEOROLOGICAL OBSERVATIONS, 1883.

Dividing therefore the scale values last given by 3.926, 1.810, and 0.1810 respectively, the following comparative scale values for each of the elements on the plates as referred to 0.01 of these units respectively are found :—

• .			LENC	TH OF O'OI OF	Unit.				
	Unit.	Declination	Declination Horizontal		Vertical Force.				
		throughout the Year.	Force throughout the Year.	January 1 to June 29.	June 30 to July 2.	July 3 to December 31.			
	British	in. 0*38	in. 0•35	in. 0.18	in. 0°28	in. 0*45			
	Metric	0.81	0.72	0.39	0.61	o [.] 97			
	C. G. S	8.1	7.2	3•9	6.1	9*7			

Slight interruptions in the traces on the plates are due to various causes. In the originals there are breaks at each hour for time scale, so slight however that, in the copies, the traces could usually be made continuous without fear of error: in a few cases, however, this could not be done, as at 6^{h} on October 5. Further, to check the numeration of hours, the observer interrupts the register at definite times for about five minutes, usually at or near 2^{h} . 30^{m} , 8^{h} . 30^{m} , and 21^{h} . 30^{m} , and at somewhat different times on Sundays. The interruption in the earth-current registers is greater than in the other registers because of the necessity of also temporarily disconnecting the wires for determination of the instrumental zeros. A weekly clearing of the gas pipes also causes a somewhat longer interruption, usually at about 22^{h} , as on January 26^{d} . $22\frac{1}{2}^{h}$.

As regards other interruptions, the register of declination was lost from June 29. 21^{h} to 30. $1\frac{1}{2}^{h}$ on account of the stretching of the new suspension skein mounted on June 23 having thrown the register off the cylinder. From April 3. 23^{h} to 4. 3^{h} the vertical force magnet was dismounted, in order to determine its time of vibration in the horizontal plane, and on June 30 the register was accidentally lost; from November 23. $0\frac{1}{2}^{h}$ to 2^{h} it was also lost during removal of the driving chronometer for oiling.

As respects earth currents there is loss of register on February 24, 27, 28, March 1 and 26, due to accidental displacement of the trace or interruption of the register.

The original photographic records were first traced on thin paper, the separate records on each day being arranged one under another on the same sheet, and

great attention being paid to accuracy as regards the scale of time. Each sheet containing the records for one or more days was then reduced by photo-lithography, in the proportion of 20 to 11, to bring it to a convenient size for insertion in the printed volume.

§ 6. Meteorological Instruments.

STANDARD BAROMETER.—The standard barometer, mounted in 1840 on the southern wall of the western arm of the upper magnet room, is Newman No. 64. Its tube is $0^{in} \cdot 565$ in diameter, and the depression of the mercury due to capillary action is $0^{in} \cdot 002$, but no correction is applied on this account. The cistern is of glass, and the graduated scale and attached rod are of brass; at its lower end the rod terminates in a point of ivory, which in observation is made just to meet the reflected image of the point as seen in the mercury. The scale is divided to $0^{in} \cdot 05$, subdivided by vernier to $0^{in} \cdot 002$.

The readings of this barometer until 1866 August 20 are considered to be coincident with those of the Royal Society's flint-glass standard barometer. It then became necessary to remove the sliding rod, for repair of its slow motion screw, which was completed on August 30. Before the removal of the rod the barometer had been compared with three other barometers, one of which, during repair of the rod, was used for the daily readings. After restoration of the rod comparison was again made with the same three barometers with the result that (all three auxiliary barometers giving accordant results) the readings of the standard, in its new state, required a correction of -0^{in} 006, which correction has been applied to every observation, commencing on 1866 August 30.

An elaborate comparison of the standard barometers of the Greenwich and Kew Observatories, made, under the direction of the Kew Committee, by Mr. Whipple, Superintendent of the Kew Observatory, in the spring of the year 1877, showed that the difference between the two barometers (after applying to the Greenwich barometer readings the correction $-0^{in}\cdot006$) did not exceed $0^{in}\cdot001$. (*Proceedings of the Royal Society*, vol. 27, page 76.)

The height of the barometer cistern above the mean level of the sea is 159 feet, being 5^{ft} 2ⁱⁿ above Mr. Lloyd's reference mark in the then transit room, now the Astronomer Royal's official room (*Philosophical Transactions*, 1831).

The barometer is usually read at 21^{h} , 0^{h} , 3^{h} , 9^{h} (astronomical reckoning). Each reading is corrected by application of the index correction above mentioned, and reduced to the temperature 32° by means of Table II. of the "Report of the

xxxv

e 2

xxxvi INTRODUCTION TO GREENWICH METEOROLOGICAL OBSERVATIONS, 1883.

Committee of Physics" of the Royal Society. The readings thus found are used to determine the value of the instrumental base line on the photographic record.

PHOTOGRAPHIC BAROMETER.—The barometric record is made on the same cylinder as is used for magnetic vertical force, the register being arranged to fall on the upper half of the cylinder, on its eastern side. A syphon barometer fixed to the northern wall of the Magnet Basement is employed, the bore of the upper and lower extremities of the tube being about 1.1 inch. A metallic float is partly supported by a counterpoise acting on a light lever, leaving a definite part of its weight to be supported by the mercury. The lever carries at its other end a vertical plate of blackened mica, having a small horizontal slit, whose distance from the fulcrum is about eight times that of the point of connexion with the float, and whose vertical movement is therefore about four times that of the ordinary barometric column. The light of a gas lamp, passing through this slit and falling on a cylindrical lens, forms a spot of light on the paper. The barometer can, by screw action, be raised or lowered so as to keep the photographic trace in a convenient part of the sheet. A base line is traced on the sheet, and the record is interrupted at each hour by the clock and occasionally by the observer in the same way as for the magnetic registers. The length of the time scale is also the same.

The barometric scale is determined by experimentally comparing the measured movement on the paper with the observed movement of the standard barometer; one inch of barometric movement is thus found = $4^{in} \cdot 39$ on the paper. Ordinates measured for the times of observation of the standard barometer, combined with the corrected readings of the standard barometer, give apparent values of the base line, from which mean values for each day are formed; these are written on the sheets and new base lines drawn, from which the hourly ordinates (see page *xlvi*) are measured as for the magnetic registers.

As regards the effect of temperature, it will be understood from the construction of the apparatus that the photographic record is influenced only by the expansion of the column of mercury (about 4 inches in length) in the lower tube of the barometer, and from this circumstance, in combination with the near uniformity of temperature in the basement, no appreciable differential effect is produced on the photographic register.

DRY AND WET BULB THERMOMETERS.— The dry and wet bulb thermometers and maximum and minimum self-registering thermometers, both dry and wet, are mounted on a revolving frame planned by Sir G. B. Airy. A vertical axis fixed in the ground, in a position about 35 feet south of the south-west angle of the Magnetic Observatory, carries the frame, which consists of a horizontal board as base, of a vertical board projecting upwards from it connected with one edge of the horizontal board, and of two parallel inclined boards (separated about 3 inches) connected at the top with the vertical board and at the bottom with the other edge of the horizontal board: the outer inclined board is covered with zinc, and the air passes freely between all the boards. The dry and wet bulb thermometers are mounted near the centre of the vertical board, with their bulbs about 4 feet from the ground; the maximum and minimum thermometers for air temperature are placed towards one side of the vertical board, and those for evaporation temperature towards the other side, with their bulbs at about the same level as those of the dry and wet bulb thermometers. A small roof projecting from the frame protects the thermometers from rain. The frame is turned in azimuth as necessary to keep the inclined side always towards the sun.

The corrections to be applied to the thermometers in ordinary use (except the earth thermometers) are determined usually once each year for the whole extent of scale actually employed, by comparison with the standard thermometer, No. 515, kindly supplied to the Royal Observatory by the Kew Committee of the Royal Society.

The dry and wet bulb thermometers are Negretti and Zambra, Nos. 45354 and 45355 respectively. Until February 28 the correction applied to dry bulb readings was -0° ·1, and from March 1 -0° ·2′. The correction applied to wet bulb readings was -0° ·1 throughout.

The self-registering thermometers for temperature of air and evaporation are all by Negretti and Zambra. The maximum thermometers are on Negretti and Zambra's principle, the minimum thermometers are of Rutherford's construction. To the readings of No. 8527 for maximum temperature of the air has been applied a correction of $-0^{\circ}.9$; to those of No. 4386, for minimum temperature of the air, until February 28 a correction of $-0^{\circ}.2$ was applied: from March 1 a correction of $-0^{\circ}.3$ was applied. The readings of No. 44285 for maximum temperature of evaporation required until February 28 a correction of $-0^{\circ}.4$, and the readings of No. 3627 for minimum temperature of evaporation a correction of $+1^{\circ}.2$: from March 1 corrections of $-0^{\circ}.5$ and $+1^{\circ}.3$ respectively were applied.

The dry and wet bulb thermometers are usually read at 21^{h} , 0^{h} , 3^{h} , 9^{h} (astronomical reckoning). Readings of the maximum and minimum thermometers are usually taken at 21^{h} and 9^{h} . Those of the dry and wet bulb thermometers are employed to correct the indications of the photographic dry and wet bulb thermometers.

PHOTOGRAPHIC DRY AND WET BULB THERMOMETERS.—About 28 feet south-southeast of the south-east angle of the Magnetic Observatory, and about 25 feet east-

xxxviii INTRODUCTION TO GREENWICH METEOROLOGICAL OBSERVATIONS, 1883.

north-east of the stand carrying the thermometers for eye-observation already described, is an open shed, 10 ft. 6 in. square, standing upon posts 8 feet high, under which are placed the photographic thermometers, the dry-bulb towards the east and the wet-bulb towards the west. Their bulbs are 8 inches in length and 0.4 inch internal bore, and their centres are about 4 feet above the ground. A registering cylinder of ebonite, 10 inches long and 19 inches in circumference, is placed with its axis vertical between the stems of the two thermometers. The registers are made simultaneously on opposite sides of the cylinder, and to avoid any accidental overlapping of the two registers the cylinder is made to revolve once in about 52 hours. The thermometer frames are covered by metal plates having longitudinal slits, so that light can pass through the slit only above the surface of the mercury. At each degree a fine cross wire is placed, thicker at the decades of degrees, and also at 32°, 52°, and 72°. A gas lamp is placed about 9 inches from each thermometer (east of the dry-bulb and west of the wet-bulb), and in each case the light, condensed by a cylindrical lens with axis vertical, shines through the tube above the mercury, and forms a well-defined line of light upon the paper. In August 1883 it was found that the cylindrical lenses could with advantage be dispensed with. They were in consequence removed. As the cylinder revolves horizontally under the light passing through the thermometer tube, the paper thus receives a broad sheet of photographic trace, whose breadth, in the direction of the axis of the cylinder, varies with the varying height of the mercury in the thermometer tube. When the sheet is developed the whole of that part of the paper which in each case passed the slit above the mercury will show photographic trace, with thin white lines corresponding to the degrees, the lower part of the paper remaining white; thus the boundary of the photographic trace indicates the varying temperature. The time scale is determined by interruption of the traces made by the observer at registered times, usually three times a day. The length of 24 hours on each of the thermometer traces is about 9 inches.

RADIATION THERMOMETERS.—These thermometers are placed in the Magnet Ground, a little south of the Magnet House. The thermometer for solar radiation is a self-registering mercurial maximum thermometer by Negretti and Zambra, No. 38592; its bulb is blackened, and the thermometer is enclosed in a glass sphere from which the air has been exhausted. The thermometer for radiation to the sky is a self-registering spirit minimum thermometer of Rutherford's construction, by Horne and Thornthwaite, No. 3120. The thermometers are laid on short grass; they require no correction for index error.

RADIATION THERMOMETERS; EARTH THERMOMETERS; THAMES THERMOMETERS.

EARTH THERMOMETERS.—These thermometers were made by Adie, of Edinburgh, under the superintendence of Professor J. D. Forbes. They are placed at the northwest corner of the photographic thermometer shed.

The thermometers are four in number, placed in one hole in the ground, the diameter of which in its upper half is 1 foot and in its lower half about 6 inches, each thermometer being attached in its whole length to a slender piece of wood. The thermometer No. 1 was dropped into the hole to such a depth that the centre of its bulb was 24 French feet (25.6 English feet) below the surface, then dry sand was poured in till the hole was filled to nearly half its height. Then No. 2 was dropped in till the centre of its bulb was 12 French feet below the surface; Nos. 3 and 4 till the centres of their bulbs were respectively 6 and 3 French feet below the surface; and the hole was then completely filled with dry sand. The upper parts of the tubes carrying the scales were left projecting above the surface; No. 1 by 27.5 inches, No. 2 by 28.0 inches, No. 3 by 30.0 inches, and No. 4 by 32.0 inches. Of these lengths, 8.5, 10.0, 11.0, and 14.5 inches respectively are in each case tube with narrow bore. The length of 1° on the scales is 1.9 inch, 1.1 inch, 0.9 inch, and 0.5 inch in each case respectively. The ranges of the scales are for No. 1, 46° 0 to $55^{\circ}.5$; No. 2, $43^{\circ}.0$ to $58^{\circ}.0$; No. 3, $44^{\circ}.0$ to $62^{\circ}.0$; and for No. 4, $37^{\circ}.0$ to $68^{\circ}.0$.

The bulbs of the thermometers are cylindrical, 10 or 12 inches long, and 2 or 3 inches in diameter. The bore of the principal part of each tube, from the bulb to the graduated scale, is very small; in that part to which the scale is attached it is larger; the fluid in the tubes is alcohol tinged red; the scales are of opal glass.

In consequence of the ranges of scale having in previous years been found insufficient, fluid has at times been removed from or added to the thermometers as necessary, proper corresponding alteration being made in the positions of the attached scales. Information in regard to these changes will be found in previous Introductions.

The parts of the tubes above the ground are protected by a small wooden hut fixed to the ground; the sides of the hut are perforated with numerous holes, and it has a double roof; in the north face is a plate of glass, through which the readings are taken. Within the hut are two small thermometers, one, No. 5, with bulb one inch in the ground, another, No. 6, whose bulb is freely exposed in the centre of the hut.

These thermometers are read every day at noon, and the readings are given without correction. The index errors of Nos. 1, 2, 3, and 4 are unknown; No. 5 appears to read too high by 0° -2, and No. 6 by 0° -4.

THAMES THERMOMETERS.—Observations of the temperature of the water of the river Thames, which had been discontinued in the year 1879 in consequence of

xxxix

xl INTRODUCTION TO GREENWICH METEOROLOGICAL OBSERVATIONS, 1883.

inability to find a suitable station after the placing of the police ship "Royalist" on the river bank, were resumed in the year 1883, under the direction of the Corporation of the City of London. The thermometers are placed at the end of one of the jetties of the Foreign Cattle Market at Deptford, the record including observations (by means of two Six's self-registering thermometers made by Negretti and Zambra) of the maximum and minimum temperature of the water at a depth of two feet below the surface, and also near the bottom of the river, the thermometers being read daily at 21^{h} (astronomical reckoning). By arrangement with the officers of the Corporation a copy of the record is furnished weekly to the Royal Observatory, in order that the readings of the surface thermometers may be included in the tables of "Daily Results of Meteorological Observations," page (xxvi) in which the highest and lowest readings recorded each morning at 21^h are entered to the same civil day. The observations, made by Mr. G. Philcox, Clerk of the Market, were commenced on June 3. In the months of July, August, and September, omissions due to accidental causes occurred. The Royal Observatory authorities are not responsible for the accuracy of the observations.

OSLER'S ANEMOMETER. — This self-registering anemometer, devised by A. Follett Osler, is fixed above the north-western turret of the ancient part of the Observatory. For direction of the wind a large vane, from which a vertical shaft proceeds down to the registering table within the turret, gives motion, by a pinion fixed at its lower end, to a rack-work carrying a pencil. A collar on the vane shaft bears upon anti-friction rollers, running in a cup of oil, rendering the vane very sensitive to changes of direction in light winds. The pencil marks a paper fixed to a board moved horizontally and uniformly by a clock, in a direction transverse to that of the motion of the pencil. The paper carries lines corresponding to the positions of N., E., S., and W. of the vane, with transversal hour-lines. The vane is 60 feet above the adjacent ground, and 215 feet above the mean level of the sea. A fixed mark on the north-eastern turret, in a known azimuth, as determined by celestial observation, is used for examining at any time the position of the direction plate over the registering table, to which reference is made by means of a direction pointer when adjusting a new sheet on the travelling board.

For the pressure of the wind the construction is as follows. At a distance of 2 feet below the vane there is placed a circular pressure plate having an area of $1\frac{1}{3}$ square feet, or 192 square inches, which, moving with the vane, and being thereby kept directed towards the wind, acts against a combination of springs in such way that, with a light wind, slender springs are first brought into action, but, as the wind increases, stiffer springs come into play. For a detailed account of the arrangement adopted the reader is referred to the Introduction for the year 1866. [Until 1866 the pressure plate was a square plate, 1 foot square, for

which in that year a circular plate, having an area of 2 square feet, was substituted and employed until the spring of the year 1880, when the present circular plate, having an area of $1\frac{1}{3}$ square feet, was introduced.] A short flexible chain, fixed to a cross bar in connexion with the pressure plate, passing over a pulley in the upper part of the shaft is then attached to a copper wire running down the centre of the shaft to the registering table, just before reaching which the wire communicates with a short length of silk cord, which, led round a pulley, gives horizontal motion to the arm carrying the pressure pencil. In 1882 September a flexible brass chain was substituted for the connecting copper wire, an alteration which has greatly increased the delicacy of movement of the pressure pencil, every small movement of the pressure plate being now registered. The scale for pressure, in lbs. on the square foot, is experimentally determined from time to time as appears necessary; the pressure pencil is brought to zero by a light spiral spring.

A rain gauge of peculiar construction forms part of the apparatus: this is described under the heading "Rain Gauges."

A new sheet of paper is applied to the instrument every day at noon. The scale of time is equal in length to that of the magnetic registers.

ROBINSON'S ANEMOMETER.—This instrument, mounted above the small building on the roof of the Octagon Room, is constructed on the principle described by the late Dr. Robinson in the *Transactions of the Royal Irish Academy*, Vol. XXII. The revolving hemispherical cups are 56 feet above the adjacent ground, and 211 feet above the mean level of the sea. The motion is given by the pressure of the wind on four hemispherical cups, each 5 inches in diameter, the centre of each cup being 15 inches distant from the vertical axis of rotation. The foot of the axis is a hollow flat cone bearing upon a sharp cone, which rises up from the base of a cup of oil. An endless screw acts on a train of wheels furnished with indices for reading off the amount of motion of the air in miles, and a pinion on the axis of one of the wheels draws upwards a rack, to which is attached a rod passing down to the pencil, which marks the paper placed on the vertical revolving cylinder in the chamber below. A motion of the pencil upwards through a space of one inch represents horizontal motion of the air through 100 miles.

The cylinder is driven by a clock in the usual way, and makes one revolution in 24 hours. A new sheet of paper is applied every day at noon. The scale of time is equal in length to that of Osler's Anemometer and the magnetic registers.

It is assumed, in accordance with the experiments made by Dr. Robinson, that the horizontal motion of the air is three times the space described by the centres of the

GREENWICH MAGNETICAL AND METEOROLOGICAL OBSERVATIONS, 1883.

xlii INTRODUCTION TO GREENWICH METEOROLOGICAL OBSERVATIONS, 1883.

cups. To verify this conclusion experiments were made in the year 1860 in Greenwich Park with the anemometer then in use, not the same as that now employed. The instrument was fixed to the end of a horizontal arm, which was made to revolve round a vertical axis. For more detailed account of these experiments see the Introduction for 1880. With the arm revolving in the direction N., E., S., W., opposite to the direction of rotation of the cups, for movement of the instrument through one mile 1.15 was registered; with the arm revolving in the direction N., W., S., E., in the same direction as the rotation of the cups, 0.97 was registered. This was considered to confirm sufficiently the accuracy of the assumption.

RAIN GAUGES.—During the year 1883 eight rain-gauges were employed, placed at different elevations above the ground, complete information in regard to which will be found at page (lxxii) of the Meteorological Section.

The gauge No. 1 forms part of the Osler Anemometer apparatus, and is selfregistering, the record being made on the sheet on which the direction and pressure of the wind are recorded. The receiving surface is a rectangular opening 10×20 inches, equal to 200 square inches. The collected water passes into a vessel suspended by spiral springs, which lengthen as the water accumulates, until 0.25 inch is collected, the water then discharges itself by means of the following modification of the syphon. A vertical copper tube, open at both ends, is fixed in the receiver, with one end just projecting below the bottom. Over this tube there is loosely placed, in the receiver, a larger tube, closed at the top. The accumulating water, having risen to the top of the inner tube, begins to flow off into a small tumbling bucket, fixed in a globe placed underneath, and carried by the receiver. When full the bucket falls over, throwing the water into a small exit pipe at the lower part of the globe-the only outlet. The water filling the bore of the pipe creates a partial vacuum in the globe sufficient to cause the longer leg of the syphon to act, and the whole remaining contents of the receiver then run off, through the globe, to a waste pipe. The spiral springs at the same time shorten, and raise the receiver. The gradual descent of the water vessel as the rain falls, and the immediate ascent on discharge of the water, act upon a pencil, and cause a corresponding trace to be made on the paper fixed to the moving board of the anemometer. The rain scale on the paper was determined experimentally by passing a known quantity of water through the receiver. The continuous record thus gives complete information on the rate of the fall of rain. See a second state of the

Gauge No. 2 is a ten-inch circular gauge, placed close to gauge No. 1, its receiving surface being precisely at the same level. The gauge is read daily.

Gauges Nos. 3, 4, and 5 are eight-inch circular gauges, placed respectively on the roof of the Octagon Room, over the roof of the Magnetic Observatory, and on the roof of the Photographic Thermometer Shed. All are read daily.

Gauges Nos. 6, 7, and 8 are also eight-inch circular gauges, placed on the ground south of the Magnetic Observatory; No. 6 is the old daily gauge, No. 7 the old monthly gauge, and No. 8 an additional gauge brought into use in July 1881, as a check on the readings of Nos. 6 and 7, the monthly amounts collected by these gauges having occasionally shown greater differences than seemed proper. All three gauges have been read daily since the beginning of July 1881.

The gauges are also read at midnight on the last day of each calendar month.

ELECTROMETER.—The electric potential of the atmosphere is measured by means of a Thomson self-recording electrometer, constructed by Mr. White of Glasgow.

For a very full description of the principle of the electrometer reference may be made to Sir William Thomson's "Report on Electrometers and Electrostatic Measurements," contained in the British Association Report for the year 1867. It will be sufficient here to give a general description of the instrument which, with its registering apparatus, is planted in the Upper Magnet Room on the slate slab which carries the suspension pulleys of the Horizontal Force Magnet. A thin flat needle of aluminium, carrying immediately above it a small light mirror, is suspended, on the bifilar principle, by two silk fibres from an insulated support within a large Leyden jar. A little strong sulphuric acid is placed in the bottom of the jar, and from the lower side of the needle depends a platinum wire, kept stretched by a weight, which connects the needle with the sulphuric acid, that is with the inner coating of the jar. A positive charge of electricity being given to the needle and jar, this charge is easily maintained at a constant potential by means of a small electric machine or replenisher forming part of the instrument, and by which the charge can be either increased or decreased at pleasure. A gauge is provided for the purpose of indicating at any moment the amount of charge. The needle hangs within four insulated quadrants, which may be supposed to be formed by cutting a circular flat brass box into quarters, and then slightly separating them. The opposite quadrants are placed in metallic connexion.

The value of the electric potential of the atmosphere is obtained by means of Sir William Thomson's water-dropping apparatus. For this purpose a rectangular cistern of reopper, capable of holding above 30 gallons of water, is placed near the ceiling on the west side of the south arm of the Upper Magnet Room. The cistern

f 2

xliv INTRODUCTION TO GREENWICH METEOROLOGICAL OBSERVATIONS, 1883.

rests on four pillars of glass, each one encircled and nearly completely enclosed by a glass vessel containing sulphuric acid. A pipe passing out from the cistern, through the south face of the building, extends about six feet into the atmosphere, the nozzle from which the water flows being about ten feet above the ground; the water passing out through a very small hole, and breaking almost immediately into drops, the cistern is brought to the same electrical potential as that point of the atmosphere, which potential is, by means of a connecting wire, communicated to one of the pairs of electrometer quadrants, the other pair being connected to earth. The varying atmospheric potential thus influences the motions of the included needle, causing it to be deflected from zero in one direction or the other, according as the atmospheric potential is greater or less than that of the earth, that is according as it is positive or negative.

The small mirror carried by the needle is used for the purpose of obtaining photographic record of its motions. The light of a gas-lamp, falling through a slit upon the mirror, is thence reflected, and by means of a plano-convex cylindrical lens is brought to a focus at the surface of a horizontal cylinder of ebonite, nearly 7 inches long and 16 inches in circumference, which is turned by clock-work. A second fixed mirror, by means of the same gas-lamp, causes a reference line to be traced round the cylinder. The actual zero is found by cutting off the cistern communication, and placing the pairs of quadrants in metallic connexion with each other and with earth. The break of register at each hour is made by the driving-clock of the electrometer cylinder itself. Other photographic arrangements are generally similar to those which have been described for other instruments.

The scale of time is equal in length to that of the magnetic registers.

Inconvenience is sometimes caused by cobwebs making connexion between the cistern or its pipe and the walls of the building, and in winter, interruptions occasionally occur owing to the freezing of the water in the exit pipe.

SUNSHINE INSTRUMENT.—This instrument, contrived by the late Mr. J. F. Campbell, and kindly given by him to the Royal Observatory, consists of a very accurately formed sphere of glass, nearly 4 inches in diameter, supported concentrically within a well turned hemispherical metal bowl in such a manner that the image of the sun, formed when the sun shines, falls always on the concave surface of the bowl. A strip of blackened millboard being fixed in the bowl, the sun, when shining, burns away the surface at the points at which the image successively falls, by which means the record of periods of sunshine is obtained. The strip is removed after sunset, and a new one fixed ready for the following day. The place of the meridian is marked on the strip before removing it from the bowl. A series of time scales, suitable for different periods of the year, having been prepared, the proper scale is selected and placed against the record, which is then easily transferred to a sheet of paper specially ruled with equal vertical spaces to represent hours, each sheet containing the record for one calendar month. The daily sums, and sums during each hour (reckoning from apparent noon) through the month are thus readily formed. The recorded durations are to be understood as indicating the amount of *bright* sunshine, no register being obtained when the sun shines faintly through fog or cloud, neither is any register usually obtained when the sun's altitude is less than 5°. The instrument is placed on a table upon the platform above the Magnetic Observatory.

OZONOMETER.—This apparatus is fixed on the south-west corner of the roof of the Photographic Thermometer shed, at a height of about 10 feet from the ground. The box in which the papers are exposed is of wood: it is about 8 inches square, blackened inside, and so constructed that there is free circulation of air through the box, without exposure of the paper to light. The papers exposed at 21^{h} , 3^{h} , and 9^{h} are collected respectively at 3^{h} , 9^{h} , and 21^{h} , and the degree of tint produced is compared with a scale of graduated tints, numbered from 0 to 10. The value of ozone for the civil day is determined by taking the degree of tint obtained at each hour of collection as proportional to the period of exposure. Thus to form the values for any given civil day, three-fourths of the value registered at 21^{h} , the values registered at 3^{h} and 9^{h} , and one-fourth of that registered at the following 21^{h} , are added together, the resulting sum (which appears in the tables of "Daily Results of the Meteorological Observations") being taken as the value referring to the civil day. The means of the 21^{h} , 3^{h} , and 9^{h} values, as observed, are also given for each month in the foot notes.

§ 7. Meteorological Reductions.

The results given in the Meteorological section refer in general to the civil day, commencing at midnight.

All results in regard to atmospheric pressure, temperature of the air and of evaporation with deductions therefrom, and atmospheric electricity, are derived from the photographic records, excepting that the maximum and minimum values of air temperature are those given by eye-observation of the ordinary maximum and minimum thermometers at 21^{h} and 9^{h} (astronomical reckoning), reference being

alvi INTRODUCTION TO GREENWICH METEOROLOGICAL OBSERVATIONS, 1883.

made, however, to the photographic register when necessary to obtain the values corresponding to the civil day from midnight to midnight. The hourly readings of the photographic traces for the elements mentioned are entered into a form having double argument, the horizontal argument ranging through the 24 hours of the civil day, and the vertical argument through the days of a calendar month. It should be mentioned that before measuring out the electrometer ordinates, a pencil line was first drawn through the trace to represent the general form of the curve in the way described for the magnetic registers (page *xxviii*), excepting that no day has been omitted on account of unusual electrical disturbance, as it has been found difficult to decide on any limit of disturbance beyond which it would seem proper, as regards determination of diurnal inequality, to reject the results. The ordinates of the pencil curve, drawn as described, are expressed, in the tables which follow, in thousandths of an inch instead of inches, as in former years, and the zero is taken as 0 instead of 10.000, positive and negative potential being denoted by positive and negative numbers respectively. Then, for all the photographic elements, the means of the numbers standing in the vertical columns of the monthly forms, into which the values are entered, give the mean monthly photographic values for each hour of the day, the means of the numbers in the horizontal columns giving the mean daily value.

To correct the photographic values of barometer and dry and wet bulb thermometers for small instrumental error, the means of the photographic readings at 21^{h} , 0^{h} , 3^{h} , and 9^{h} in each month are compared with the corresponding corrected mean readings of the standard barometer and standard dry and wet bulb thermometers, as given by eye-observation. A correction applicable to the photographic reading at each of these hours is thus obtained, and, by interpolation, corrections for the intermediate hours are found. The mean of the twenty-four hourly corrections in each month is adopted as the correction applicable to each mean daily value in the month. Thus mean hourly and mean daily values of the several elements are obtained for each month. The process of correction is equivalent to giving photographic indications in terms of corrected standard barometer, and in terms of the standard dry and wet bulb thermometers exposed on the free stand.

The mean daily temperature of the dew-point and degree of humidity are deduced from the mean daily temperatures of the air and of evaporation by use of Glaisher's *Hygrometrical Tables*. The factors by which the dew-point given in these tables is calculated were found by Mr. Glaisher from the comparison of a great number of dew-point determinations obtained by use of Daniell's hygrometer, with simultaneous observations of dry and wet bulb thermometers, combining observations made at the Royal Observatory, Greenwich, with others made in India and at Toronto. The factors are given in the following table.

Reading of Dry-bulb Thermometer.	Factor.						
° 10	8.78	33	3.01	5 ő	1.94	79 [°]	1.69
11	8.78	34	2.77	57	1.95	80	1.98
²³ 12 -	8.78	35	2.60	58	1.30	81	1.68
13	8.77	36	2.20	59	1.89	82	1.62
14	8.76	37	2.42	60	1.88	83	1.62
15	8.75	38	2.36	61	1.82	84	1.96
16	8.70	39	2.32	62	1.86	85	1.62
17	8.62	40	2.29	63	1 · 85	86	1.62
18	8.50	41	2.26	64	1 · 83	87	1.64
19	8.34	42	2.23	65	1.82	88	1.64
20	8.14	43	2.20	66	1.81	89	1.63
21	7.88	44	2.18	67	1.80	90	1.63
22	7.60	45	2:16	68	1°79.	91	1.65
23	7.28	46	2.14	69	1.78	92	1.65
24	6.92	47	2.12	70	1.77	93	1.01
25	6.53	48	2:10	71	1.76	94	1.90
26	6.08	49	2.08	72	1.72	95	1.60
27	5.61	50	2.06	73	1.24	96	1.20
28	5.12	51	2.04	74	1.73	97	1.20
29	4.63	52	2.02	75	1.72	98	1.28
30	4.12	53	2.00	76	1.21	. 99	1.28
31	3.70	54	1.98	77	1.40	100	1.57
32	3.32	55	1.96	78	1.69		{ ·

TABLE OF FACTORS by which the DIFFERENCE between the READINGS of the DRY-BULB and WET-BULB THERMOMETERS is to be MULTIPLIED in order to PRODUCE the CORRESPONDING DIFFERENCE between the DRY-BULB TEMPERATURE and that of the DEW-POINT.

In the same way the mean hourly values of the dew-point and degree of humidity in each month (pages (lv) and (lvi)) have been calculated from the corresponding mean hourly values of air and evaporation temperatures (pages (liv) and (lv)).

The excess of the mean temperature of the air on each day above the average of 20 years, given in the "Daily Results of Meteorological Observations," is found by comparing the numbers contained in column 6 with a table of average daily temperatures found by smoothing the accidental irregularities of the numbers given in Table LXXVII. of the "Reduction of Greenwich Meteorological Observations," 1847-1873," which are similarly deduced from photographic records. The smoothed numbers are given in the following table.

xlviii INTRODUCTION TO GREENWICH METEOROLOGICAL OBSERVATIONS, 1883.

ADOPTED VALUES of MEAN TEMPERATURE of the AIR, deduced from TWENTY-FOUR HOURLY READINGS on each Day, for every Day of the Year, as obtained from the PHOTOGRAPHIC RECORDS for the Period 1849-1868.

Day of the Month.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	38'1 37'9 37'8 37'7 37'6 37'6 37'6 37'7 37'8 37'7 37'8 37'7 37'8 37'7 37'8 37'7 37'8 37'7 37'8 37'7 37'8 37'9 38'1 38'2 38'3 38'4 38'5 38'6 38'8 38'5 38'5 38'5 39'5 39'7 39'8 39'9	° 40.5 40.6 40.7 40.7 40.6 40.4 40.2 39.9 39.6 39.3 39.6 39.3 39.6 38.8 38.7 38.7 38.9 39.0 39.2 39.5 39.5 39.5 39.5 39.5 39.5 39.5 39.5	° 4°·3 4°·4 4°·5 4°·5 4°·5 4°·5 4°·6 4°·7 4°·7 4°·7 4°·7 4°·8 4°·9 41°·0 41°·1 41°·2 41°·3 41°·4 41°·5 41°·6 41°·1 41°·5 41°·6 41°·7 41°·5 41°·6 41°·7	45.3 45.7 46.1 46.4 46.6 46.7 46.8 46.9 46.9 47.0 47.1 47.2 47.4 47.5 47.6 47.8 47.9 48.0 48.1 48.2 48.3 48.3 48.4	48.7 48.9 49.1 49.4 49.7 50.0 50.3 50.6 51.1 51.4 51.8 52.1 52.5 52.9 53.7 54.1 54.7 55.3 55.5 55.7 55.9 55.7 55.9	57.5 57.7 57.9 58.1 58.2 58.3 58.5 58.5 58.5 58.5 58.5 58.5 58.5	61.6 61.5 61.4 61.4 61.5 61.7 61.9 62.2 62.5 62.7 62.9 63.1 63.3 63.4 63.5 63.4 63.5 63.5 63.4 63.5 63.5 63.5 63.4 63.5 63.5 63.5 63.5 63.5 63.5 63.5 63.5	62°6 62°7 62°7 62°7 62°7 62°7 62°7 62°7	60°1 60°0 59°8 59°7 59°5 59°5 59°5 59°5 59°5 59°5 59°5	54'7 54'4 53'7 53'4 53'0 52'7 52'5 52'3 52'1 51'9 51'7 51'6 51'4 51'3 51'0 50'8 50'8 50'6 50'4 50'1 49'7 49'4 49'1 48'8	0 47.0 46.7 46.0 45.6 45.2 44.7 44.3 43.8 43.4 43.0 42.0 41.6 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.6 41.5 41.7 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0 40.0	° 41.5 41.8 42.1 42.4 42.6 42.7 42.8 42.7 42.8 42.7 42.5 42.7 42.5 42.7 42.5 41.8 42.7 42.5 41.8 42.7 42.5 41.8 42.7 42.6 42.7 42.6 42.7 42.8 42.7 42.5 42.5 41.8 42.7 42.5 42.6 42.7 42.6 42.7 42.5 42.6 42.7 42.5 42.7 42.5 42.7 42.5 42.7 42.5 42.7 42.5 42.7 42.5 42.7 42.5 42.7 42.5 42.7 42.5 42.7 42.5 42.7 42.5 40.6 5 30.6 30.6 30.6 30.6 30.6 30.6 30.6 30.7 30.6 30.7 30.
27 28 29 30 31	40°0 40°1 40°2 40°3 40°4	40'I 40'2	43.0 43.4 43.8 44.3 44.8	48.4 48.5 48.5 48.5 48.6	56·3 56·5 56·8 57·0 57·3	62°0 61°9 61°8 61°7	62.6 62.6 62.6 62.6 62.6	60.8 60.7 60.6 60.4 60.3	55·5 55·4 55·2 54·9	48.5 48.2 47.9 47.6 47.3	40 [.] 8 40 [.] 9 41 [.] 0 41 [.] 2	39.0 38.8 38.7 38.5 38.3
Means	38.7	39.7	41.5 The n	47 ^{.5} nean of t	53·1 he twelve	59.8 e monthl	62.6 y values	61.9 is 49°.7	57·5	51.0	42*7	40.8

The daily register of rain contained in column 18 is that recorded by the gauge No. 6, whose receiving surface is 5 inches above the ground. This gauge is usually read at 21^{h} and 9^{h} . The continuous record of Osler's self-registering gauge shows whether the amounts measured at 21^{h} are to be placed to the same, or to the preceding civil day; and in cases in which rain fell both before and after midnight, also gives the means of ascertaining the proper proportion of the 21^{h} amount which should be placed to each civil day. The number of days of rain given in the foot notes, and in the abstract tables, pages (liii) and (lxxii), is formed from the records of this gauge. In this numeration only those days are counted on which the fall amounted to or exceeded $0^{in}\cdot005$.

METEOROLOGICAL RESULTS.

The indications of atmospheric electricity are derived from Thomson's Electrometer. Occasionally, during interruption of photographic registration, the results depend on eye observations.

No particular explanation of the anemometric results seems necessary. It may be understood generally that the greatest pressures usually occur in gusts of short duration.

The mean amount of cloud given in a foot note on the right-hand page, and in the abstract table, page (liii), is the mean found from observations made usually at 21^{h} , 0^{h} , 3^{h} , and 9^{h} , of each day.

For understanding the divisions of time under the headings "Clouds and Weather" and "Electricity," the following remarks are necessary:—In regard to Clouds and Weather, the day is divided by columns into two parts (from midnight to noon, and from noon to midnight), and each of these parts is subdivided into two or three parts by colons (:). Thus, when there is a single colon in the first column, it denotes that the indications before it apply (roughly) to the interval from midnight to 6 A.M., and those following it to the interval from 6 A.M. to noon. When there are two colons in the first column, it is to be understood that the twelve hours are divided into three nearly equal parts of four hours each. And similarly for the second column. In regard to Electricity the results are included in one column; in this case the colons divide the whole period of 24 hours (midnight to midnight).

The notation employed for Clouds and Weather is as follows, it being understood that for clouds Howard's Nomenclature is used. The figure denotes the proportion of sky covered by cloud, an overcast sky being represented by 10.

a d	enotes	aurora borealis	glm d	enotes	s gloom
ci	•••	cirrus	gt-glm	•••	great gloom
ci-cu	•••	cirro-cumulus	h	•••	haze
ci-s	•••	cirro-stratus	$\mathbf{slt}-\mathbf{h}$	•••	slight haze
cu	•••	cumulus	hl	•••	hail
cu-s	•••	cumulo-stratus	1	•••	lightning
d	•••	dew .	li-cl	•••	light clouds
hy-d	•••	heavy dew	lu-co	•••	lunar corona
f	•••	fog	lu-ha	••••	lunar halo
slt-f	•••	slight fog	m	•••	mist
tk-f	•••	thick fog	slt-m	•••	slight mist
fr	•••	frost	n	•••	nimbus
ho-fr	•••	hoar frost	p-cl	•••	partially cloudy
g	•••	gale	r	•••	rain
h y-g	•••	heavy gale	C-r	•••	continued rain
		37	~		

GREENWICH MAGNETICAL AND METEOROLOGICAL OBSERVATIONS, 1883.

g

fr-r de	note	s frozen rain	oc-shs d	lonotos	occasional showers
fq-r	•••		s s	•	stratus
hy-r	•••	heavy rain	SC	•••	scud
c-hy-r		continued heavy rain	li-sc	•••	
•	•••	, v		•••	light scud
m-r	•••	misty rain	\mathbf{sl}	•••	sleet
fq-m-r	•••	frequent misty rain	\mathbf{sn} .	•••	snow
oc-m-r	•••	occasional misty rain	oc-sn	•••	occasional snow
oc-r	•••	occasional rain	slt-sn	•••	slight snow
h-r	•••	shower of rain	so-ha	•••	solar halo
hs-r	•••	showers of rain	\mathbf{sq}	•••	squall
slt-r	••,	slight rain	sqs	•••	squalls
oc-slt-r	•••	occasional slight rain	$\mathbf{fq} extsf{-sqs}$	•••	frequent squalls
\mathbf{th} -r	•••	thin rain \cdot	hy-sqs	•••	heavy squalls
fq-th-r	•••	frequent thin rain	\mathbf{fq} -hy-sqs	•••	frequent heavy squalls
oc-th-r	• • •	occasional thin rain	oc-sqs	• • •	occasional squalls
hy-sh	•••	heavy shower	t	•••	thunder
$\operatorname{slt-sh}$	•••	slight shower	t-sm	•••	thunder storm
fq-shs	• • •	frequent showers	\mathbf{th} -cl	•••	thin clouds
hy-shs	•••	heavy showers	V	•••	variable
fq-hy-shs	•••	frequent heavy showers	vv	•••	very variable
oc-hy-shs	•••	occasional heavy showers	w	•••	wind .
li-shs	•••	light showers	st-w	•••	strong wind

INTRODUCTION TO GREENWICH METEOBOLOGICAL OBSERVATIONS, 1883.

The following is the notation employed for Electricity:-

Νd	lenote	s negative		1	w	lenote	es weak
Р	•••	positive	•		s	•••	strong
\mathbf{m}	•••	moderate		J	Υ.	•••	variable

The duplication of the letter denotes intensity of the modification described, thus, s s, is very strong; v v, very variable. O indicates zero potential, and a dash "—" accidental failure of the apparatus.

The remaining columns in the tables of "Daily Results" seem to require no special remark; all necessary explanation regarding the results therein contained will be found in the notes at the foot of the left-hand page, or in the descriptions of the several instruments given in § 6.

In regard to the comparisons of the extremes and means, &c. of meteorological elements with average values, contained in the foot notes, it may be mentioned that the photographic barometric results are compared with the corresponding barometric results, 1854–1873, and the photographic thermometric results and deductions

1

therefrom with the corresponding thermometric results, 1849–1868 (see "Reduction of Greenwich Meteorological Observations 1847–1873"). Other deductions, from eye observations, are compared with averages for the period 1841–1882.

The tables of Meteorological Abstracts following the tables of "Daily Results" require no lengthened explanation.

It may be pointed out that the monthly means for barometer and temperature of the air and of evaporation contained in the tables referring to diurnal inequality, pages (liv) and (lv), do not in some cases agree with the true monthly means given in the daily results, pages (xxvi) to (xlviii), and in the table on page (liii), in consequence of occasional interruption of the photographic register, at which times daily values to complete the daily results could be supplied from the eye observations, as mentioned in the foot notes, but hourly values, for the diurnal inequality tables, could not be so supplied. In such cases however the means given with these tables are the proper means to be used in connexion with the numbers standing immediately above them, for formation of the actual diurnal inequality.

The table "Abstract of the Changes of the Direction of the Wind" as derived from Osler's Anemometer, page (lxii), has been this year entirely remodelled with the object of showing every change of direction of the wind occurring throughout the year whenever such change amounted to two nautical points or $22\frac{1}{2}^{\circ}$. It is to be understood that the change from one direction to another during the interval between the times mentioned in each line of the table was generally gradual. All complete turnings of the vane which were evidently of accidental nature, and which in the year 1881 and in previous years had been included, are here omitted. Between any time given in the second column and that next following in the first column no change of direction in general occurred varying from that given by so much as one point or $11\frac{1}{4}^{\circ}$. From the numbers given in this table the monthly and yearly excess of motion, page (lxvi), is formed. By direct motion it is to be understood that the change of direction occurred in the order N, E, S, W, N, &c., and by retrograde motion that the change occurred in the order N, W, S, E, N, &c.

In regard to Electric potential of the atmosphere, in addition to giving the hourly values in each month, including all available days, the days in each month have been since the year 1882 further divided into two groups, one containing all days on which the rainfall amounted to or exceeded Oⁱⁿ O2O, the other including only days on which no rainfall was recorded, the values of daily rainfall given in column 18 of the "Daily Results of Meteorological Observations" being adopted in selecting the days. These additional tables are given on pages (lxx) and (lxxi) respectively.

In regard to the observations of Luminous Meteors it is simply necessary to say that in general only special meteor showers are watched for, such as those of

lii INTRODUCTION TO GREENWICH METEOROLOGICAL OBSERVATIONS, 1883.

April, August, and November. The observers of meteors in the year 1883 were Mr. Nash, Mr. Greengrass, Mr. Hugo, Mr. McClellan, and Mr. Finch; their observations are distinguished by the initials N, G, H, M, and F respectively.

Royal Observatory, Greenwich, 1885 May 8. W. H. M. CHRISTIE.

ROYAL OBSERVATORY, GREENWICH.

R E S U L T S

OF

MAGNETICAL OBSERVATIONS

(EXCLUDING THE DAYS OF GREAT MAGNETIC DISTURBANCE).

1883.

GREENWICH MAGNETICAL AND METEOROLOGICAL OBSERVATIONS, 1883.

						1883.						
Day of	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December
Month.	18°	18°	18°	18°	18°	18°	18°	. 18°	18° .	18°	18°	18°
d			, '	- 0.6	15.6	,	13.6	15.1	11.1	12.4	13.3	11.6
1	18.4	18.7	19.1	18.6		14'9 16'6	13.6	13.3	10.8	12.5	133	12.7
2	18.6	19.2	18.2	17.5	16.9		1	13.5	12.5		13.6	12'2
3	18.6	18.8	18.6	, ,	16.5	14.8	13.0			12.4		
4	18.2	18.3	18.1	18.1	15.7	14.1	13.5	13'1	12.6	12.7	14'1	12.7
5	17.6	18.2	18.2	16.4	16.2	13.8	12.8	13.3	11°2	12.8	13.0	12.7
6	19.1	19.1	18.4	17.5	17.0	•••	13.2		13.6	12.6	13.9	12.9
7	- •	18.6	20'2	17.7	16.7	12.2	15.0	13.8	13.3	13.6	13.3	12.8
8	18.2	18.1		18.0	15.7	14.0	14.8	13.3	13.1	12.4	13.0	13.0
9	18.4	18.5		18.3	16.8	13.8	14.1	12.8	12.9	12.2	13.4	13.8
10	17.5	18.7	19.2	18.7	16.6	13.2	12.7	13.2	12.0	12.9	12.9	12.3
11	18.5	18.0	10.1	18.4	16.0	13:9	14.1	13.7	12.7	12.8	12.7	13.2
12	18.0	18·Ğ	20.1	18.1	15.2	14.7	13.3	12.7	12.3	12.1	12.9	11.7
13	19.3	19.3	20.7	17.8	15.3	14.5	13.4	12.9	12.7	12.0	12.8	12.6
14	18.7	18.8	10.0	17.6	16.0	14'1	14.9	12.7	12.7	12.8	13.0	13.0
15	18.0	18.6	18.0	17.6	14.5	14.4	13.9	13.8		12.2	12.7	12.7
16	19.0	19.2	19.5	18.1	16.4	13.4	13.2	13.3		ì1 . 0	12.5	12.8
17	18.3	18.3	19.5	17.5	16.1	14.7	12.8	13.0	12.8	13.0	12.8	12.1
18	17.7	10.0	17.8	16.5	16.8	15.0	12.0	11.5	13.1	13.1	12.4	13.3
	18.1	18.8	19.5	15.8	16.6	14.5	12.0	12.7	12.5	12.0	12.2	12.3
19	18.1	18.5	-	17.6	15.8	14.6	12.6	12.8	12.2	12.2	13.7	12.8
20		1	••	17.6	16.5		13.6	12.6	12.8	13.7	13.6	12.0
21	18.3	17.2	0		16.6	••	14.3	12.6	12.5	13.6	12.3	12.3
22		17.3	17.8	17.3	15.2	••	13.2	12.7	12.4	13.1	12.1	12.0
23	18.9	18.0	18.1	17.3		••	13.2	13.7	10.8	12.8	11.6	12.4
24	18.6		19.9	- 0- 2	15.5			13.0	12.0	13.2	11.2	12.4
25	19.0	18.2	19.4	18.3	15.5	14.6	12.9	1		12.8	11.8	12.6
26	17.8	17.1	10.8	17.2	16.0	14.6	14'1	12.7	12.4 12.3	13.0	12.3	11.7
27	18.1	17.3	22•5	18.0	14.0	13.6	13.4	13.1			1	12.6
28	••	18.8		16.6	15.3	13.4	13.3	12.5	13.1	12.7	11.0	
29	18.0		•• (16.2	14.9	13.3	14.0	12.5	12.3	12.5		12.4
30	18.0			16.8	14.3	13 •9	13.6	12"3	11.8	12.6	11.0	12.2
31	18.3		18.6		14.8		13.0	12.6		13.0		12.5
	<u> </u>	T 1 2 1	E IIM	ONTHLY M	EAN DITTEN	AL INFOUA	LITY OF M	IAGNETIC]	Declination	WEST.		
	•		(The re	esults in ea	ch month a	re diminish	ed by the s	mallest hor	erly value.)		524	
					<u></u>	1883.						
Hour, reenwich ean Solar	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	Decembe

Hour, Greenwich Mean Solar Time.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
h	1_]	1-	10		·	e		9.3		· 8.7 ·	6.0	4 ^{.7}
0	4.5	6.5	6.8	g•3	9'4	9.8	9'7 11'8	10.0	11.2	10.1	6.6	5.3
I	5.3	7.5	8.6	11.4	10.5	10'7		10.0		9 • 5 ,	6.1	5.1
2	5•1	7.6	9.2	11.4	9.7	10.9	12.3	8.8	10°4 8°4	8.0	5.1	4.0
3	4.1	7.0	7.8	10'0	8.5	10.4	10.8		6·1	5.7		3.4
4 5	3.2	5.2	6.7	8.2	6.9	6.1	8.6	6.7		4 · 5	4°1 3•5	2.8
	2.9	4'1	4'9	6.4	5•4	7.5	7.1	5.2	4.6			2.6
6	2.2	2.8	3.1	5•0	· 4·4	6.1	5.7	4.2	4'1	4°0 2°8	2°4 2°2	2.3
7	1.2	2.8	2.5	4 •0	3.8	5.3	4.8	4.0	3·6 2·8	2°0	1.8	1.2
8	0.2	2.4	2.4	4.1	3.5	4.8	4.4	3.7	1 ·			
9	0'0	1.0	1.9	4"1	3.6	4 ` 4	4 ·3	3.3	2*2	2.0	0.8	0°4 0°0
10	0.0	0'2	1.8	3.7	3.7	4· 5	4.3	3.2	2.2	2.1		
11	0.3	o .o	1.2	3.4	3.3	4.3	3.7	3.5	2.4	2.5	0'1	.0.1
12	o•5	0.0	1.5	3.5	3.6	4•1	3.3	2.9	2.5	2.1	0°0 0°3	0.4
13	0.0	1.6	1.6	3•4	3.2	4.2	2.8	2.8	2•3	2.4		0.6
14	1.3	1.0	2.2	3.4	3.0	3.8	2.6	2.8	2.4	2.0	0.6 0.2	1.0
15	1.2	2.2	2.0	3.1	2.8	3.0	2•3	2.6	2'4	2.4		1*2
16	1.3	2.5	1.0	2.8	2.4	2.0	1.9	2.2	2.2	2.5	1.5	1.5
17	1.4	2.3	2.0	2.6	1'4	0.0	o •9	1.6	1.8	2.2	1.2	¹ '4
18	1.3	2.3	2.4	2.1	0.2	0.3	0'1	0.8	1'4	2.5	1.2	1.7
19	1.0	2.5	ŀ.9	1.0	0.0	0.0	0.0	0.0	° 4	1.3	1.0	1.2
20	1.0	2.2	0'8	0.0	0*2	° ' 4	0*2	0.0	0.0	0.0	° • 7	1.4
21	1.3	2.0	0.0	0.3	1.2	1.9	1.4	1.5	0.8	0*2	1.0	I'4
22	2.6	2.7	1.3	2.5	3.8	4.6	3.2	3.3	3.4	2.4	2.4	2.4
23	3.7	4.3	3•9	5.7	6.9	7.6	6.7	6.4	6.8	6.0	4.6	3.7
Means	2.00	<i>ś</i> ·09	á•27	4 [.] 64	4.24	5.03	4.71	4.13	3.92	3.66	2.30	2.10

TABLE III.-MEAN HORIZONTAL MAGNETIC FORCE (diminished by a Constant) FOR EACH ASTRONOMICAL DAY.

(Each result is the mean of 24 hourly ordinates from the photographic register, expressed in terms of the whole Horizontal Force, the unit in the table being '00001 of the whole Horizontal Force. The letters u and c indicate respectively values uncorrected for, and corrected for temperature.)

c	Febru u	tary.	Ma	rch.	Ар					1883.													
200	u	C.	1			r 11.	М	ay.	Ju	ne.	Ju	ly.	Aug	ust.	Septe	mber.	Octo	ber.	Nove	mber.	Dece	mber.	
205			u	с	u .	с	n	с	u	с	u	c	u	с	u	с	u	с	u	c	u	c	
205																	1						
	9 145	129	313	314	364	362	351	355	473	521	398	547	375	489	451	585	477	514	396	424	27 0	287	
- 22	5 145	135	339	319	289	314	386	367	392	461	404	581	378	508	488	605	515	541	325	347	2 94	325	
233	3 133	135	370	347	••	••	416	382	398	468	408	594	421	567	445	554	497	514	373	383	343	366	
258	3 171	171	380	355	203	235	412	393	385	455	460	606	421	561	469	562	532	542	424	432	383	386	
223	3 170	166	323	329	215	24 7	394	414	401	472	418	544	445	593	446	526	367	38 3	478	496	416	408	
211	1 170	160	350	328	211	217	402	437		•••	463	600	•••		442	512	410	431	47°	495	43 5	409	
•••	255	24,8	310	2.85	279	253	386	420	462	483	500	639	408	541	487	555	448	475	483	498	436	412	
132	2 260	26 9	254	212	300	262	426	444		507	495	644	441	557	488	559	425	485	483	510	423	400	
140	288	286	261	207	248	238	433	435		503	475	619	460	568	507	583	44 2	505	477	511	364	359	
165	5 340	331	285	233	266	270	432	432	465	531	42 9	567	535	636	503	594	445	507	540	548	444	461	
189	9 3 68	345	290	244	275	286	449	456		542	424	559	458	570	535	635	445	512	540	537	392	401	
176	5 348	340	309	273	282	305	437	468	482		424	540	476	602	525	639	402	464	455	457	338	340	
183	3 364	365	192	174	273	284	477	524	450	55 i	452	562	437	599	42 9	542	433	490	438	452	377	409	
199	312	301	208	20 9	334	337	463	523	493	599	46 I	555	418	59 2	450	571	468	525	423	422	401	435	
163	3 337	326	258	248	377	381	503	570		581	473	544	405	546	••	••	343	408	4 9 3	483	443	463	
194	1 330	334	288	260	358	364	442	516	548	583	450	523	404	521	••		346	411	480	485	461	447	
185	5 297	300	28 9	280	365	3 69	447	516	473	502	416	502	477	613	213	339	330	376	456	458	4 0 9	393	
181	ı 389	380	294	284	308	332	351	404	477	522	456	533	280	445	320	464	363	392	473	502	395	388	
207	7 383	385	368	355	307	315	320	355		525	422	5 01	320	478	2 94	440	438	471	425	450	390	404	
162	2 361	377	380	370	322	319	321	339	486	537	445	532	30 9	474	331	461	367	384	314	331	434	458	
••	331	347	233	224	354	346	260	291	460	520	447	527	356	548	373	489	439	444	326	352	411	432	
185	5 235	2 44	258	227	373	372	320	374	434	498	505	566	341	531	413	507	428	434	084	106	388	410	
215	5 328	317	285	248	384	384	298	377	436	526	568	639	304	477	457	548	418	438	288	298	428	456	
176	5	••	325	2 79	••	••	343		431	545	457			503	3 90	498	438	468	416	438	460	476	
~	310				231									486	373	49 ⁸	459	519	506	524	390	389	
																	42 I	485		526	392	391	
																555	436	500	430	477	365	· ·	
•••	278															540	464	518	450	507	324	343	
239																519	499	558	327	366	335	346	
232	2		375	365	432	435	463	5 0 6	409							544	490		338	364	373	_368	
	9		343	342			423	464			2 99	427	452	607			485	525			•••	•••	
14. 23		3 334 278 9	3 334 333 278 295 9 2	3 334 333 168 278 295 227 9 4 289 2 4 375	3 334 333 168 143 278 295 227 210 9 2 289 282 2 375 365	3 334 333 168 143 317 278 295 227 210 385 9 4 289 282 424 2 5 375 365 432	3 334 333 168 143 317 343 278 295 227 210 385 409 9 2 289 282 424 433 2 375 365 432 435	3 334 333 168 143 317 343 423 278 295 227 210 385 409 409 9 4 4 4 4 4 4 4 10 289 282 424 433 410 2 4 375 365 432 435 463	3 334 333 168 143 317 343 423 470 278 295 227 210 385 409 409 456 9 289 282 424 433 410 464 2 375 365 432 435 463 506	3 334 333 168 143 317 343 423 470 474 278 295 227 210 385 409 409 456 485 9 289 282 424 433 410 464 538 2 375 365 432 435 463 506 409	3 334 333 168 143 317 343 423 470 474 563 278 295 227 210 385 409 409 456 485 597 9 289 282 424 433 410 464 538 689 2 375 365 432 435 463 506 409 571	3 334 333 168 143 317 343 423 470 474 563 436 278 295 227 210 385 409 409 456 485 597 435 9 289 282 424 433 410 464 538 689 439 2 375 365 432 435 463 506 409 571 305	3 334 333 168 143 317 343 423 470 474 563 436 523 278 295 227 210 385 409 409 456 485 597 435 526 9 289 282 424 433 410 464 538 689 439 545 2 375 365 432 435 463 506 409 571 305 423	3 334 333 168 143 317 343 423 470 474 563 436 523 357 278 295 227 210 385 409 409 456 485 597 435 526 313 9 289 282 424 433 410 464 538 689 439 545 421 2 375 365 432 435 463 506 409 571 305 423 447	3 334 333 168 143 317 343 423 470 474 563 436 523 357 528 278 295 227 210 385 409 409 456 485 597 435 526 313 495 9 289 282 424 433 410 464 538 689 439 545 421 594 2 375 365 432 435 463 506 409 571 305 423 447 611	3 334 333 168 143 317 343 423 470 474 563 436 523 357 528 451 278 295 227 210 385 409 409 456 485 597 435 526 313 495 449 9 289 282 424 433 410 464 538 689 439 545 421 594 448 2 375 365 432 435 506 409 571 305 423 448	3 334 333 168 143 317 343 423 470 474 563 436 523 357 528 451 555 278 295 227 210 385 409 409 456 485 597 435 526 313 495 449 540 9 289 282 424 433 410 464 538 689 439 545 421 594 448 519 2 2 375 365 432 433 663 506 409 571 305 423 447 611 493 544	3 334 333 168 143 317 343 423 470 474 563 436 523 357 528 451 555 436 278 295 227 210 385 409 409 456 485 597 435 526 313 495 449 540 464 9 289 282 424 433 410 464 538 689 439 545 421 594 448 519 499 2 375 365 432 433 400 506 409 571 305 423 448 519 499 2 375 365 432 435 506 409 571 305 423 447 611 493 544 490	3 334 333 168 143 317 343 423 470 474 563 436 523 357 528 451 555 436 500 278 295 227 210 385 409 409 456 485 597 435 526 313 495 449 540 464 518 9 289 282 424 433 410 464 538 689 439 545 421 594 448 519 499 558 2 375 365 432 435 463 506 409 571 305 421 594 448 519 499 558 2 375 365 432 435 463 506 409 571 305 423 448 519 499 558 2 375 365 432 453 506 409 571 305 423 447 611 493	3 334 333 168 143 317 343 423 470 474 563 436 523 357 528 451 555 436 500 430 278 295 227 210 385 409 409 456 485 597 435 526 313 495 449 540 464 518 450 9 289 282 424 433 410 464 538 689 439 545 421 594 448 519 499 558 327 2 375 365 432 433 410 464 538 689 439 545 421 594 448 519 499 558 327 2 375 365 432 433 506 409 571 305 423 447 611 493 544 490 543 338	3 334 333 168 143 317 343 423 470 474 563 436 523 357 528 451 555 436 500 430 477 278 295 227 210 385 409 409 456 485 597 435 526 313 495 449 540 464 518 450 507 9 289 282 424 433 410 464 538 689 439 545 448 519 499 558 327 366 2 375 365 432 433 410 464 538 689 439 545 421 594 448 519 499 558 327 366 2 375 365 432 433 463 506 409 571 305 421 594 448 519 499 558 327 366 2	3 334 333 168 143 317 343 423 470 474 563 436 523 357 528 451 555 436 500 430 477 365 278 295 227 210 385 409 409 456 485 597 435 526 313 495 449 540 464 518 450 507 324 9 289 282 424 433 410 464 538 689 439 545 421 594 448 519 499 558 327 366 335 2 375 365 432 433 410 464 538 689 439 545 421 594 448 519 499 558 327 366 335 2 375 365 432 450 506 409 571 305 423 447 611 493 544 490 543 338	

On February 16 and December 31 experiments were made for determination of the angle of torsion, thus, in each case, breaking the continuity of the values.

(iii)

jed on

· ·

h

.

						188	3.			1		
Day of Month.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December
d I	6°.7	58 [°] 9	59°9	59°6	60°0	6 2.4	6 ⁸ .1	66° 1	67 [°] 2	61.9	6î•3	.60°7
2	59.4	59 ·2	58 .6	61.1	58·7	63 · 6	69.6	67.0	66•2	61.3	61.0	61.2
3	59•9	5 9 · 9	58.5	• •	57.9	63 · 6	70'1	67.9	65•9	60.7	60.4	61.1
4	59.5	59.8	58.4	61.2	58•7	63.6	67.9	67.6	64.9	60.3	60.3	60.0
5	59.8	59 · 6	60.1	61.6	60 •9	63 · 7	66.8	68.0	64.3	60.7	60•8	59•3
6	59.9	59.2	58.6	60.1	61.2	••	67 . 4	* . • •	63.6	61.0	61.3	58.4
7		59 · 4	58•4	58 · 4	61.7	60.9	67.5	67.1	63.6	61.3	60.6	58.4
8	58.8	60•3	57.5	57.7	60.8	62•4	68 •0	66 . 2	63.7	63.1	61.3	58.5
9	58.6	59 . 7	56.8	59.3	59.9	63•3	67.8	65 · 8	64.0	63•3	61.6	59.5
10	. 60.9	59.3	56.9	60.0	59.8	63 •5	67 . 4	65'4	64.8	63.2	60.3	60 [.] 7
11	60.8	58•5	57.2	60.4	60.1	62•4	67:2	66°0	65•4	63.5	59•6	60.3
12	59.7	5g•3	57•8	61.1	61.2	63 · 5	66•3	66•8	66•1	63-2	59.9	59.9
13	59.9	59.9	58.8	60•4	6 2· 4	65•4	65 •9	68.8	66-1	63 . 0	60.2	61.6
14	59•4	59.1	59 •9	60.0	63•1	65•7	65 ∙ o	69 • 5	66•5	62•9	59.7	61.6
15	59*9	59'1	59 ·2	60.0	63·5 ·	64.3	63 [.] 7	67.6		63 · 4	59.2	60.9
16	59*4	60.0	58-2	60.1	6 3 •9	61.7	6 3 •8	66.3		63·4	60.0	59.0
17	59'9	59 · 9	59.3	60.0	6 3 •6	61.4	64 [.] 6	67.3	66.8	62.4	59.9	58.9
18	60.1	59.3	59.2	61.1	62 .7	62.3	64.1	68 · 9	67.8	61.4	61.4	59.4
19	59'9	5 9 •9	59.1	60-2	61.8	6 2 •4	64.3	68 · 5	67.9	61.6	61.3	60.2
20	· 59 · 9	60.6	59°2	5 9•6	60 [.] 8	62.6	64.6	68•9	67.0	60 . 7	60.7	•61•1
21	••	60.6	59 ·3	59.4	61.5	6 3 •1	64.2	70 . 4	66.3	60.0	61.3	61.0
22	58.1	60.3	58 · o	59.7	62.8	63.3	63.2	7 0°4	65.0	60.1	- 61.0	61.0
23	56.8	59.2	57.7	59*8	64.1	64.8	63.7	69.4	64.8	60.9	60.3	. 61.3
24	57•9		57.2	••	65.7	66•1	64.3	6 9°0	65.8	61.4	61.0	60.6
25	5 9 · 8	60.4	57.9	59'7	65.2	66•3	64.4	69.1	66•7	63.1	60.8	59.7
26	59.9	60.0	58 · 4	60.3	6 ³ '4	64•8	64.7	68'7	66.6	63 · 4	60.6	59'7
27	5 9•5	59.7	58.4	61.3	62.4	64.7	64.6	69 [.] 3	65•6	63•3	62.4	60.3
28	••	60.7	58.8	61•1	62.4	66 . 0	64•9	69.9	64.8	62.8	62.9	60.8
29	60.9		59.4	60•3	62.8	68.2	65•6	69.4	63·7	63.1	61.9	60.4
30	58•6		59.2	59.9	62'1	68.8	66•3	68 · 9	62.6	62.7	61.3	59.2
31	58.7		59.7		62.1		66 •9	68.4		62.0		
eans	5°∙51	1 ^d to 15 ^d , 59°•41 16 ^d to 28 ^d , 60°•05.		60° 13	61°•87	63 [°] 96	65°.90	68.09	65 [°] .49	62.10	6°.81	6°.1

r

,

MADE AT THE ROYAL OBSERVATORY, GREENWICH, IN THE YEAR 1883.

TABLE V.-MONTHLY MEAN DIURNAL INEQUALITY OF HORIZONTAL MAGNETIC FORCE.

(The results are expressed in terms of the whole Horizontal Force, diminished in each case by the smallest hourly value, the unit in the table being 00001 of the whole Horizontal Force. The letters u and c indicate respectively values uncorrected for, and corrected for temperature.)

												1883	•					•						
Hour, Greenwich	Janu	ary.	Febr	uary.	Ma	rch.	Ар	ril.	Ma	ay.	Ĵu	ne.	Ju	ly.	Aug	rust.	Septe	mber.	Octo	ober.	Nove	mber.	Dece	mbe r .
Mean Solar Time.	u	c	u	c	u	с	u	с	u	с	u	c	u	c	u	с	u	с	ù	c	u	¢	u	с
h O	17	21	o	0	6	8	11	12	33	39	77	79	90	97	67	6 ġ	38	44	26	30	22	23	13	13
I	42	49	2 I	25	51	58	59	64	77	87	114	119	148	159	111	117	103	113	86	9 2	·46	50	39	41
2	49	60	55	61	. 83	94	T I I	118	124	138	160	16 9	203	218	148	157	141	154	135	144	77	83	50	52
3	54	66	71	80	116	131	161	170	161	177	202	214	255	272	188	200	146	161	173	183	85	91	55	57
4	50	63	61	70	134	151	182	192	189	206	2 I I	224	284	303	1 94	208	166	182	174	185	111	117	58	60
5	62	76	63	73	129	148	217	229	224	242	243	258	287	307	198	214	180	198	190	202	113	119.	67	70
6	63	77	75	86	137	158	241	254	238	257	25 5	271	306	328	200	217	197	216	196	208	132	138	70 .	73
7	65	80	79	91	145	167	225	240	23 5	255	270	288	313	337	211	230	206	226	-195	208	140	145	70	73
8	61	77	82	95	138	162	221	238	218	239	273	293	276	301	212	233	204	226	201	215	148	153	63	67
9	59	76	84	97	155	181	202	220	195	217	240	261	255	282	215	238	204	227	201	216	145	150	58	62
10	57	73	74	86	150	174	197	214	173	193	215	234	244	269	205	2 26	194	215	212	226	138	143	51	55
11	59	73	64	74	156	177	203	218	166	184	195	212	237	260	196	215	188	207	211	224	149	153	49	52
12	58	71	71	80	144	163	188	202	171	187	190	206	223	243	192	209	194	211	192	203	130	134	60	63
13	58	69	79	86	146	163	172	184	162	176	176	190	215	233	186	2Ó1	189	205	183	193	125	128	- 64	67
14	59	6 9	74	80	142	157	167	178	151	163	173	185	210	226	176	189	176	190	181	190	129	132	61	6 3
15	66	75	72	76	139	15 2	169	178	135	145	159	169	208	222	170	182	176	188	183	190	131	134	69	, 71
16	75	82	87	89	136	146	191	168	123	132	155	163	199	210	160	170	185	195	198	204	145	147	77	79
17	86	92	108	109	134	142	162	168	122	129	137	143	183	192	155	163	180	188	207	212	157	159	87	88
18	94	98	118.	117	145	151	175	179	104	109	102	106	140	147	134	140	176	183	205	209	154	155	98	. 99
19	89	92	121	119	137	141	149	152	70	73	70	73	91	95	105	109	142	147	179	181	131	132	91	9 2
20	76	7 7	97	93	-97	98	114	115	32	33	42	43	55	57	64	66	89	9 2	116	117	90	90	69	69
21	43	43	64	59	57	56	52	52	6	5	. 7	6	13	13	24	24	32	33	40	40	39	39	33	33
22	18	18	20	16	17	16	14	14	0	်ဝ	0	0	0	0	0	0	0	٥	0	0	0	0	4	4
23	,o	0	11	8	0	0	0	0	11	14	27	2 9	32	34	17	18	10	11	0	I	2	2	0	0
Means cor- rected for Tempera- ture -	} 65	ö · 7	7.	3.8	124	+"7	150	5.6	14	1. 7	16.	4.0	20	0.5	15	8.1	15	8•8	16	1•4	10	9.0	5	8.2

TABLE VI.—MONTHLY MEANS OF READINGS OF the THERMOMETER placed within the box inclosing the HORIZONTAL FORCE MAGNET, at each of the ordinary Hours of Observation.

						188.	3.						
Hour, Green- wich Mean Solar Time.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.	For the Year.
н О І 2 3 9 21 22 23	59°4 59°6 59°7 59°9 60°1 59°1 59°1	59°5 59°8 59°9 60°0 60°3 59°3 59°3 59°4	58°3 58°6 58°8 59°0 59°6 58°1 58°1 58°1	59°9 60°1 60°2 60°3 60°9 59°9 59°9 59°8	61.7 61.9 62.1 62.3 62.6 61.3 61.4 61.5	63.7 63.9 64.1 64.3 64.8 63.6 63.6 63.7	65.7 65.9 66.2 66.3 66.9 65.3 65.4 65.5	67.9 68.1 68.2 68.4 69.0 67.7 67.7 67.8	65.5 65.5 65.8 65.9 66.3 65.0 65.0 65.0	62.0 62.1 62.3 62.3 62.6 61.8 61.8 61.9	60.7 60.9 61.0 61.0 60.9 60.6 60.6 60.6	60°1 60°2 60°2 60°2 60°4 60°1 60°1	62°03 62°21 62°38 62°50 62°86 61°83 61°84 61°89

,

(v)

TABLE VII.-MEAN VERTICAL MAGNETIC FORCE (diminished by a Constant) FOR EACH ASTRONOMICAL DAY.

(Each result is the mean of 24 hourly ordinates from the photographic register, expressed in terms of the whole Vertical Force, the unit in the table being '00001 of the whole Vertical Force. The letters u and c indicate respectively values uncorrected for, and corrected for temperature.)

												10	83.								<u></u>			<u> </u>
Day of	Janu	ary.	Febr	uary.	Ma	rch.	Ар	ril.	M	ay.	Ju	ne.	Ju	ly	Aug	ust.	Septe	mber.	Oct	ober.	Nove	nber.	Decei	mber.
Month.	u	c	u	с	u	c	и.	с	u	C	u	C .	u	с	u	с	u	c	u	c	u	c	u	c
d															5	2.5	.62	263	305	216	264	1771	175	10
I.	764	697	654	617	703	635	•••	••	493		516	412	••	••	520	345 333	463	203 263	268	191	204	171 152	172	10
2	733]	638	601 6	668	627	•••	••	468	434		474 452	•• 685	<u></u> 431	527 533	324	441 437	203 268	200 245	177	257	187	168	10
3	737		660	609 -	640	604 F	<u> </u>		433	413						335	407 397		234	171	237	170	127	
4	717	653	653		_	594		484	439		554	431	633	419			385	244 245	270 270	198	232	149	- <u>9</u> 3	
5	713	652	647	596 -	655	596	1	466	474	400		422	597 589	401 384	544 562	359	376	240 246	275	2 01	242	156	60	
6	718	1	6 3 9				519	466	490 5	398		•••	581	373	536	342	_070 360	240	282	192	230	152	53	
7	695		640	589	586	571	1 ·	446		412		419	614	399		347	364	228	329	192	227	134	52	
8	680		663		554 -		· ·			1.	518			378	495	331	364	223	341	200	235	140	76	
9	655		652	-	541		478	435		1	552	425		368	495 455	296	378	219	344	202	200 201	134	84	
10	685		639	596		531	483		457	408	1	424	572		455 467	290 296	388	219	341	198	174	122	90	
11	680	1 1	625	595 -		514		420			527	423	547	347	407 480	290 289	412	230	327	190	171	112	93	
12	668		1 1		508		485			387	1 ·		558 539	379 362		289 285	439	262	310	199	172	105	118	
13	667		658	-	552		480	416		383	1	419	-		539	300	439 435	252	312	195	139	85	155	4
14	653		665		574		• •	413		1	601		543			308	•		337	210	109	57	130	
15	673		650	607	557		4 54		555	425		439	498	366			•••	••	323		120	57	72	<u> </u> .
16	663		652	598	521		461	403	577	438	493	400	491	353	475	293	 531	3 35	334	194 226	123	65	72	
17	671		661	596			455	394		423				348	475	274		281			120		76	
18	685	622	641		544	510				434		382	485	345		306	493		293	204 180		72 68	95	
19	689		642	573	_		474	412		1	494				534	309 2	505	292	271		147 181	108	95	1
20	704	63 9	660	579		501	502	-		384		(484	334		307	480	284	270	199	153	76	106	
2 ľ		647	670	587		494	47 I	4 2 8	496	401		399	473	332	566	305	447	272 256	223	167 162		142	101	
22	660		·	625		528	466	422		1	510		451	331	572	315	410		227	156	217	110	100	1
23	615		683	630	4 ⁸ 7		454	410	568		564	413	442	308		318	394	237 2 3 5	237 252	150	174 164	89		
24		5 99	••		481	493	••	••	594	434		411	466	1.1	537	303	410		_	165			87	
25	663	613	690	615	485	480	470	419	594	445	611	432	400	318		300	445	255	291	1.1.1	170	97	84 80	
26	667	619	680	615	485	473	4 72	408	577	463	577	428	469	314	519	291	445	262	305	174	172	105		
27	638	605	673	614	522	507	503	419	542	452	569	421	477	326	498	259	404	242	312	182	210	110	78	
28				629	520	497	512	433	535	44 I	596	426	478	321	508	257	385	237	307	186	228	116	116	
29	1	612										432	448	283	500	263	370	246	296	170	205	108	106 65	1
30	1	600						435				•••					333	231	283	167	181	97		
31	626	596			524	47 ⁸			527	437			552	361	474	255			276	174			45	

On April 4 experiments were made for determination of the time of vibration of the magnet in the horizontal plane; on July 3 the time of vibration of the magnet in the vertical plane was altered; and at the end of the year the instrument was re-adjusted; thus, in each case, breaking the continuity of the values.

.

.,

.

ľ

.

						1883.						
Day of Month.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December
d I	6°•4	58°8	60 ' 4		60°0	62.2	0	65 [°] 8	67 . 0	61.5	61.7	6°•5
2	59.3	58.9	59.1		58•7	63•2	••	66•7	65•9	60.8	61.3	60.4
3	60.4	59•5	58•8		58 ∙ o	6 3 •0	69.7	67.4	65·4	60.4	60.2	60 ·3
4	60.3	59.7	58•3	61.3	58•6	63.1	67.7	67:2	64.7	60*2	60.4	59•4
5	60.0	59*5	59.9	61.3	60'7	63 · 0	66.8	67.5	64.0	60.6	61.1 (5 9 * 1
6	59'9	59*0	58 ·3	59•6	61.6	••	67:3	67.1	63.5	60.7	61.3	57.9
7	58.7	59•6	57.8	58•1	61.5	60 •5	67•4	66.7	63.6	61.2	60.9	57.8
8	58.7	60•3	56•5	57.7	60.6	62.3	67•8	66 · 0	63.8	63.8	61.6	57.9
9	58.6	59'7	56.4	59.2	59 .7	63·4	67•6	65·2	64.0	64•1	61.8	58-9
10	60.6	59.2	57.0	59.8	59•4	63 [.] 4	67.2	65 . 0	64· 9	64•1	60.4	60.1
11	60.6	58•5	57.1	60.1	59 · 8	62.2	67•0	65·6	65.3	64.1	59.6	59.6
12	59.8	59*4	57.5	60.7	61•3	63·3	66.0	66•5	66.1	63 · 4	59.9	5 9 · 5
13	59.8	60•1	58 ·5	60.3	62.3	65 · 0	65.8	68.5	65.8	63 · 0	60.4	61.1
14	59.4	59•3	59 • 6	59.7	63 · 0	65.2	64•9	69 .0	66.3	62.8	59.7	61.0
15	59 · 9	59.2	58 · 6	59 •9	63•5	63·6	63·6	67.2	••	63• ₄	59•4	59•8
16	59.6	59.7	5 7·2	5 9•9	64.0	61.7	63.9	66•1		63•4	60.1	58.1
17	59.9	60.2	58•6	60.0	63·6	61.4	64•4	67.0	66•8	62•4	59*9	58•4
18	60.2	59•9	58.7	61.0	62•7	62.3	64.0	68.6	6 7 · 6	61•4	61.0	59.3
19	60.1	60.4	58•8	60.1	61.9	62.3	64.1	68.2	67.7	61.6	61.0	60.3
20	60.3	61.0	58-2	59.6	60.9	62.6	64.5	68.7	66•8	60.6	60 •6	61.1
21	58.8	61.3	58•1	59'1	61.7	63 · 0	64.0	70'1	65.7	59.8	60.8	61.0
22	58.1	60.8	56.5	59.2	63.2	63.2	63.0	69.8	64.7	60.3	60.8	60 9
23	56.7	59•6	56.2	59.2	64.3	64.6	63.7	68.9	64.9	61.1	60.2	61.0
24	58 . 0		56.4	••	65 · 0	65 [.] 9	64.2	68.7	65.8	61.6	60.7	60.2
25	59.5	60.7	57.2	59•6	64.5	66.0	64.4	68 •9	66•5	63•3	60.7	5 9 · 9
26	59'4	60.3	57•6	60.2	62•7	64.5	64.8	68 · 4	66.2	63•5	60.3	5 9 · 9
27	58.7	60.0	57.8	61.2	61.5	64.4	64.5	69.0	65·1	63•5	62.0	60.0
28	59 * 4	61.0	58 · 2	6 0' 9	61.7	65·5	64.8	6g•5	64.4	63-1	62.6	60 .6
29	60°1	. –	5 8 •9	60.2	62.2	67.8	65.3	68.8	63.2	63.3	61.8	60.4
30	58.4		58•6	59*9	61.4	· · ·	65.7	68•6	62'1	6 2· 8	61.3	59°2
31	58•5		59 · 3	- J J	61·5		66•5	68·0		62.1		59 ° 0
[eans	59°.42			59°92	6î.66	63°52		67°70	65°.27	62.20	6°.79	

,

..

(vii)

(viii)

RESULTS OF OBSERVATIONS OF MAGNETIC DECLINATION, HORIZONTAL FORCE, AND VERTICAL FORCE

TABLE IX.—MONTHLY MEAN DIURNAL INEQUALITY OF VERTICAL MAGNETIC FORCE. (The results are expressed in terms of the whole Vertical Force, diminished in each case by the smallest hourly value, the unit in the table being '00001 of the whole Vertical Force. The letters u and c indicate respectively values uncorrected for, and corrected for temperature.)

												1883	3.											
Hour, Greenwich Mean Solar	Jan	uary.	Feb	ruary.	M	arch.	AI	oril.	M	Iáy.	Jı	ine.	Ju	ıly.	Au	gust.	Septe	ember.	Oct	ober.	Nove	mber.	Dece	mber.
Time.	u	c	u	c	u	c	u	c	u	c	u	c	u	c	u	c	n	c	u	c	u	c	น	c
h O	9	3	0	0	9	2	5	0	2	0		0	12	3	0	0	8	o	2	o	13	9	6	6
1	15	4	14	10	24	10	18	9	19	13	13	8	24	10	I 2	7	23	10	13	7	25	16	12	i
2	26	13	26	19	46	28	40	28	39	30	32	25	46	30	30	22	41	25	29	22	38	28	21	10
3	31	16	41	32	68	46	58	43	53	42	50	39	71	52	48	37	57	. 39	43	34	45	35	26	23
4	32	17	50	41	83	60	69	53	67	55	67	55	90	70	64	52	71	52	54	45	46	`3 6	27	24
5	33	18	52	43	89	65	80	63	80	68	85	71	103	82	7 I	57	76	56	57	47	48	3 9	26	23
6	34	19	54	45	86	62	88	70	85	72	92	77	112	90	70	55	74	53	54	44	46	37	26	23
7	35	20	50	40	79	54	84	65	83	70	94	78	111	87	66	- 50	73	51	54	44	42	34	25	21
8	35	20	47	37	73	47	77	57	81	67	87	69	102	77	63	45	72	49	50	39	39	31	25	2
9	31	16	44	34	67	40	73	52	73	59	79	60	ġo	64	60	41	69	45	45	34	34	27	24	20
10	26	12	35	27	57	32	68	49	66	54	69	5 2	⁶ 81	57	53	36	61	39	3 9	29	27	21	19	15
II	22	10	28	21	48	26	60	43	62	52	66	51	73	52	48	33	57	37	36	28	24	18	17	14
12	18	7	22	17	43	23	54	38	58	50	57	44	64	45	47	34	55	38	34	27	18	13	12	ç
13	16	7	14	10	40	23	53	39	47	41	51	40	55	39	43	32	47	32	30	25	11	7	9	7
14	12	4	11	9	32	17	50	- 38	46	42	47	38	48	34	4I	32	44	31	29	25	6	2	7	5
15	10	4	11	10	23	11	49	39	43	41	47	40	43	31	40	33	39	28	30	27	3	0	6	5
16	8	3	13	14	24	14	49	41	47	48	47	41	45	36	41	37	37	28	27	26	4	2	4	З
17	6	2	12	15	25	18	48	42	50	53	52	48	47	40	43	41	36	29	26	26	4	2	2	2
18	3	1	11	15	22	17	46	42	50	55	50	48	51	47	4.6	46	39	34	28	30	4	3	0	c
19	3	2	12	18	25	23	47	44	45	52	43	44	51	49	43	45	41	39	33	36	5	5	0	· 1
20	4	5	11	18	28	28	4 0	39	38	47	37	39	44	45	34	-38	36	36	36	41	10	IO	2	3
21	I	3	9	18	20	23	26	27	24	35	26	30	29	32	18	24	25	27	27	33	. 8	9	2	4
22	0	1	2	10	9	11	12	13	8	17	14	17	13	15	7	13	12	14	13	17	0	I	1	3
23	0	0	0	6	0	0	0	٥	0	5	5	5	0	0	0	5	0	I	0	3	2	2	3	5
leans cor- rected for Tempera- ture	} 8·	6	21	2	28	•3	38	•9	44	.•5	4,2	•5	45	•3	 34	.'0	3,3	i'0	28	3 · 7	16	.1	I	

TABLE X.—MONTHLY MEANS of READINGS of the THERMOMETER placed within the box inclosing the VERTICAL FORCE MAGNET, at each of the ordinary Hours of Observation.

		×			-	1883	3.						•.
Hour, Green- wich Mean Solar Time.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.	For the Year.
h 0 1 2 3 9 21 22 23	59°4 59°6 59°7 59°8 59°8 59°0 59°0 59°1	59°8 60°0 60°1 60°3 59°4 59°4 59°5	57°9 58°2 58°4 58°7 58°9 57°4 57°4 57°5	59°8 60°0 60°1 60°3 60°6 59°5 59°5 59°5	61°6 61'8 62'0 62'1 62'3 61'0 61'1 61'3	63·3 63·5 63·7 63·9 64·2 63·1 63·1 63·3	65.5 65.7 65.8 66.0 66.3 64.9 64.9 65.1	67.5 67.8 67.9 68.1 68.5 67.2 67.2 67.3	65°2 65°5 65°6 65°7 66°0 64°7 64°7 64°8	62°2 62°4 62°4 62°5 62°6 61°8 61°8 61°8 61°9	60.8 61.0 61.1 61.0 60.9 60.5 60.5 60.5	59'7 59'8 59'9 59'9 59'9 59'6 59'7 59'6	61.89 62.11 62.24 62.34 62.53 61.50 61.54 61.62

TABLE XI.—MEAN	MAGNETIC DE	ECLINATION,	HORIZONTAL	Force,	and	VERTICAL	FORCE	in (each	Month.
----------------	-------------	-------------	------------	--------	-----	----------	-------	------	------	--------

	(The results for Horiz	contal Force and Ver	tical Force are correc	ted for temperature.)
- * *					

Month.	DECLINATION WEST in Arc.	HORIZONTAL FORCE in terms of the whole Horizontal Force (diminished by a Constant).	VERTICAL FORCE in terms of the whole Vertical Force (diminished by a Constant).	DECLINATION diminished by 17° and expressed as Westerly Force. in term	HORIZONTAL FORCE (diminished by a Constant).	VERTICAL FORCE (diminished by a Constant).
	0 1				,	
January	18. 18 4	187	628	4128	338	2748
February	18. 18.5	Feb. 1-15 247	602	4133	Feb. 1–15 447	2634
February	10.100	Feb. 16-28 330	002	4.00	Feb. 16-28 597	2004
March	18. 19.2	270	528	4170	489	2310
April	18. 17.5	318.	426	4080	576	1864
Мау	18. 15.8	438	419	3991	793	1833
June	18. 14.2	536	417	3907	970	1824
July	18. 13.5	552	. 354	3870	999	1549
August	18. 13.0	. 544	304	3843	985	1330
September	18. 12.4	533	252	3812	9 6 5	1103
October	18. 12.8	476	187	3833	862	818
November	18. 12.7	439	115	3828	795	503
December	18. 12.6	398	42	3822	720	184
Means	18.15.0		••••	3951	· · · ·	
Number of Column	I	2	. 3	4	5	6

The unit in columns 2 and 3 is '00001 of the whole Horizontal and Vertical Forces respectively; in columns 4, 5, and 6 the unit is '00001 of the Millimètre-Milligramme-Second Unit, or '000001 of the Centimètre-Gramme-Second (C.G.S.) Unit, in terms of which Units the values of whole Horizontal Force (applicable to columns 4 and 5) are 1'810 and 0'1810 respectively for the year, and of whole Vertical Force (applicable to column 6) 4'375 and 0'4375 respectively for the year.

HORIZONTAL FORCE.—On February 16 and December 31 experiments were made for determination of the angle of torsion, thus, in each case, breaking the continuity of the values.

VERTICAL FORCE.—On April 4 experiments were made for determination of the time of vibration of the magnet in the horizontal plane; on July 3 the time of vibration of the magnet in the vertical plane was altered; and at the end of the year the instrument was re-adjusted; thus, in each case, breaking the continuity of the values.

(ix)

TABLE XII.—MEAN DIURNAL INEQUALITIES OF MAGNETIC DECLINATION, HORIZONTAL FORCE, and VERTICAL FORCE for the Year 1883.

	Inequality of			Inequality of .			
Hour, Greenwich Mean Solar Time.	DECLINATION WEST	HORIZONTAL FORCE in terms of the whole Horizontal	VERTICAL FORCE in terms of the whole Vertical	DECLINATION expressed as WESTERLY FORCE	HORIZONTAL FORCE	VERTICAL FORCE	
	in Arc.	Force. Force.		in terms of GAUSS'S METRICAL UNIT.			
h Ç	7:30	30.2	0'0	384.3	55.2	0.0	
I	8.53	75.2	•		136.7	33·7	
2	8·39	¥15°0	7.7	449'1	208.2	-	
3	-		22.2	441.7		97*1	
a.	7.16	144.5	34.6	377:0	261.5	151.4	
4	5.58	157.7	44.8	293.8	285.4	196.0	
5	4·3 3	172.3	50.8	228.0	311.9	222.2	
6	3.33	184.6	5 2 °0	175.3	334' 1	227.5	
7	2.72	189.3	49.3	143.2	342.6	215.7	
8	2.26	185.9	44.7	119.0	336•5	195.6	
9	1.22	179'9	39-1	93.2	325.6	171,1	
10	1.62	170'0	33•4	85•3	307'7	146.1	
11	1•46	165.0	30-2	76.9	298.7	132.1	
12	1.48	158.6	26.8	77'9	287.1	117.2	
13	1.20	152.2	23.3	83.7	275.5	101.0	
14	1.67	`146'1	21.2	87.9	264 · 4	92.8	
15	1.20	142.8	20.2	83.7	258 ·5	89•7	
16	1•43	143.1	22 •5	75•3	25 9°0	9 ⁸ *4	
17	1.13	143.0	24.6	5g•5	258.8	107-6	
18	0.83	135.4	26•3	4 3 •7	245.1	115.1	
19	0.32	111.2	27' 9	16.8	201.8	122.1	
20	0.00	73.5	27.2	0.0	133.0	110.0	
21	o•50	27.9	20*2	26.3	50.5	8 8 · 4	
22	2.33	27 9		122'7	0'0	39*8	
22			0.8 d.1	260.1		3.5	
	4.94	. 4'1			7.4		
ans	3.01	125.3	27.5	158.5	226.9	120.5	
mber of Column -	I	2	3	4	. 5	6	

(Each result is the mean of the twelve monthly mean values, the annual means for each element being diminished by the smallest hourly

The unit in columns 2 and 3 is '00001 of the whole Horizontal and Vertical Forces respectively; in columns 4, 5, and 6 the unit is '00001 of the Millimetre-Milligramme-Second Unit or '000001 of the Centimetre-Gramme-Second (C.G.S.) Unit, in terms of which Units the values of whole Horizontal Force (applicable to columns 4 and 5) are 1.810 and 0.1810 respectively, and of whole Vertical Force (applicable to column 6) are 4.375 and 0.4375 respectively.

(x)

TABLE XIII.—DIURNAL RANGE of DECLINATION and HORIZONTAL FORCE, ON each ASTRONOMICAL DAY, as deduced from the TWENTY-FOUR HOURLY MEASURES of ORDINATES of the PHOTOGRAPHIC REGISTER.

(The Declination is expressed in minutes of arc : for Horizontal Force the unit is '00001 of the whole Horizontal Force. The results for Horizontal Force are corrected for temperature.)

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$. Dec. H.F. , 15°0 260 10°4 140 3°9 160 6°7 160 3°2 140 3°2 80 3°0 3°0 50
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$, 15°0 260 10°4 140 3°9 160 6°7 160 3°2 140 3°2 140 3°2 80 3°0 50
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	10.4 140 3.9 160 6.7 160 3.2 140 3.2 80 3.2 80 3.5 50
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10.4 140 3.9 160 6.7 160 3.2 140 3.2 80 3.2 80 3.5 50
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.9 160 6.7 160 3.2 140 3.2 80 3.3 50 50
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3·2 140 3·2 80 3·0 50
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3·2 80 3·0 50
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.0 50
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
11 $3^{\circ}1$ 100 $8^{\circ}2$ 1g0 $11^{\circ}3$ $3^{\circ}1$	10.0 230
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 - 1 -
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5 5 1 240
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
19 5.7 160 5.6 210 10.8 220 22.0 360 12.3 250 8.4 320 17.4 420 14.6 490 11.3 310 12.4 360 15.1 32	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 2 1-1
	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
26 13.7 170 5.7 180 16.5 500 9.9 400 11.3 310 15.2 690 10.5 500 12.8 250 8.1 220 8.6 290 4.3 14	
27 8.4 160 15.7 260 21.3 270 12.9 290 14.0 330 13.6 450 10.4 300 13.7 410 9.3 310 10.0 270 7.6 18	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
29 7.7 80 . 380 90 270 12.8 280 11.3 340 80 470 12.5 260 15.8 250 92 210 5.5 15	0 8.3 170
30 99 130 30 320 124 290 99 320 175 550 145 400 63 200 106 260 102 190 75 150 145 100 105	
31 9.6 130 10.7 220 9.0 260 19.2 680 10.1 200 11.5 230	6.2

TABLE XIV.—MONTHLY MEAN DIURNAL RANGE of DECLINATION and HORIZONTAL FORCE, as deduced from the numbers contained in Table XIII.

(The Declination is expressed in minutes of arc: for Horizontal Force the unit is 00001 of the whole Horizontal Force. The results for Horizontal Force are corrected for temperature.)

•

Month.	Declination.	Horizontal Force.	
uary	7.2	145	
oruary	10.1	210	
rch	11.3	257	
ril	12.4	305	
y	11'2	314	
1e		358	
y	13.8	397	
gust	11.8	291	
btember	12.8	296	
tober	11-8	301	
vember	9.3	256	
cember	7.0	£74	

(xi)

B 2

(xii)

HARMONIC ANALYSIS OF THE DIURNAL INEQUALITIES OF MAGNETIC DECLINATION, HORIZONTAL FORCE,

TABLE XV.-VALUES of the CO-EFFICIENTS in the PERIODICAL EXPRESSION

 $V_t = m + a_1 \cos t + b_1 \sin t + a_2 \cos 2t + b_2 \sin 2t + a_3 \cos 3t + b_8 \sin 3t + a_4 \cos 4t + b_4 \sin 4t$

(in which t is the time from mean solar noon converted into arc at the rate of 15° to each hour, and V, the mean value of the magnetic element at the time t for each month and for the year, as given in Tables II., V., IX., and XII., the values for Horizontal Force and Vertical Force being corrected for temperature.).

The values of the co-efficients for Declination are given in minutes of arc: for Horizontal Force and Vertical Force the unit is '00001 of the whole Horizontal and Vertical Forces respectively.

Month.	m	a_1	<i>b</i> ₁	a2	<i>b</i> ₂	<i>a</i> ₃	<i>b</i> ₃	<i>a</i> 4	<i>b</i> 4		
	<u></u>	· · · · · · · · · · · · · · · · · · ·	;	· ·	• <u>!</u>		<u></u>	<u></u>			
	DECLINATION WEST.										
	,	,	,	,	,		,	,	, · · · ·		
January	2.00	+ 1.77	+ 0.52	+ 0.46	+ 1.00	+ 0.32	+ 0.02	+ 0.23	+ 0.10		
February	3.09	+ 2.38	+ 0.81	+ 0.50	+ 1.46	+ 0.42	+ 0.45	+ 0.05	+ 0.52		
Aarch	3 ·2 7 4 · 64	+ 2.11	+ 1.67	+ 0.63	+ 1.95	+ 0.39	+ 1.00	+ 0°17 + 0°28	+ 0.3 + 0.2		
fay	4.24	+ 2.09	+ 2.32	+ 1.01	+ 1.55	+ 0.78	+ 0.42	+ 0.12	- 0.0		
une	5.03	+ 2.21	+ 3.22	+ 1.88	+ 1.68	+ 0.46	+ 0.12	+ 0.02	- 0.0		
uly Lugust	4°71 4°13	+ 2.61 + 2.23	+ 3.37 + 2.38	+ 1.79	+ 1.87 + 1.70	+ 0.62 + 0.00	+ 0.78 + 0.65	+ 0.12	+ 0.1		
eptember	3.92	+ 2.65	+ 2.01	+ 1.76	+ 1.82	+ 1.02	+ 0.60	+ 0.48	+ 0.5		
ctober	3.66	+ 2.32	+ 1.60	+ 1.29	+ 1.94	+ 0.87	+ 0.93	+ 0.65	+ 0.10		
lovember	2°30 2°10	+ 2.24 + 1.83	+ 1.08	+ 0.49 + 0.22	+ 0°93 + 0°77	+ 0°68 + 0°40	+ 0.42	+ 0.29	+ 0.0		
For the Year	3.01	+ 2.51	+ 1.82	+ 1.19	+ 1.28	+ 0.64	+ 0.22	+ 0.53	+ 0.10		
-											
				Но	RIZONTAL FO	DRCE.		4			
anuary	65.7	19.6	- 0.0	- 21.0	+ 5.6	- 5.4	+ 11.8	+ 11	+ 6.		
ebruary	73•8 124•7	-26.4 - 63.1	$- 4^{2}$ + 19 ⁸	-28.9 -30.8	+ 0.8 + 12.0	- 9'9 - 14'8	+ 13.4 + 15.8	- 2.6 - 3.4	+ 90		
pril	156.6	- 76 · 9	+ 46.2	- 49'4	+13.2	- 15.5	+ 11.8	+ 30	+ 6.2		
Гау	141.7	- 66·5	+ 79'4	- 33.7 -	+ 25.4	- 1.0	+ 3.4	+ 6.3	+ 4.		
une	164°0 200°2	-71.5 -78.2	+ 101.1	-28.6 -35.5	+ 26·5 + 47·3	+ 8:5 + 3:1	+ 9 ^{.3} + 13 [.] 4	+ 1.0	$+ 7^{\circ}$ + 3^{\circ}		
uly	158.1	-71.3	$+ 59^{2}$	- 22.0	+ 29.5	- 1.8	+ 19.4	0.0	+ 6		
eptember	158.8	— 75 ·8	+ 38.2	- 33.8	+ 25.7	- 1.2	+ 22.9	+ 5•5	+ 113		
October	161.4	— 76·6 — 55·6	+ 27.1 + 8.3	-43.2 -33.6	+ 25.2 + 10.7	-10.8 -2.8	+ 31.2	+ 3·1 + 4·0	+ 6 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5		
Vovember	109'0 58 · 5	- 18·1	+ 8.3 - 3.5	- 24.0	+ 90	- 4.9	+ 19.2	+ 3.5	+ 5.3 + 8.4		
For the Year	125.3	- 58.3	+ 38.6	- 32.1	+ 19.2	- 4.8	+ 15.2	+ 2°1	+ 6.8		
				·							
		а, 1		VE	RTICAL FOR	CE.			-		
anuary	8.6	- 1.7	+ 8.8	- 3.0	0.0	- 0.8	+ 0.1	- 1.3	+ 0:0		
ebruary	21·2 28·3	-2.3 -3.1	+ 13.5	-10.4	1.8 + 0.1	-3.7 - 8.3	1.8 0.1	- 1.9 - 2.1	-1		
pril	28.3 38.9	-3.1 -13.8	+ 19'4 + 11'0	- 14·3 - 17·6	+ 0'I + 0'4	-5.7	- 0°2	-1.5	$+$ \mathbf{r}		
Íay	44.5	- 15.7	+ 9.0	- 19.0	- 1.8	- 6.0	+ 1.3	- 0.5	+ 0.3		
une	42.5	-16.1	+ 13.1	- 19.6	- 2.7 - 3.5	- 4 ^{•5}	- 1°4 - 0°7	+ °.4 + °.3	+ 01		
uly	45•3 34•0	- 13.8 - 9.7	+ 20°0 + 5°9	- 22.6 - 16.8	-3.5 + 1.4	- 6·5	+ 05	-0.3	- 0.2		
eptember	33.0	- 9'7	+ 10.2	- 13.3	- 0.6	<u> </u>	+ 0.3	- 2.0	+ 1.2		
October	28.7	-5.3	+ 5.7	-12.8 -5.3	- 1·3 + 0·5	-7.7 -3.3	-1^{2}	-3.4	+ 13		
November December	16·1 11·1	$+ 1^{\cdot 2}$ - 0^{\cdot 2}	+ 17.7 + 11.4	- 1·8	+ 1.1	- 1.0	+ 1.7 + 0.6	-1.1 -1.2	- 0'I		
			I	1							

TABL	5 AVI.			$\sin(t+\alpha)$						$(4t+\delta)$	(PRESS)	IONS	
/·		$\mathbf{V}_{t'}$:	$= m + c_1 s$	$\sin(t'+\alpha')$	$+c_2$ si	in $(2t'+\beta')$	$+c_3\sin$	$(3t' + \gamma')$	$+c_4\sin$	$(4t'+\delta')$. .		C
(in which t and 15° to each hour given in Tables	, and V	t, Vt' th	e mean v	alue of th	ie magn	etic eleme	nt at the 1	time t (or t' for ea	ch month	and for	r the year	, as
The values of the co-			eclination		in min	utes of arc	e: for Ho	rizontal	Force and				
Month.	m	c 1	a	a'	c_2	β	<i>,</i> 8′	c3	γ	γ'	<i>c</i> 4	8	8,
		1			•	Dec	LINATION	WEST.					
	,		0 /	o ,		0 /		1	0 /	0 /	,	0 /	0 /
January	2.00	1.84	73.27	75. 52	1.10	24.45	29.35 18.20	0.32	86.53	94. 8	0°25 0°52	66.38 1.50	76. 18 15. 50
February	3.09 3.27	2.22	71.11 51.38	74.41 53.46	1°49 2°05	11.20	22.11	1.15	47.18	57.48 26.6	0.32	· 25. 1	33. 33
April		3.32	38.14	38.15	2.67	32.33	32.35	1.32	34.34	34.37	0.37	48.18	48. 22
May	4.24	3.13	42. 2	41.10	2.47	50.55	49.11	0.89	61.33	58.57	0.12	94.52	91.24
June July	5.03 4.71	3.90	34. 32 37. 45	34.38 39. 7	2.52	48. 19 43. 48	48. 31 46. 32	0.49 0.99	69.44 38.34	70. 2	0.02	113.38	114. 2 6.54
August	4.13	4°27 3°27	43. 9	44. 5	2.46	46.10	48. 2	1.10	54.14	57. 2	0.22	45.16	49. 0
September	3.92	3.33	52.52	51.35	2.55	43.37	41. 3	1.26	56.47	52.56	o•55	61.43	56.35
October	3.66	2.82	55.25	51.54	2.33	33. 44	26.42	1.58	43. 6	32.33	0.64	75.43	61.39
November	2·30 2·10	2°49 1°92	64. 19 71. 45	60.40 70.47	1.02 0.80	27.57	20. 39 13. 48	0.82 0.42	56.30	45.33	0.30 0.40	77.16 44.45	62.40 40.53
December		192	/1.40	/0.4/	0.00	10.44	10.40	042	/0.22	/0.20	040	44.40	40.00
For the Year	3.01	2.88	50. 3	50. 3	1.96	36.20	36. 20	0.86	48.23	48.23	0.30	50.30	50.30
<i></i>									:				
						Hor	IZONTAL	Force.					
			1 6 1		1 '			1			}		
January	65.7	19.6	267.22	269.47	21.7	285. 3	289.53	12.9	335.33	342.48	7.0	8.53	
February	73.8	26.7	260.51	264.21	29.0	271.31	278.31	16.2	323.25	333.55	9'4	343.46	357.46
March	124.7 156.6	66·1 89'7	287.25 301.1	289.33 301.2	33·0 51·2	291.18 284.58	295.34 285.0	21.7	316.50	323. 14 307. 22	7°1 6°9	331.11 25.47	339.43 25.51
April May	141.7	103.6	320. 3	319.11	42.2	307. 1	305.17	3.0	330.43	328. 7	7.8	53.55	50.27
June	164.0	116.5	322. 8	322.14	39.0	312.50	313. 2	12.5	42.28	42.46	7.1	8. 28	8. 5z
July	200'2	127.8	322.16	323.38	59.1	323. 5	325.49	13.7	13. 9	17.15	5.1	43. 53	49.21
August	158·1 158·8	92°7 84°9	309.43 296.44	310.39 295.27	37.3	322.12	324. 4 304.42	20°0 22°9	354.51	357.39 352.17	6·4 12·6	0. 0 25. 43	3. 44 20. 35
September	161.4	81.2	289.28	285.57	50.0	300.16	293.14	33.0	340.56	330. 23	6.0	26.25	12.21
November	109.0	56.2	278.29	274. 50	35.2	287.42	280.24	19.4	351.41	340.44	6·ő	36.56	22.20
December	58.5	18.2	258.55	257.57	25.6	290.41	288.45	11.5	334. 13	331.19	ð. 1	22. 41	18.49
For the Year	125.3.	6 9 · 9	303. 29	303. 29	37•4	300.54	300. 54	15.9	342.26	342.26	7.1	16.59	16.59
		···	1	1		<u> </u>	1			I			
		,				V	ERTICAL I	FORCE.					
1				0 / 1			0 1		0 4				
January	8 •6	8.9	349.15	351.40	3.0	2 69. 21	274.11	0*8	273.24	280.39	1.2	304.44	314.24
February	21.2	13.7	350.17	353. 47	10.6	260. 21	267.21	3.7	268.50	279.20	2.5	238.51	252.51
March	28·3 38·9	19.6	350. 57 308. 22	353. 5 308. 23	14.3	270.28	274.44	8·5 5·7	257.26 268.20	263.50 268.23	1.8 5.1	277.58 306.36	286.30
April May	44.5	17.7 18.1	299.41	298.4 9	17.6 19.1	271.25 264.34	271.27	6.1	282.27	279.51	0.8	340.58	306.40 337.30
June	42.5	20.8	309. 6	309.12	19.8	262.14	262.26	4 '7	252.28	252.46	°'4	78.41	79. 5
July	45.3	24.3	325.22	326.44	22.9	261. 8	263.52	8.1	265. 22	269.28	1.4	11.59	17.27
August	34.0	11.3	301.15	302.11	16.9	274.40	276.32	6 •5	274. 28	277.16	0.3	223.53	227.37
September	33.0	14.1	316.26	315. 9	13.3	267.25	264.51	8.0	271.41	267.50	2.3	302. 2	296.54
October	28.7 16.1	7.8	317.18	313. 47 0. 23	12.9 5.3	264. 6 275.13	257. 4 267.55	7°7 3°7	260. 47 297. 22	250. 14 286. 25	3·7 1·4	290. 50 308. 40	276.46
December	10.1	17'7 11'4	4. 2 358.47	357.49	2.1	301. 7	207.33	1.1	301.36	298.42	1.2	267.13	294. 4 263. 21
For the Year	27.5	14.3	328.13	328. 13	13.1	266.58	266. 58	5.3	269. 6	269. 6	1.3	293. 20	293. 20

AND VERTICAL FORCE, AT THE ROYAL OBSERVATORY, GREENWICH, IN THE YEAR 1883.

TABLE XVI,-VALUES of the CO-EFFICIENTS and CONSTANT ANGLES in the PERIODICAL EXPRESSIONS

(xiii)

2

OBSERVATIONS OF MAGNETIC DIP

ay and	l Hour, 83.	Needle.	Magnetic Dip.	Observer.	Day and Hour, 1883.	Needle.	Magnetic Dip.	Observer.	Day and Hour, 1883.	Needle.	Magnetic Dip.	Ohserver.
	d h		0 / 11	.	d h		0 / //		d h		Q / //	Ì
an.	4. 2	Bı	67. 32. 28	N	May 5. 1	Ст	67.30.30	N	Sept. 7. 2	C 2 *	67.30.52	N
CU11 4	4· 2 5. 2	Či	67. 34. 16	N	10.23	Di	67. 33. 21	N	14. 0	Č i	67.30.57	N
	9. I	B 2	67.32.32	N	11. 0	D 2	67.31.27	N	14. 1	DI	67.31.33	N
	19. 1	Dī	67. 33. 54	N	15. 1	C 2	67. 30. 21	N	18. 0	D 2	67.33.18	N
	22. 3	D 2	67. 33. 41	N	17. 0	Вı	67. 28. 57	N	19. 1	B 2	67.31.46	N
:	25. O	C 2	67.35.34	N	23. I	Ві	67. 29. 56	N	19.2	C 2	67.31. 1	N
	26. 1	BI	67.36. 3	N	28. 2	B 2	67. 30. 48	N	26. 0	BI	67. 32. 27	N
	26. 2	DI	67.35. 2	N	29.23	Сı	67. 29. 54	N	26. 2		67.31.42	N
	29.23	D 2	67. 34. 11	N	30. 1	C 2	67. 29. 54	N	26. 23	D 1 B 2	67.32.13	N
	30. 1	B 2	67.32.41	N	30. 2	DI	67.29.41	N	28. I 28. 2	В2 • D2	67.31.29	N
	30. 2		67.32.11	N	31. 0	D 2 B 2	67.31.11	N	11	BI	67.32.10	N
•	31. 1	C 2	67. 34. 15	N	31. 1	B2	67. 29. 44	N	29. 1		67. 32. 14	
eb.	3. 1	Сı	67.35.43	N	June 7. I	Сı	67.30. 0	N	Oct. 5. 2	<u>C</u> .2	67.28.53	N
	9. 2	C 2	67.34.21	N	8. 0	Dı	67.30.41	N	10. 1	DI	67.30. 5	N
	ι Š. ο	Bı	67.32.56	N	8. I	D 2	67.30.5	N	18. 2	Ст	67.31.16	· 1
2	20.23	B 2	67.30.31	N	13. I	<u>C</u> 2	67. 30. 47	N	19. I	BI	67.29.55	I
1	21. 0	Cı	67.33.33	N	13. 2	D I	67. 30. 52	N	19. 2	D2	67.31.26	
	21. 2	DI	67. 33. 15	N	20. 0	BI	67. 29. 58	N	26. 0	B2	67.32.10	
	23. 2	D 2	67.35.26	N	20. 2	B 2	67.28.58	N	26. 2	DI	67.30.50	
	24. I	DI	67.34.32	N	21. 2		67. 29. 50	N	30. 0	C2 BI	67.31.36	
	28. 1		67.33.37	N	27. 0		67.32.55	N N	30.23	BI B2	67.30.17	
2	28. 2	D 2	67.34.36	N	27. 2	C 2	67.29.47	N	31. 0 31. 2	В2 Сі	67.30.21	
			•		27.23 28. 1	B 2 C 1	67. 29. 42 67. 30. 28	N N	J10 4	0.	67. 29. 44	
Iar.	- 0	C 2	67. 33. 26		July 5. r	C 2	67. 31. 10	N	Nov. 2. 1	D 2	67. 32. 15	
ar.	7.0	D 2		N				N	7. 2	C 2	67.31.20	
	8. 2 16. 1		67. 34. 1 67. 33. 59	N N	6. 2 12. 1	D I D 2	67. 29. 1 67. 30. 36	N	7. 2 15. 1		67. 33. 21	
	10. 1 16. 2		67. 33. 59 67. 34. 53	N	12. 1 17. 1		67.30.39	N	13. 1	DI	67.31.55	
	21. 1	BI	67.31.33	N	17. 1	DI	67.31.5	N	20. 0	BI	67.33. 4	
	21. 23	B 2	67.31.48	N	17. 2 19. 1	BI	67. 30. 17	N	20. 1	B 2	67.31.45	
	22. 0	D 2	67. 33. 50	N	24. 1	B 2	67. 28. 35	N	27. 0	C 2	67.32.6	
	28. 1	Ĉ 2	67. 33. 22	N	27. I	Ĉ2	67.30. 0	N	27. J	Сі	67.31.25	
	30. O	BI	67. 33. 24	N'	27. 2	Cı	67. 29. 59	N	28. 0	D 2	67. 33. 32	
	30. 2	Dı	67.33.43	N	28. I	Dı	67.31.17	N	29. 2	Вг	67.31.32	
ŝ	31. 1	Ст	67.33. 3	N	31. 1	Вт	67.30.36	N	30. I	B 2	67.31.37	
	5. 1	Ст	67.34.36	N	Aug. 13.23	B 2	67.30. 9	N	Dec. 6. 2	D 2	67.32.0	
1	12.0	C 2	67.33.26	N	14. 1	Bı	67. 29. 40	N	11. 2	Dı	67.30.54	
	12. I	D 2	67.33.33	N	15. 2	Сі	67. 29. 36	N	14. I	C 2	67.30.37	
	13. 0	DI	67. 33. 14	N	15. 3	DI	67. 28. 18	N	19. 0	BI	67.31.27	
	13. 2	CI	67.31.38	N	17. 2	C 2	67.29.3	N	19. 1		67.31.37	
	20. 2		67.28.15	N	22. I	DI	67.30.40	N	19. 2	CI B2	67. 31. 23 67. 30. 26	
	25. 1	DI	67.28.41	N	22. 2	D 2	67.30.2	N	21. I	Б2 D2	67.30.20 67.31.53	
1	26. 1	C 2	67. 29. 39	N	23. I		67. 29. 57	N N	21. 2 28. 1	B 2	67.31.15	
					24. 2	· C I B I	67.30.11	N	20. 1	D 2	07.01.15	
					30. 0 30. I	B 2	67.30.41 67.30. 0	N				
				l	30. I 31. O	D 1	67. 29. 15	N				
					31. 1	D 2	67. 30. 23	N				

The needles B 1 and B 2 are 9 inches in length; C 1 and C 2, 6 inches; and D 1 and D 2, 3 inches. The initial N is that of Mr. Nash.

(xiv)

. . .

		Monthly Mea	ns of Magnetic Dip).	'	
Month, 1883.	B 1, 9-inch N eed le.	Number of Observations.	B 2, 9-inch Needle.	Number of Observations.	C 1, 6-inch Needle.	Number of Observation
۲ ۱	0 1 11		0 / //	1 1	0 / //	
January	67. 33. 34	3	67.32.37	2	67. 34. 16	I
February	67.32.56	1	67.32.4	2	67. 34. 38	2
Iarch	67. 32. 29	2	67.31.48	1	67. 33. 31	2
pril	67. 28. 15	1	07.01.40	•	67.33. 7	2
fay	67. 29. 27	2	67.30.16	2	° 67. 30. 12	2
une	67. 29. 58	I	67. 29. 20	2	67.31.8	3
uly	67.30.27	2	67. 28. 35	1	67. 30. 19	2
ugust	67.30.11	2	67.30. 4	2	67. 29. 54	2
eptember	67. 32. 21	2	67.31.37	2	67.31.20	2
ctober	67.30.6	2	67.31.16	2	67. 30. 30	2
lovember	67. 32. 18	2	67.31.41	2	67. 32. 23	2
December	67.31.27	I '	67. 30. 51	2	67. 31. 23	1
Means	67.31.20	21	67.31. 0	20	67. 31. 46	23
Month,	C 2,	Number	 D 1,	Number		Number
1883.	6-inch Needle.	of Observations.	3-inch Needle.	of Observations.	D 2, 3-inch Needle.	of Observation
	0 / //		0 1 11		0 / 11	ĺ
anuary	67. 34. 55	2	67. 34. 28	2	67. 33. 56	2
ebruary	67. 34. 21	I	67. 33. 54	2	67.35. 1	2
[arch	67. 33. 24	2	67. 34. 18	2	67. 33. 55	2
pril	67.31.33	2	67.30.57	2	67. 33. 33	I
ay	67.30. 7	2	67.31.31	2	67. 31. 19	2
une	67.30.17	2	67. 30. 46	2	67. 29. 58	2
aly	67. 30. 35	2	67.30.28	3	67. 30. 36	I
ugust	67. 29. 30	2	67. 29. 24	3	67. 30. 13	2
eptember	67.30.56	2	67.31.53	2	67. 32. 44	2
	67.30.15	2	67. 30. 27	2	67.31.26	1
ctober	67.31.43	2	67.31.55	1	67.32.53	2
ctober		2	67. 30. 54	I	67. 31. 56	2
ctober	67.31. 7				فقيرانانه وبراعاتها بالمتحدة فتسمعك فاستقاده	

MADE AT THE ROYAL OBSERVATORY, GREENWICH, IN THE YEAR 1883.

adalen en ann a thrèann ann

COLLECTED YEARLY MEANS of MAGNETIC DIP for each of the NEEDLES, and GENERAL MEAN for the Year 1883.

Lengths of the several Sets of Needles.	Needl es .	Number of Observations with each Needle.	Mean Yearly Dip from Observations with each Needle.	Mean Yearly Dip from each Set of Needles.	Mean Yearly Dip from all the Sets of Needles.
	3		0 , 11	0 / //	0 / //
g-inch Needles	B 1 B 2	21 20	67.31.20 67.31.0	67.31.10	
6-inch Needles {	C 1 C 2	23 23	67. 31. 46 67. 31. 26	67. 31. 36	67. 31. 35
3-inch Needles	D 1 D 2	24 21	67. 31. 37 67. 32. 21	67.31.59	

(XY)

OBSERVATIONS FOR ABSOLUTE MEASURE OF HORIZONTAL FORCE, AT THE ROYAL OBSERVATORY, GREENWICH, IN THE YEAR 1883.

			Abstract of the	Observations of 1	Deflexion and Vibration.			
Month and 1883.	Day,	Distances of Centres of Magnets.	Temperature.	Observed Deflexion.	Mean of the Times of Vibration of Deflecting Magnet.	Number of Vibrations.	Temperature.	Observe
January	31	ft. I °0 I °3	45 ° 0	0. 40. 52 4. 50 21	5.648 5.643	100 100	47°1 45°J	N
February	22	1 °0 1 °3	5 2 * ວ	10.40.10 4.50.4	5·659 5·661	100 100	52 ·3 52 ·3	N
March	29	1 °0 1 °3	50 .7	10. 38. 19 4. 49. 44	5 •649 5 •658	100 100	50 ° 1 51 ° 9	N
April	24	1 °0 1 °3	44 * 4	10. 38. 11 4. 49. 44	5 •643 5 •639	100 100	44 °8 45 °4	N
May	29	I '0 I '3	63 •0	10. 37. 29 4. 49. 19	5 •654 5 •656	100 100	63 ·5 63 ·9	N
June	26	1 .0	63 ·4	10. 37. 9 4. 48. 50	5 •658 5 •655	100	64 ° 1 63 ° 6	N
July	26	1 °0 1 °3	60 · 9`	10. 37. 16 4. 49. 0	5 •673 5 •658	100	61 ·2 62 ·1	N
August	29	I .0 I .3	66 • 8	10. 35. 42 4. 48, 38	5 •663 5 •657	100 100	66 •8 66 •8	N
September	27	1 ·0 * 1 ·3	61 .0	10. 36. 52 4. 48. 50	5 ·66 1 5 ·66 2	100	61 ·5 61 ·7	N
October	30	I '0 I '3	53 •6	10. 36. 34 4. 48. 40	5 ·653 5 ·657	100	53 ·8 53 ·7	· N
November	28	1 °0 1 °3	54 .6	10.37.7 4.49. I	5 •67 1 5 •668	100 .	54 °2 54 °7	N
December	20	1 '0	48 •4	10. 36. 36 4. 48. 46	5.658 5.659	100	47 '3 47 '7	N

The deflecting magnet is placed on the east side of the suspended magnet, with its marked pole alternately east and west, and on the west side with its marked pole also alternately east and west : the deflexion given in the table above is the mean of the four deflexions observed in these positions of the magnets. The initial N is that of Mr. Nash. In the subsequent calculations every observation is reduced to the temperature 35°.

		In English Measure.										
Month and Day, 1883.		Apparent Value of A ₁ .	Apparent Value of A ₂ .	Apparent Value of P.	Mean Value of P.	Log. $\frac{m}{X}$	Adopted Time of Vibration of Deflecting Magnet.	Log. m X.	Value of <i>m</i> .	Value of X.	Value of X.	
January	31	0.00285	0.00280	+0.00034	1	8.96752	5.6455	0.12632	0.3647	3.930	1.812	
February	22	0.00282	0.00282	+0.00006	} + 0·00020	8.96759	5.6600	0.12424	0.3640	3.922	1.808	
March	29	0.09254	0.00270	-0.00412	т [8.96770	5.6535	0.12221	0.3644	3.926	1.810	
April	24	0.09242	0.00260	-0.00474		8.96719	5.6410	0.12202	0.3649	3.935	1.814	
May	29	0.09262	0.09276	-0.00380	i i	8.96804	5.6550	0.12226	0.3647	3.925	1.810	
June	26	0.09257	0.09261	-0.00096		8.96759	5.6565	0.12223	0.3644	3.926	1.810	
July	26	0.09255	0.09262	-0.00105		8.96756	5.6655	0.12447	o•3639	3.922	1.808	
August	29	0.09242	0.09260	-0.00485	>-0'00294	8.96720	5.6600	0.12264	0.3643	3.928	1.811	
September	27	0.09249	0.09257	-0.00200		8.967 30	5.6615	0.12206	0.3641	3.925	1.810	
October	30	0.09234	0.09240	—0.001 60	•	8 96653	5.6550	0.12224	0•3639	3.931	1.813	
November	28	0.09243	0.09253	—0.002 59		8.96705	5.6695	0*15334	0.3632	3.919	1.802	
December	20	0.09226	0.09235	-0.00548	J	8.96623	5.6585	0.12441	o•3633	3.927	1.811	
Means .				••		••		•• '		3.926	1.810	

(xvi)

ROYAL OBSERVATORY, GREENWICH.

MAGNETIC DISTURBANCES

AND

,

١

EARTH CURRENTS.

1883.

GREENWICH MAGNETICAL AND METEOROLOGICAL OBSERVATIONS, 1883.

...

1

4 - 4 - 19

MAGNETIC DISTURBANCES in DECLINATION, HORIZONTAL FORCE, and VERTICAL FORCE, and EARTH CURRENTS; recorded at the ROYAL OBSERVATORY, GREENWICH, in the Year 1883.

The following notes give a brief description of all magnetic movements (superposed on the ordinary diurnal movement) exceeding 3' in Declination, 0:001 in Horizontal Force, or 0:0003 in Vertical Force, as taken from the photographic records of the respective Magnetometers. The movements in Horizontal and Vertical Force are expressed in parts of the whole Horizontal and Vertical Force respectively. When any one of the three elements is not specifically mentioned it is to be understood that the movement, if any, was insignificant. Any failure or want of register is specially indicated.

The term "wave" is used to indicate a movement in one direction and return; "double wave" a movement in one direction and return with continuation in the opposite direction and return; "two successive waves" consecutive wave movements in the same direction; "fluctuations" a number of movements in both directions. The extent and direction of the movement are indicated in brackets, + denoting an increase and - a decrease of the magnetic element. In the case of fluctuations the sign \pm denotes positive and negative movements of generally equal extent.

In all cases of magnetic movement the earth-current photographs show corresponding earth currents, but it has not been thought necessary to refer to these in detail.

Magnetic movements which do not admit of brief description in this way are exhibited with their corresponding earth currents on accompanying plates.

The time is Greenwich Mean Solar Time (Astronomical Reckoning, commencing at noon).

1883.

January 1. o^h to 3^h Fluctuations in Dec. $(\pm 2')$. 1^h to $2\frac{1}{2}^{h}$ Wave in H.F. $(-\cdot 0025)$. $6\frac{1}{2}^{h}$ to 9^{h} Fluctuations in Dec. $(\pm 2')$: in H.F. small.

- 2. $5\frac{1}{2}^{h}$ to 7^{h} Wave in Dec. (-5').
- 4. 14^h to 16^h Double wave in Dec. (+2' to -2').
- 5. $8\frac{1}{2}^{h}$ to 16^{h} Wave in Dec. (-12'), followed by fluctuations $(\pm 2')$: fluctuations in H.F. (± 001) , with wave at 13^{h} (± 003).
- 6. Waves in Dec. 5^h to $6\frac{1}{2}^{h}$ (- 10'), 8^h to 9^{h} (- 5'). Fluctuations in H.F. 1^h to 11^h (\pm 002).
- 7. No register of Dec. or H.F.
- 8. $6\frac{1}{2}^{h}$ Wave in Dec. (-8'): in H.F. (+.0015).
- 9. $6\frac{1}{2}^{1}$ Wave in Dec. (-8'): in H.F. (-0015).
- 10. 9^h to $10\frac{1}{2}^{h}$ Wave in Dec. (-4'), followed by small fluctuations to 17^{h} .
- 16. 13^h Wave in H.F. (+ .0015).
- 17. 4^h Wave in Dec. (-15'), followed by small fluctuations : in H.F. small fluctuations throughout the day.
- 18. 6¹/₂^h to 8^h Sharp wave in Dec. (- 13'), followed till 14^h by small fluctuations. 5^h to 14^h Small fluctuations in H.F. (± .001).
- 20. $6\frac{1}{2}h$ to 8h Wave in Dec. (-5'): in H.F. (+001).
- 21. No register of Dec. or H.F.
- 22. 7_{4}^{3h} to 10_{4}^{1h} Wave in Dec. (- 6'): fluctuations in H.F. ($\pm .001$).
- 24. 5^h to 15^h Fluctuations in Dec. $(\pm 4')$: in H.F. $(\pm \cdot 001)$, with wave at $7\frac{1}{4}$ (- $\cdot 003$).
- 25, 26. See Plate I.
- 27. 3^{h} to 16^{h} Fluctuations in Dec. $(\pm 3')$: in H.F. $(\pm .001)$.
- 28. No register of Dec. or H.F.
- 29. 4^h to 13^h Fluctuations in Dec. $(\pm 2')$. 8^h to 13^h Fluctuations in H.F. (± 0005) .
- 31. Waves in Dec. at $8^{h}(-6')$; at $13^{h}(-5')$.
- February 1, 2, 3, 4. See Plates I. and II.
 - 5. $4\frac{1}{2}^{h}$ to $6\frac{1}{2}^{h}$ Wave in Dec. (-3'): in H.F. (-001). $9\frac{3}{4}^{h}$ to $11\frac{1}{2}^{h}$ Wave in Dec. (-3'): in H.F. (+002), followed by small fluctuations to 15^{h} .
 - 6. Waves in Dec. $3\frac{3}{4}^{h}$ to $6\frac{1}{4}^{h}$ (- 12'); 8^{h} to $9\frac{1}{4}^{h}$ (- 13'). $3\frac{1}{2}^{h}$ to $9\frac{1}{4}^{h}$ Fluctuations in H.F. (± .001).
 - 9. 14^h Wave in Dec. (+ 4').
 - 10. 3^{h} Double wave in Dec. (-2' to + 2'): in H.F. $(-\cos 5 \text{ to } + \cos 5)$.
 - 14. 0^{h} to $2\frac{1}{2}^{h}$ Fluctuations in Dec. $(\pm 3')$: in H.F. $(\pm \cdot 001)$. $5\frac{1}{2}^{h}$ to $6\frac{1}{2}^{h}$ Wave in Dec. (-3'): in H.F. $(- \cdot 002)$. 10^{h} to 13^{h} Wave in Dec. (-8'): fluctuations in H.F. $(\pm \cdot 0007)$.
 - 15. 11^h to 17^h Fluctuations in Dec. $(\pm 4')$: in H.F. $(\pm .001)$: in V.F. $(\pm .0002)$.

1883.		· · · ·
February	. 17	Waves in Dec. $4\frac{1}{2}h$ to $6^{h}(-3')$; 8^{h} to $14^{h}(-10')$, with superposed fluctuations $(\pm 2')$. Waves in H.F.
		o_2^{1h} to 2^h (0015); 4^h to 6^h (0015); 8^h to 14^h (002), with small superposed fluctuations.
	18.	16^{h} to 17^{h} Wave in Dec. $(+7')$: in H.F. $(+001)$.
	19.	$12\frac{1}{2}^{h}$ to 16 ^h Fluctuations in Dec. ($\pm 2'$). $13\frac{1}{2}^{h}$ Wave in H.F. (± 0015).
	20.	o ^h to 2 ^h Fluctuations in Dec. $(\pm 3')$: in H.F. small. 4 ^h to 5 ^h Wave in Dec. $(-5')$: in H.F. (-0015) .
	21.	$8\frac{1}{2}h$ to 13^{h} Wave in Dec. (- 10'), with superposed fluctuations (± 3'): in H.F. (- 002) with small
-		superposed fluctuations. 13^{h} to 18^{h} Fluctuations in Dec. $(\pm 2')$.
	22.	See Plate III.
	23.	o ^h to 16 ^h Fluctuations in Dec. $(\pm 3')$: in H.F. $(\pm .001)$.
	24.	See Plate III.
	25.	Small movements in Dec. H.F. and V.F. throughout the day.
	26.	6_{4}^{1h} Wave in Dec. (-8'). 5_{4}^{3h} Wave in H.F. (0015).
	27,	28. March 1, 2. See Plates IV. and V.
March	3.	1 ^h to 13 ^h Fluctuations in Dec. $(\pm 4')$: in H.F. $(\pm \cdot co2)$: in V.F. $(\pm \cdot ooo2)$.
	4.	3 ^h to 17^{h} Fluctuations in Dec. $(\pm 3')$: in H.F. $(\pm .0005)$.
	6.	$3\frac{3}{4}^{h}$ Sharp movement in Dec. $(+3')$: in H.F. $(+0025)$: in V.F. $(+0002)$. Waves in Dec. 7^{h} to $9\frac{1}{4}^{h}$
		$(-12')$; $11\frac{1}{2}h$ to $12\frac{3}{4}h$ $(-10')$; $14\frac{1}{4}h$ to $15\frac{3}{4}h$ $(-7')$; $17\frac{1}{2}h$ to $18\frac{1}{4}h$ $(+5')$. Wave in H.F. $11\frac{1}{2}h$ to
		$13\frac{1}{2}h$ (+ .003). Fluctuations in H.F. 17^{h} to 21^{h} (± .001).
	7.	5 ^h to 6 ¹ / ₄ Wave in Dec. $(-6')$: in H.F. (-0015) . 13 ^h to 22 ^h Fluctuations in Dec. $(\pm 4')$. 8 ¹ / ₂ to 10 ¹ / ₂
	1	and 13^{h} to 18^{h} Fluctuations in H.F. (\pm .001).
	8.	Register of Dec. not trustworthy. $7\frac{1}{2}^{h}$ to 17^{h} Fluctuations in H.F. (\pm :0015). 8^{h} to 10^{h} Fluctuations
		in V.F. $(\pm .0002)$.
		Register of Dec. not trustworthy.
•		$9\frac{1}{4}^{h}$ to $10\frac{1}{4}^{h}$ Double wave in Dec. $(+4' \text{ to } -6')$: in H.F. $(-0.003 \text{ to } +0.01)$.
	12.	17^{h} to 21^{h} Wave in Dec. (+ 12'), with superposed fluctuations : fluctuations in H.F. (\pm 0005): in V.F.
		(<u>+</u> '0003).
		1 ^h . Wave in H.F. (- '001). $7\frac{1}{4}$ ^h Wave in Dec. (- 3'): in H.F. (- '001)? in V.F. (- '0001).
`		$2\frac{3}{4}^{h}$. Sharp wave in Dec. $(-3')$. 10 ^h to 13 ^h Fluctuations in Dec. $(\pm 2')$: in H.F. $(\pm .0007)$.
		Register of Dec. not trustworthy. 11 ^h to 13 ^h and 16 ^h to 19 ^h Fluctuations in H.F. $(\pm .0007)$.
	21.	Register of Dec. not trustworthy. 10 ^h to 12 ^h Wave in H.F. (+ :0035), with small fluctuations
		throughout the day. 14 ^h to 16 ^h Wave in V.F. (- 0007).
	22.	6^{h} to 7^{h} Wave in Dec. $(-11')$: double wave in H.F. $(-002 \text{ to } + 003)$: in V.F. $(-0002 \text{ to } + 0002)$.
		10_{1}^{1h} Wave in Dec. $(+3')$: in H.F. $(+001)$: in V.F. (-0001) .
		7^{h} Wave in Dec. $(-5')$, followed by small fluctuations to 11 ^h . 1 ^h to 11 ^h Fluctuations in H.F. $(\pm .0005)$.
	-	10^{h} to 11^{h} Wave in H.F. (+ :0015).
		8 ^h to 28. 8 ^h . See Plates V. and VI.
	28.	8^{h} to 10^{h} Fluctuations in Dec. $(\pm 2')$, after 10^{h} register of Dec. not trustworthy. 8^{h} to 18^{h} Fluctuations
		in H.F. (± 0015) : in V.F. (± 0002) .
	29.	Register of Dec. not trustworthy. 3^{h} to $5\frac{1}{2}^{h}$ Double wave in H.F. (- 0025 to + 0025). 8^{h} to 17^{h}
		Fluctuations in H.F. $(\pm \cdot 0015)$.
April		5 ^h Wave in Dec. $(-3')$: in H.F. $(+ \cdot 001)$.
		18 ^h to 4. 18 ^h . See Plates VI. and VII.
	э.	4 ^h to 11 ^h Fluctuations in Dec. $(\pm 3')$, with wave at 10 ¹ / ₂ ^h $(-9')$. 1 ^h to 12 ^h Fluctuations in H.F.
	4	$(\pm \cdot \circ \circ 15)$: in V.F. $(\pm \cdot \circ \circ \circ 2)$, with wave at $10\frac{1}{2}$ ^h (- $\cdot \circ \circ \circ 4$).
		7 ^h Wave in Dec. $(-5')$: in H.F. $(+ \cdot 001)$.
		7^{h} Wave in Dec. $(-5')$: double wave in H.F. $(-\circ 0006 \text{ to } + \circ 0008)$. $6\frac{3}{4}^{h}$ Wave in V.F. $(-\circ 0002)$. 10 $\frac{1}{4}^{h}$ Wave in Dec. $(-5')$. 6^{h} to 11^{h} Fluctuations in H.F. $(\pm \circ 0005)$.
		6^{h} to 8^{h} Wave in Dec. $(-6')$: fluctuations in H.F. (± 0005) .
		10^{h} to 15^{h} Double wave in Dec. $(-4'$ to $+4')$.
		8^{h} to 20^{h} Fluctuations in Dec. $(\pm 4')$: in H.F. $(\pm \cdot 001)$.
,	18.	0^{-} W 20 ⁻ Future for the Dec. (\pm 4); III D.C. (\pm 001).

19. See Plate VII.

20. $5\frac{1}{2}^{h}$ to 7^{h} Wave, steep at commencement, in Dec. (-10'): in H.F. (+0035). $5\frac{1}{2}^{h}$ to 6^{h} Wave in V.F. (+ •0003).

C 2

.

-

1883.	
April	24, 25. See Plates VII. and VIII.
mhu	26. 4^{h} to 16 ^h Fluctuations in Dec. $(\pm 4')$: in H.F. $(\pm \cdot 001)$: in V.F. small.
	30. 7^{h} to 11 ^h Fluctuations in Dec. $(\pm 3')$: in H.F. $(\pm \cdot 0005)$.
May	1. 11 ^h to 17 ^h Fluctuations in Dec. $(\pm 4')$: in H.F. $(\pm \cdot 0005)$: in V.F. small.
	2. 7^{h} to 13^{h} Fluctuations in Dec. $(\pm 3')$: in H.F. $(\pm \cdot 001)$.
	4. $10\frac{1}{2^{h}}$ to 12^{h} Double wave in Dec. $(+2' to -3')$.
	6. o^{h} to 6^{h} Fluctuations in H.F. $(\pm \cdot 001)$.
	8. 10 ^h to 12 ^h Wave in Dec. $(-6')$. 0 ^h to 6 ^h Fluctuations in H.F. $(\pm .0007)$.
	15. 23 ¹ / ₂ Wave in H.F. (+ .0015).
	16. 2 ^h to 7 ^h Fluctuations in Dec. $(\pm 2')$: in H.F. $(\pm .001)$: in V.F. $(\pm .0002)$.
	17. 2_{4}^{3h} to 4^{h} Fluctuations in Dec. $(\pm 1')$: in H.F. (± 001) . 11_{2}^{1h} to 12_{2}^{1h} Wave in Dec. $(\pm 5')$: in H.F. (± 0025) : in V.F. (± 0002) .
	20, 21. See Plate VIII.
	22. 10 ^h to 18 ^h Fluctuations in Dec. $(\pm 5')$. 4 ^h to 18 ^h Fluctuations in H.F. $(\pm .0015)$.
	23. $4\frac{1}{2}^{h}$ Wave in Dec. $(-4')$: in H.F. $(+ \cdot 002)$, preceded by fluctuations $(\pm \cdot 0007)$.
	24. $8\frac{1}{2}^{h}$ Wave in Dec. $(-3')$: in H.F. $(+002)$. $11\frac{1}{2}^{h}$ Wave in Dec. $(-1\frac{1}{2}')$: in H.F. $(+0007)$.
	26. 7 ^h to $9\frac{1}{2}^{h}$ Double wave in Dec. (-3' to + 2'). 3 ^h to 6 ^h Fluctuations in H.F. (± .001).
	27. 7 ^h to 15 ^h Fluctuations in Dec. $(\pm 3')$: in H.F. $(\pm .001)$.
	29. 3^h to 4^h Double wave in H.F. (+ .001 to0006).
	30. 8 ^h to 20 ^h Fluctuations in Dec. $(\pm 3')$. $8\frac{3}{4}^{h}$ Wave in H.F. $(+ \cdot 0015)$. $16\frac{1}{2}^{h}$ to 20 ^h Fluctuations in H.F.
	(<u>+</u> •0006).
	31. 1 ^h to $4\frac{1}{2}$ ^h Fluctuations in H.F. (\pm .0007).
June	1. 6 ^h to 20 ^h Fluctuations in Dec. $(\pm 4')$: in H.F. $(\pm \cdot 001)$.
	2. o ^h to 6 ^h No register of Dec. H.F. or V.F. 6 ^h to 16 ^h Fluctuations in Dec. (± 3'): in H.F. (± .001): in V.F. (± .0002).
	3. 1^{h} to 6^{h} Fluctuations in H.F. (\pm .0006).
	5. 17 ^h to 6. 8 ^h Fluctuations in Dec. $(\pm 2')$: in H.F. $(\pm .002)$: in V.F. small.
	6. 8 ^h to 7. 4 ^h No register of Dec. H.F. or V.F.
	7. 7^{h} to $8\frac{1}{2}^{h}$ Wave in Dec. $(-4')$: double wave in H.F. (0005 to + .0005).
	8. 2^{h} to $2\frac{3h}{4}$ Wave in Dec. $(+2)$: in H.F. $(+002)$: in V.F. small. 6^{h} to 20^{h} Fluctuations in Dec. $(\pm 2')$:
	in H.F. (\pm .0005).
	9. $8\frac{1}{2}^{h}$ Wave in Dec. $(-3')$. 2^{h} to 9^{h} Fluctuations in H.F. $(\pm .001)$.
	10. 9_4^{1h} to 10_2^{1h} Wave in Dec. $(+3')$. 6^{h} to 10^{h} Fluctuations in H.F. (± 0005) .
	13. 11 ^h to 15 ^h Fluctuations in Dec. $(\pm 1\frac{1}{2})$. 4 ^h to 13 ^h Fluctuations in H.F. (± 0005) .
	15. 3^h to 8^h Fluctuations in H.F. (\pm '0005).
	16. 14^{h} to $15\frac{3}{4}^{h}$ Wave in Dec. (+ 11'), followed till 20 ^h by fluctuations (± 3'). 12 ^h to 20 ^h Fluctuations in
	H.F. (± 0005) : in V.F. (± 0003) .
	17. Fluctuations throughout the day, in Dec. $(\pm 7')$: in H.F. $(\pm .002)$: in V.F. $(\pm .0002)$.
	18. 4 ^h to 19 ^h Fluctuations in Dec. $(\pm 3')$. o ^h to 20 ^h Fluctuations in H.F. $(\pm .0015)$: in V.F. small.
	19. 1 ^h to 20 ^h Fluctuations in H.F. $(\pm \cdot \circ \circ 1)$. 20. 8 ^h to 15 ^h Fluctuations in Dec. $(\pm 4')$. 3 ^h to 15 ^h Fluctuations in H.F. $(\pm \cdot \circ \circ 05)$. 13 ^h to 15 ^h Wave in
	V.F. (0003) .
	21. No register of Dec.
	22. No register of Dec. Fluctuations throughout the day in H.F. $(\pm \cdot 0015)$: in V.F. $(\pm \cdot 0002)$.
	23. 8 ^h Wave in Dec. (-3'); after 13 ^h no register of Dec. 8 ^h Wave in H.F. (+ '001), preceded and followed
	from o^{h} to 19^{h} by fluctuations (\pm .002).
	24. No register of Dec. 2^{h} to 16^{h} Fluctuations in H.F. $(\pm \cdot 0005)$.
	25. 4^{h} to 9^{h} Fluctuations in Dec. $(\pm 2')$: in H.F. (± 001) .
	26. 2^{h} to 12^{h} Fluctuations in H.F. (\pm .001). 26. 17^{h} to 27. 17^{h} Fluctuations in Dec. (\pm 5'): in H.F. (\pm .003): in V.F. (\pm .0001).
	20. 17^{4} to 27. 17^{4} Fluctuations in Dec. (± 5) : in H.F. (± 605) : in V.F. (± 605) .
July	2. 14_{4}^{h} Sharp wave in Dec. $(+3')$: in H.F. $(+0008)$, preceded by fluctuations from 1^{h} (± 0005) :
Uury	in V.F. (+ '0001).

1883		
July		3. $2\frac{1}{2}^{h}$ to 9^{h} Fluctuations in H.F. (\pm .0007).
,	5	5. 12 ^h to 16 ^h Fluctuations in Dec. $(\pm 3')$: in H.F. (± 0007) : in V.F. (± 00015) . 20 ^{1/2} Wave in V.F. (-0003) .
	6	. $12\frac{1}{2}^{h}$ to $19\frac{1}{2}^{h}$ Fluctuations in Dec. $(\pm 3')$: in H.F. (± 0005) : in V.F. (± 0001) .
		. 1 ^h to 9 ^h Fluctuations in Dec. $(\pm 2'_1)$: in H.F. (± 001) . 17 ^h to 22 ^h Fluctuations in Dec. $(\pm 4')$: in
	•	H.F. (± 0005) : in V.F. (± 00015) .
	8	, 9, 10, 11. See Plates IX. and X.
		. o ^h to $4\frac{1}{2}^{h}$ Fluctuations in Dec. $(\pm 5')$, with wave at $3\frac{1}{2}^{h}$ $(-15')$: fluctuations in H.F. $(\pm \cdot 002)$, in V.F. $(\pm \cdot 0003)$.
	15	. 2 ^h to 19 ^h Fluctuations in Dec. $(\pm 3')$: in H.F. $(\pm .002)$: in V.F. $(\pm .0002)$.
		. 6 ^h to 11 ^h Fluctuations in Dec. $(\pm 3')$. 2 ^h to 12 ^h Fluctuations in H.F. (± 0015) : in V.F. (± 0002) .
		. $20\frac{3h}{4}$ Sharp double wave in Dec. $(+5' \text{ to } -5')$: sharp wave in H.F. $(+0015)$: in V.F. (-0004) :
	- / -	followed by small fluctuations in all elements until 23 ^h .
	18	. 6 ^h to 16 ^h Fluctuations in Dec. $(\pm 3')$. $1\frac{1}{4}$ ^h to 3 ^h Wave in H.F. (004) , followed by fluctuations to
		16^{h} (± ·002). 1 ^h to 16 ^h Fluctuations in V.F. (± ·0002).
	IO	$11\frac{1}{2^{h}}$ Wave in Dec. $(+4')$. $10\frac{2^{h}}{2^{h}}$ Wave in H.F. $(+\infty 1)$, preceded by small fluctuations from 5 ^h .
	•9	$14\frac{1}{2}h$ to $16\frac{1}{2}h$ Wave in Dec. $(+4')$.
	22	142 to 10_2 which in Dec. $(+2')$: in H.F. $(+001)$: in V.F. $(+0001)$.
		15^{b} to 21 ^h Fluctuations in Dec. $(\pm 3')$.
		. 3^{h} to 16^{h} Fluctuations in Dec. $(\pm 5')$: in H.F. $(\pm .001)$: in V.F. $(\pm .0002)$.
		$2\frac{3}{4}$ Sharp movement in Dec. (+ 3'): in H.F. (+ 0025): in V.F. (+ 0003). $6\frac{1}{4}$ to 8^{h} Wave in Dec.
	20	$(-10')$, followed by fluctuations $(\pm 2')$ till 15 ^h : in H.F. (± 0035) . In V.P. (∓ 0005) . $0\frac{1}{2}$ to 10° wave in Sec. $(-10')$, followed by fluctuations $(\pm 2')$ till 15 ^h : in H.F. (± 003) , with fluctuations 3 ^h to 15 ^h (± 001) .
		(-10), belowed by holdations (-12) in 15 · in 11.1. $(+000)$, with indications 5 · to 15 (-100) . 3 ^h to 15 ^h Fluctuations in V.F. (± 0001) : 18 ³ / ₄ Wave in Dec. $(-3')$: in H.F. (-001) .
	27	h^{ob} to h^{ob} Fluctuations in H.F. (± 1001) : in V.F. small.
		$2\frac{3}{4}$ Wave in H.F. (+ :001).
		, 30, 31, August 1. See Plates XI. and XII.
Anoust	-	. Waves in Dec. $8\frac{1}{2}h$ to 10^h (- 3'); $14\frac{1}{2}h$ to 16^h (+ 4'). Fluctuations in H.F. 5^h to 10^h (± '0005).
August		$3\frac{1}{2^h}$ Sharp wave in Dec. $(-3')$: in H.F. $(-\infty)$, preceded by fluctuations from 0^h $(\pm\infty)$: in V.F.
	J.	$(-\circ 003)$. $8\frac{1}{2}h$ to $9\frac{1}{2}h$ Wave in Dec. $(-3')$. $14\frac{1}{4}h$ to $15\frac{1}{2}h$ Wave in Dec. $(+5')$: movement in V.F.
		(-0002) . $3\frac{1}{2}$ to $3\frac{1}{2}$ wave in Dec. (-3) . $14\frac{1}{4}$ to $13\frac{1}{2}$ wave in Dec. $(+3)$. movement in V.P.
	6	$(- \cos 2)$. o ^h to $8\frac{1}{2}$ ^h Fluctuations in Dec. $(\pm 2')$: in H.F. $(\pm \cos 5)$. $8\frac{1}{2}$ ^h to $21\frac{1}{2}$ ^h No register of Dec. or H.F.
	0.	g_1^{h} to 12^{h} Wave in V.F. (- 001).
	-	$g_{\frac{1}{2}}^{\pm}$ to 12^{\pm} wave in V.F. (\pm 001): $g_{\frac{1}{2}}^{\pm}$ to 16^{h} Fluctuations in Dec. (\pm 6'): in H.F. (\pm 001): in V.F. (\pm 0003).
		23 ^h to 11 15 ^h Fluctuations in Dec. $(\pm 1\frac{1}{2}')$: in H.F. (± 0005) : in V.F. (± 0001) . 9 ¹ / ₄ ^h Wave in Dec. $(-3')$: in H.F. (± 0015) , preceded by fluctuations from 2 ^h (± 0005) : in V.F.
	13.	(± 0001) .
		(± 0001) . 8 ^h to 14 ^h Fluctuations in Dec. $(\pm 4')$. 1 ^h to 14 ^h Fluctuations in H.F. (± 0005) . 21 ³ ^h to 24 ^h
	14.	Fluctuations in H.F. $(\pm \circ \circ 1)$: in V.F. $(\pm \circ \circ 015)$.
		$18\frac{1}{2}^{h} \text{ Sharp double wave in Dec. } (+2' \text{ to } -2'): \text{ wave in H.F. } (-\circ005): \text{ in V.F. } (-\circ002).$
		See Plate XIII.
		9^{h} to 12^{h} Fluctuations in Dec. $(\pm 2')$: long wave in H.F. (± 0025) , with superposed fluctuations:
	ry.	f to 12^{-1} intertations in Dec. (-2) . long wave in 11.1. (-2023) , with superposed intertations in fluctuations in V.F. $(+2001)$.
	~ ~	11 ^h to 14 ^h Fluctuations in Dec. $(\pm 5')$. o ^h to 14 ^h Fluctuations in H.F. (± 001) : in V.F. (± 0002) .
		8^{h} to $14^{\frac{1}{2}h}$ Fluctuations in Dec. $(\pm 2')$. 3^{h} to $14^{\frac{1}{2}h}$ Fluctuations in H.F. $(\pm \cdot 0005)$: in V.F. small.
		I^{h} to 7^{h} Fluctuations in Dec. $(\pm 4')$: in H.F. (± 0005) : in V.F. (± 0005) . 19^{h} to 23^{h} Fluctuations
t	27.	in Dec. $(\pm 3')$: in V.F. (± 0004) .
	20	$7\frac{1}{3}h$ to 9^{h} Wave in Dec. $(-3')$.
Cantombon		
September		81 th to 16 th Fluctuations in Dec. $(\pm 2')$: in H.F. (± 0005) : in V.F. small.
	2.	$8\frac{1}{2}h$ to $9\frac{1}{2}h$ Wave in Dec. $(-7')$: in H.F. $(+\infty 2)$, with fluctuations of to 17^{h} $(\pm\infty 15)$. 12^{h} to $15\frac{1}{2}h$
	-	Double wave in Dec. $(-8' \text{ to } + 5')$: fluctuations in V.F. $(\pm \cdot 00015)$.
		g^{h} to 11 ^h Wave in Dec. (-6'): fluctuations in H.F. (± *0005): in V.F. small.
	4.	$13\frac{1}{4}$ to $14\frac{1}{2}$ Double wave in Dec. $(+4' \text{ to } -2')$: wave in H.F. $(+\circ 017)$: movement in V.F. $(-\circ 004)$.

-

(**xx**i)

1883.	
September	5. 2 ^h to $12\frac{1}{4}$ Fluctuations, commencing suddenly, in Dec. $(\pm 4')$: in H.F. (± 001) : in V.F. small.
	12 ¹ / ₄ to 12 ³ / ₄ Steep wave in Dec. (+ 17'). 12 ¹ / ₄ Movement in H.F. (+ .0025): in V.F. (001).
	7. $o_{\frac{1}{2}}^{1h}$ to 3^{h} Fluctuations in Dec. $(\pm 2')$: in H.F. (± 0.015) : in V.F. (± 0.002) .
	9. 2^{h} to 12^{h} Fluctuations in H.F. (\pm .0005).
	10. 6 ^h to 9 ^h Fluctuations in Dec. $(\pm 2')$.
	12. 11 ¹ / ₂ ^h Sharp movement in Dec. (+ 2'): in H.F. (+ .002): in V.F. (+ .0002). 15 ¹ / ₂ ^h to 16 ¹ / ₂ ^h Wave in Dec.
	(+ 10'): in H.F. $(- 0015)$: in V.F. $(+ 0002)$.
	13. $9^{\frac{1}{2}h}$ to $11^{\frac{1}{2}h}$ Double wave in Dec. $(-4' \text{ to } + 5')$: in V.F. $(-0002 \text{ to } + 0002)$. $1^{\frac{1}{2}h}$ to $11^{\frac{1}{2}h}$ Fluctuations
	in H.F. $(\pm .001)$.
	14. $8\frac{1}{2}h$ to 10 ^h Wave in Dec. (-5'). 5 ^h to 10 ^h Fluctuations in H.F. (± 0005).
	15. 12 ^h to 17. 12 ^h . See Plates XIII. and XIV.
	18. See Plate XIV.
	19. 1 ^h Very sharp double wave in Dec. $(+2\frac{1}{2}' \text{ to } -2\frac{1}{2}')$: in H.F. $(+ \cdot 001 \text{ to } - \cdot 0025)$: in V.F. $(+ \cdot 00015)$
	to $-\cos 3$. 12 ^h Small wave in Dec. $(+2')$: in H.F. $(+\cos 1)$: in V.F. small.
	23. o^h to 3^h Fluctuations in Dec. $(\pm 2')$: in H.F. (± 0005) : in V.F. small.
	24. 8 ^h to 19 ^h Fluctuations in Dec. $(\pm 7')$: in H.F. (± 0005) : in V.F. (± 00001) .
	25. o ^h to 19 ^h Fluctuations in Dec. $(\pm 5')$: in H.F. (± 0016) : in V.F. (± 0002) .
	26. $7\frac{1}{3}h$ to 9^h Wave in Dec. $(-5')$: in H.F. (-60015) : in V.F. small.
	28. 1 ^h to 2 ¹ / ₂ Wave in H.F. (\rightarrow .003). 7 ^h to 20 ^h Fluctuations in Dec. ($\pm 2'$): in H.F. (\pm .0007).
	29. 8 ^h to 13 ^h Fluctuations in Dec. $(\pm 5')$: in V.F. (± 0002) . 0^{1h}_2 to 13 ^h Fluctuations in H.F. (± 0005) .
0.4.1	30. 7 ^h to 11 ^h Fluctuations in Dec. $(\pm 2')$: in H.F. $(\pm .0005)$.
October	4. From 6 ^h Fluctuations in Dec. $(\pm 2')$: in H.F. (± 0005) .
	5. See Plate XV.
	6. 3 ^h to 14 ^h Fluctuations in Dec. $(\pm 5')$: in H.F, $(\pm \cdot 002)$: in V.F. $(\pm \cdot 0002)$.
	11. 4^{h} to $5\frac{1}{2}^{h}$ Wave in Dec. (- 5').
	12. $8\frac{1}{2}^{h}$ to 10 ^h Wave in Dec. $(-4')$: in H.F. $(-\infty)$. $12\frac{3}{4}^{h}$ to 14^{h} Double wave in Dec. $(+3' \text{ to } -8')$:
	wave in H.F. (+ '002): movement in V.F. (- '0004).
	13. 21 ^{3h} Sharp wave in Dec. $(-7')$: in H.F. (-0025) : in V.F. (-0002) .
	15. 1 ^h to 18 ^h Fluctuations in Dec. $(\pm 5')$: in H.F. $(\pm .0015)$: in V.F. $(\pm .0004)$.
	16. See Plate XVI.
	17. 13^{h} to $13\frac{3}{4}^{h}$ Wave in Dec. (+ 5').
	18. 4^{h} to 12 ^h Fluctuations in Dec. $(\pm 5')$: in H.F. $(\pm .0007)$: in V.F. small.
	19. 6 ^h to 20 ^h , and October 20. 4 ^h to 11 ^h . See Plate XVI.
	21. $18\frac{1}{2}^{h}$ to 20^{h} Wave in Dec. $(+5')$.
	22. 10 ^h to 11 ^h Wave in Dec. $(-4')$.
	25. 19 ^h to 26. 1 ^h Fluctuations in Dec. $(\pm 4')$: in H.F. $(\pm \cdot 001)$: in V.F. small.
	27. $7\frac{1}{2}^{h}$ to $8\frac{1}{2}^{h}$ Wave in Dec. (-4').
November	1. 4 ^h to 3. 4 ^h . See Plates XVI. and XVII.
	3. $20\frac{1}{2}^{h}$ to 4. 6 ^h Fluctuations, commencing suddenly, in Dec. $(\pm 3')$: in H.F. (± 0.01) : in V.F. (± 0.002) .
	5. $6\frac{1}{2}^{h}$ to 8^{h} Wave in Dec. $(-9')$. 6^{h} to $7\frac{1}{4}^{h}$ Wave in H.F. (-902) . $6\frac{3}{4}^{h}$ to $7\frac{1}{4}^{h}$ Movement in V.F.
	(+ '0002).
	7. $10\frac{1}{2}^{h}$ to $11\frac{1}{2}^{h}$ Wave in Dec. $(-3')$: in H.F. $(+.001)$.
	8. 9 ¹ / ₂ ^h to 10 ¹ / ₂ ^h Wave in Dec. (- 3'). 9 ¹ / ₄ ^h to 10 ¹ / ₄ ^h Wave in H.F. (+ .001): in V.F. (00015).
	9. $7\frac{1}{2}^{h}$ to 8^{h} Wave in Dec. $(-2')$: in H.F. $(+0005)$.
	12. 6 ^h to 7 ^h Wave in Dec. $(-7')$. 5 ³ / ₄ ^h to 7 ^h Wave in H.F. (0015) . 6 ^h to 7 ¹ / ₄ ^h Wave in V.F. $(+.0002)$.
	$11\frac{1}{4}^{h}$ to 13^{h} Wave in Dec. $(-5')$. $11\frac{1}{4}^{h}$ to $12\frac{1}{2}^{h}$ Wave in H.F. $(+0025)$. $11\frac{1}{2}^{h}$ Movement in V.F.
	(0003).
	13. 13^{h} to 14^{h} Wave in Dec. (+ 5'). 12^{h} to 15^{h} Fluctuations in H.F. ($\pm \cdot 0005$) : in V.F. ($\pm \cdot 0001$).
	18. $8^{\frac{1}{2}h}$ to $9^{\frac{1}{2}h}$ Wave in H.F. (001).
	19. 8 ^h to 20. 8 ^h . See Plate XVII.
	20. 12^{h} to 18^{h} Fluctuations in Dec. $(\pm 3')$: in H.F. $(\pm .0005)$: in V.F. $(\pm .0001)$.
	21. 4^{h} to 12^{h} Fluctuations in Dec. $(\pm 3')$: in H.F. (± 0005) : in V.F. small.
	21. 13 ^h to 23. 13 ^h . See Plate XVIII.

1883.

November 27. $2\frac{1}{2}^{h}$ to $4\frac{1}{2}^{h}$ Wave in Dec. (+ 6'): in H.F. $(- \cdot 0025)$.

28. 3^{h} to 4^{h} Wave in Dec. (-4'). 5^{h} to 6^{h} Wave in Dec. (-7'): in H.F. (-002): in V.F. (-00015). 10 $\frac{3^{h}}{2^{h}}$ to 12^h Wave in Dec. (-5'): in H.F. (+002): in V.F. (+0001).

30. 10^h to 13^h Double wave in Dec. (-3' to + 5').

December 1. 5^h to 20^h Fluctuations in Dec. $(\pm 5')$: in H.F. $(\pm \cdot 001)$: in V.F. $(\pm \cdot 0002)$.

2. $g_{\frac{1}{2}}^{\frac{1}{2}h}$ to 11^h Wave in Dec. (-12'): fluctuations in H.F. $(\pm \cdot 0015)$. $g_{\frac{1}{2}}^{\frac{1}{2}h}$ to $10\frac{1}{4}^{\frac{1}{2}h}$ Movement in V.F. $(-\cdot 0004)$.

4. $9^{\frac{1}{2}h}$ to 11^h Wave in Dec. (-4').

7. $8\frac{1}{2}h$ to 9^{h} Wave in Dec. (-2').

8. 7^h to 15^h Fluctuations in Dec. $(\pm 5')$: in H.F. $(\pm \cdot 0015)$: in V.F. small.

9. o^h to 8^h Fluctuations in Dec. $(\pm 3')$: in H.F. $(\pm .001)$: in V.F. small.

10. $10\frac{3h}{4}$ to 12^{h} Wave in Dec. (-6'): in H.F. (+.002): in V.F. (+.0002).

11. 5^h to 18^h Fluctuations in Dec. (± 4'): in H.F. (± '001), with wave 13^h to 15^h (+ '0002). 13^h to 14^h Movement in V.F. (- '0004).

12. 6^h to 15^h Fluctuations in Dec. $(\pm 6')$: in H.F. $(\pm .001)$: in V.F. $(\pm .00015)$.

14. 4^{h} to $5\frac{1}{2}^{h}$ Wave in Dec. (-6'). 8^{h} to 12^{h} Fluctuations in Dec. $(\pm 2')$. 4^{h} to 12^{h} Fluctuations in H.F. $(\pm \cdot 0015)$: in V.F. small.

- 17. 8^{h} to 11^h Double crested wave in Dec. (-20' and -10'). $9\frac{1}{4}^{h}$ to 11^h Double wave in H.F. (+ .003 to -.002). $8\frac{1}{4}^{h}$ to 11^h Fluctuations in V.F. ($\pm.0002$).
- 18. 3^h to 12^h Fluctuations in Dec. $(\pm 4')$: in H.F. $(\pm \cdot 001)$: in V.F. $(\pm \cdot 0002)$.
- 19. 5^h to 6^h Wave in Dec. (-6'): in H.F. (-001): in V.F. (-0001). 9^h to 11^h Wave in Dec. (-8'): in H.F. (+0015).

21. 8^{h} to 9^{h} Wave in Dec. (-3').

- 23. $8\frac{1}{2}^{h}$ to $9\frac{1}{2}^{h}$ Wave in Dec. (-4').
- 24. 14^h to 21^h Fluctuations in Dec. $(\pm 2')$. 11^h to 19^h Fluctuations in H.F. $(\pm .0005)$: in V.F. small.
- 25. o^h to 7^h Fluctuations in Dec. $(\pm 3')$, with wave $4\frac{1}{2}^h$ to $6^h(-12')$. 1^h to 7^h Fluctuations in H.F. $(\pm \cdot 001)$: in V.F. small.

26. 15^h to 20^h Fluctuations in Dec. $(\pm z')$. 16^h to 20^h Shallow wave in H.F. (± 0.015) .

27. 11^h to 20^h Fluctuations in Dec. $(\pm 4')$: in H.F. (± 001) : in V.F. (± 0001) .

28. $2\frac{1}{2}^{h}$ to 5^{h} Wave in Dec. (-7').

29. $10\frac{1}{2}^{h}$ to 16^{h} Fluctuations in Dec. $(\pm 2')$: in H.F. small, with wave at $10\frac{3}{2}^{h}$ $(+ \cdot 0015)$.

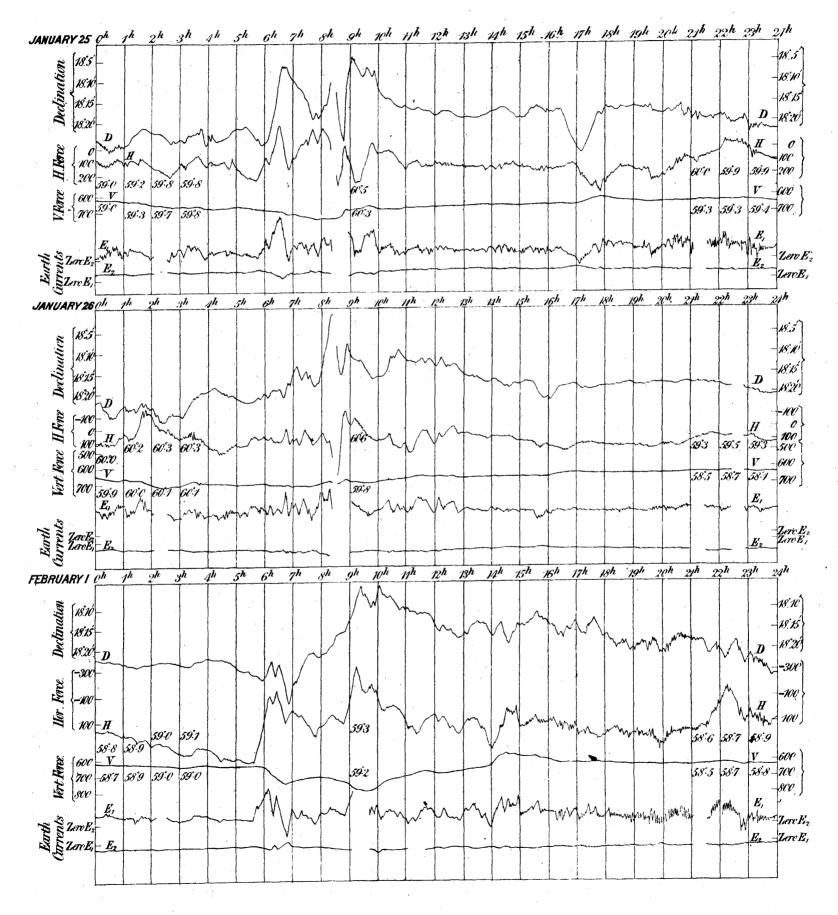
EXPLANATION OF THE PLATES.

The magnetic motions figured on the Plates are—

- (1.) Those for days or periods of great disturbance—February 24, April 2. 18^h to 4. 18^h, 24, September 15. 12^h to 17. 12^h.
- (2.) Those for days or periods of lesser disturbance—January 25, 26, February 1, 2, 3, 4, 22, 27, 28, March 1, 2, 26. 8^h to 28. 8^h, April 19, 25, May 20, 21, June 29. 16^h to July 1. 16^h, July 8, 9, 10, 11, 29, 30, 31, August 1, 18, September 18, October 5, 16, 19. 6^h to 20^h, 20. 4^h to 11^h, November 1. 4^h to 3. 4^h, 19. 8^h to 20. 8^h, 21. 13^h to 23. 13^h.

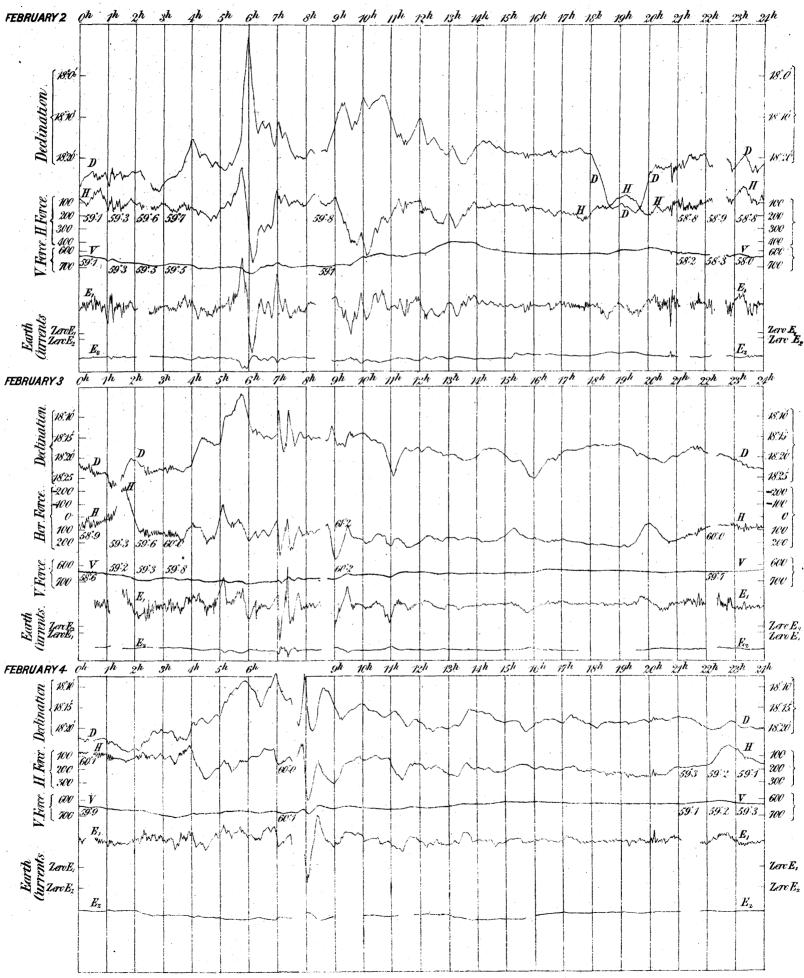
The day is the astronomical day commencing at Greenwich mean noon.

The magnetic declination, horizontal force, and vertical force are indicated by the letters D., H., and V. respectively; the declination (west) is expressed in minutes of arc, for horizontal and vertical force the unit is '00001 of the whole horizontal and vertical forces respectively, the corresponding scales being given on the sides of each diagram.

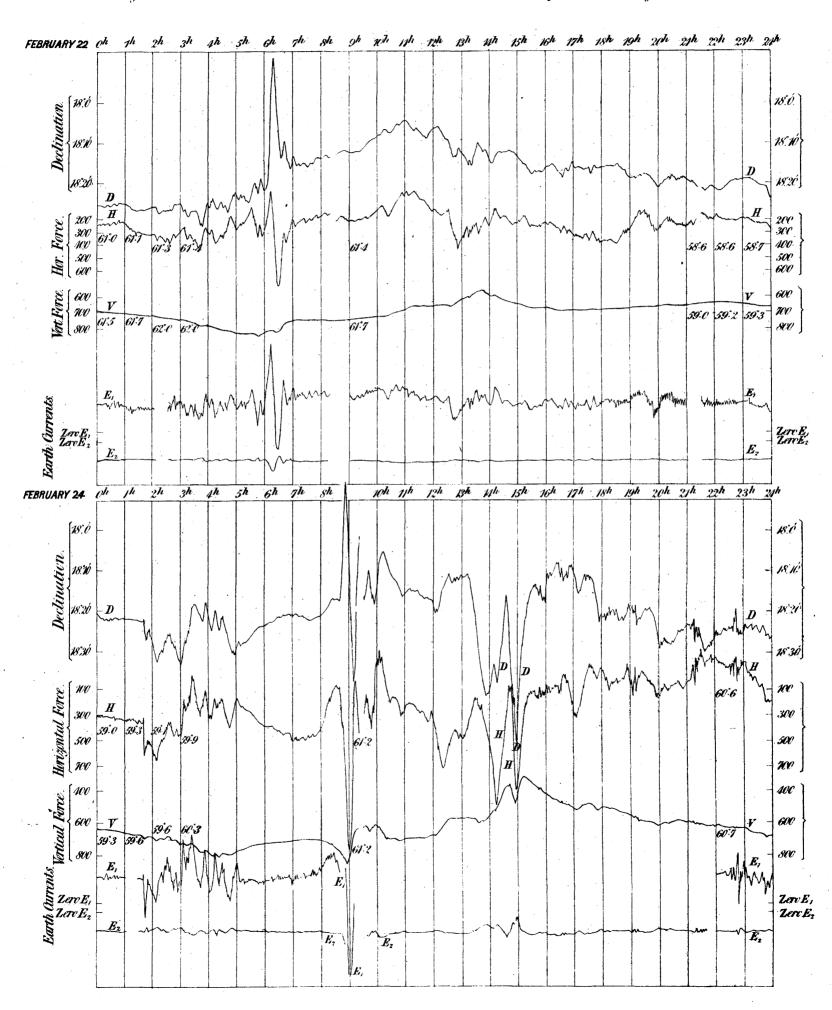

Downward motion indicates increase of declination and of horizontal and vertical force. The earth current register E_1 is that of the line Angerstein Wharf—Lady Well, making an angle of 50° with the

magnetic meridian, reckoning from north to east. The E_2 register is that of the line Blackheath—North Kent East, making an angle of 46° with the magnetic meridian, reckoning from north to west. Zero E_1 and Zero E_2 indicate the respective instrumental zeros.

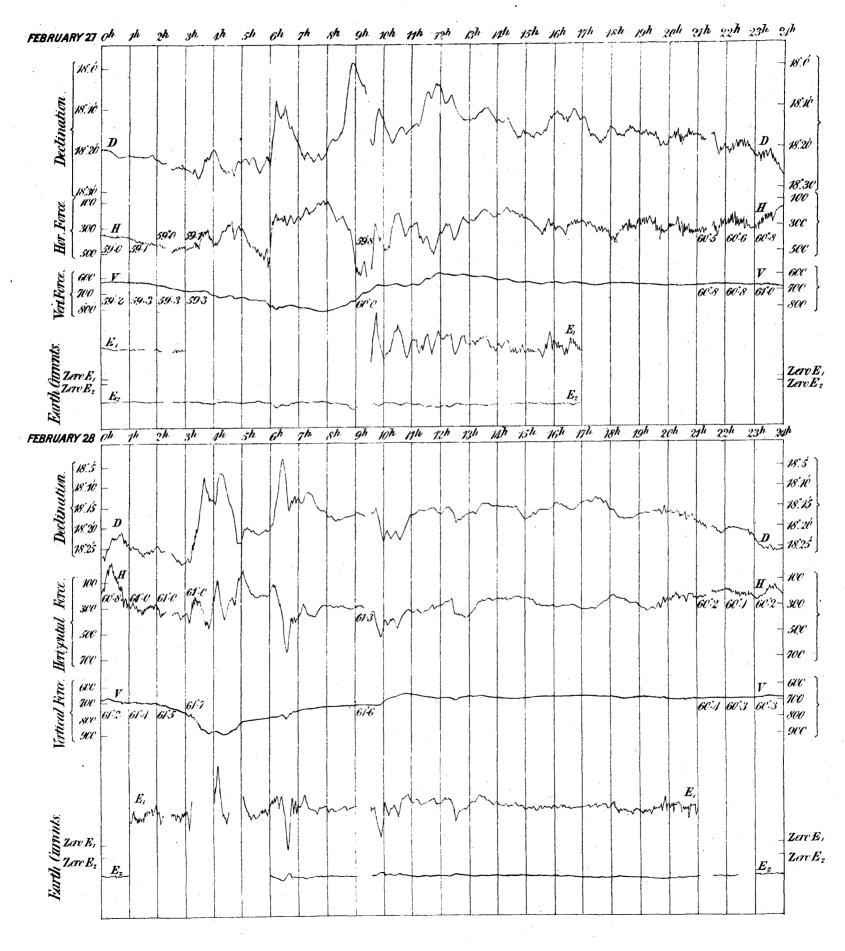
Downward motion of earth current register indicates in the E_1 circuit the passage of a current, corresponding to that from the copper pole of a battery, in the direction Angerstein Wharf to Lady Well (N.E. to S.W.), and in the E_2 circuit to the passage of a similar current in the direction Blackheath to North Kent East (S.E. to N.W.)


An arrow (\ddagger) indicates that the register was out of range of registration in the direction of the arrow-head. Other causes of interruption are stated in the Introduction. July 29. From 11^h 40^m to 12^h 0^m the vertical force register was accidentally lost just at the time at which a sudden movement is shown in all the other registers.

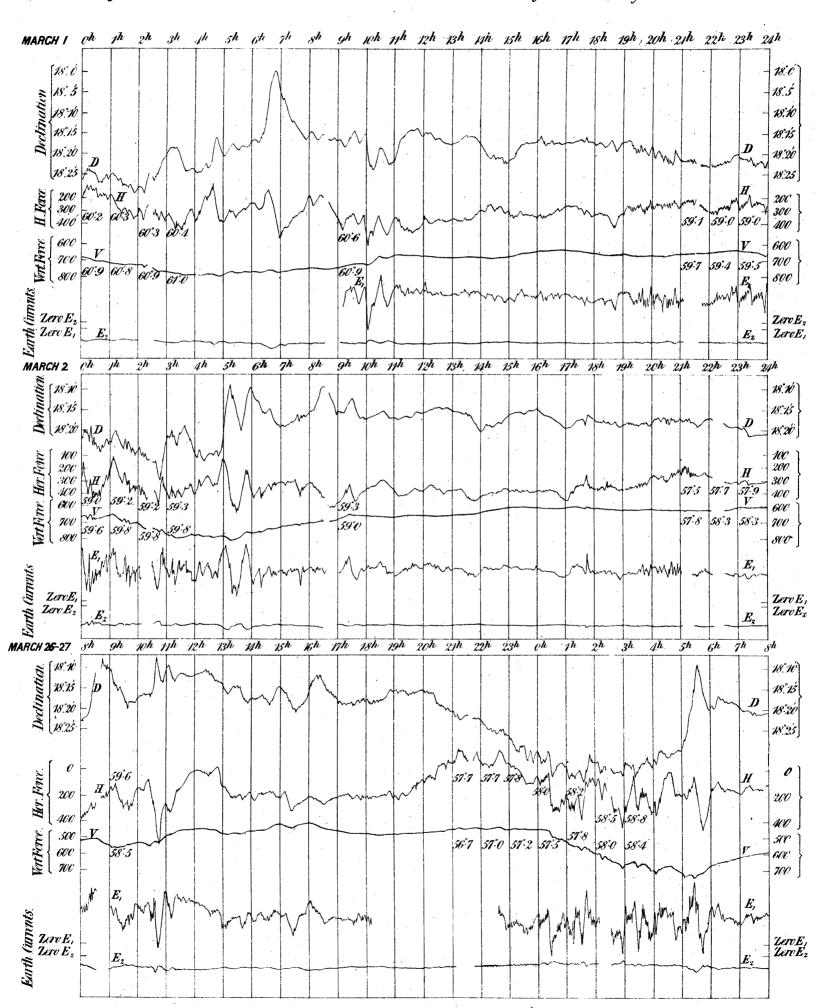
The temperatures (Fahrenheit) given in small figures on the Diagrams represent those of the horizontal and vertical force magnets at the corresponding hours of observation, usually \circ^h , 1^h , 2^h , 3^h , 9^h , 21^h , 22^h , 23^h .



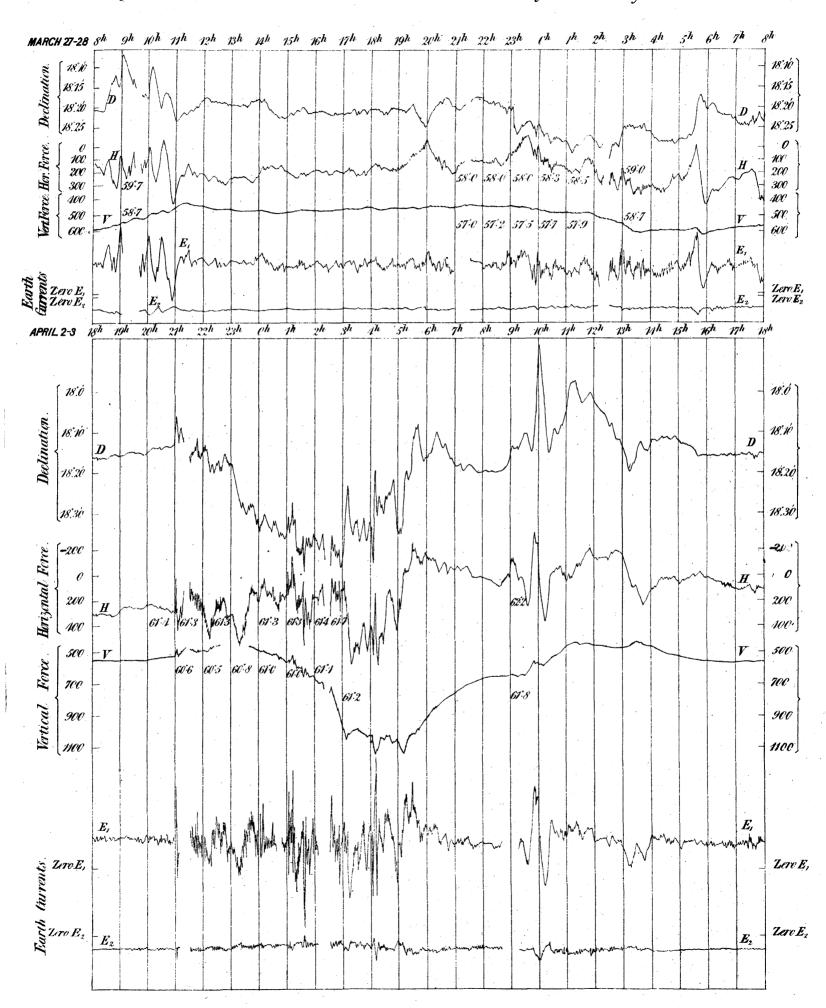
DANGERFIELD LITH 22. BEDFORD ST COVENT GARDEN. 9114.


× . · · · ·

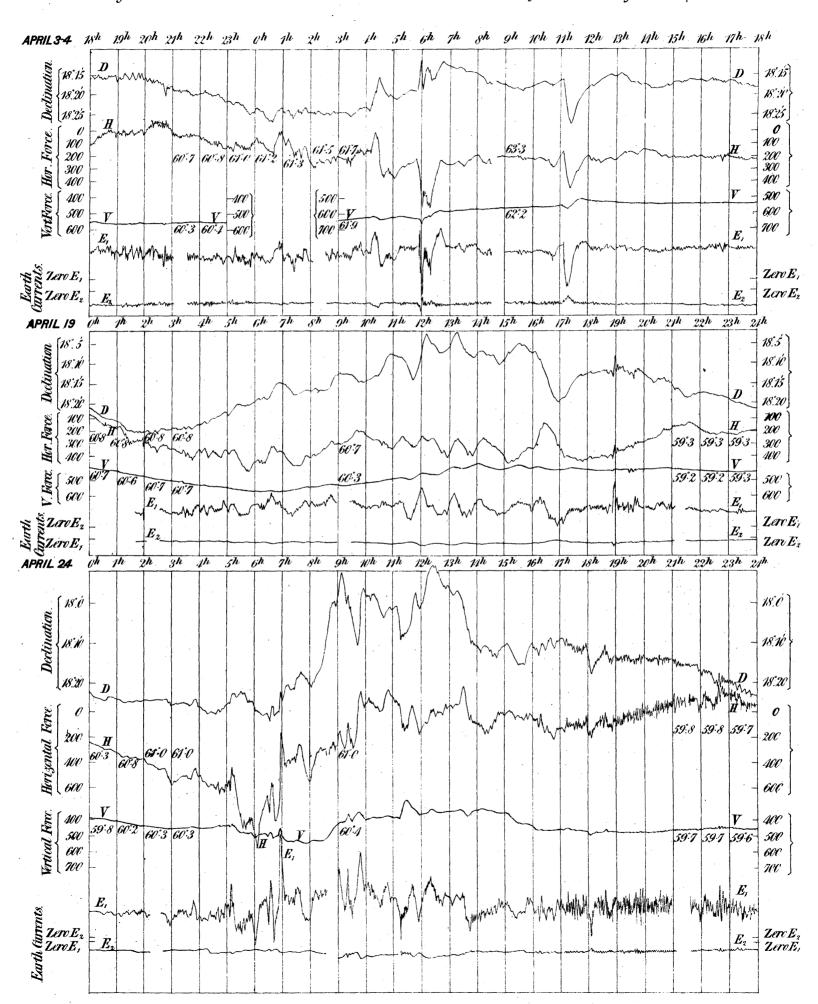
• . . · · · ·



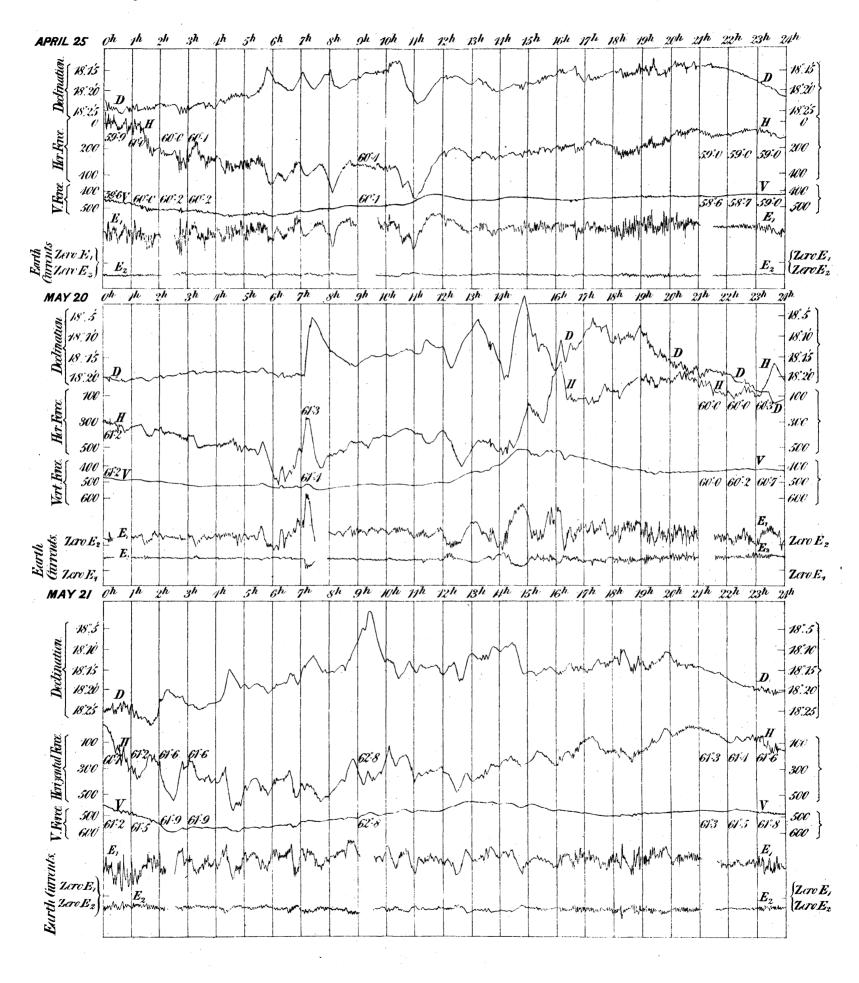
.

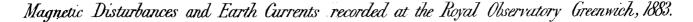

DANGERFIELD, LITH. 22. BEDFORD ST COVENT GARDEN. 9774.

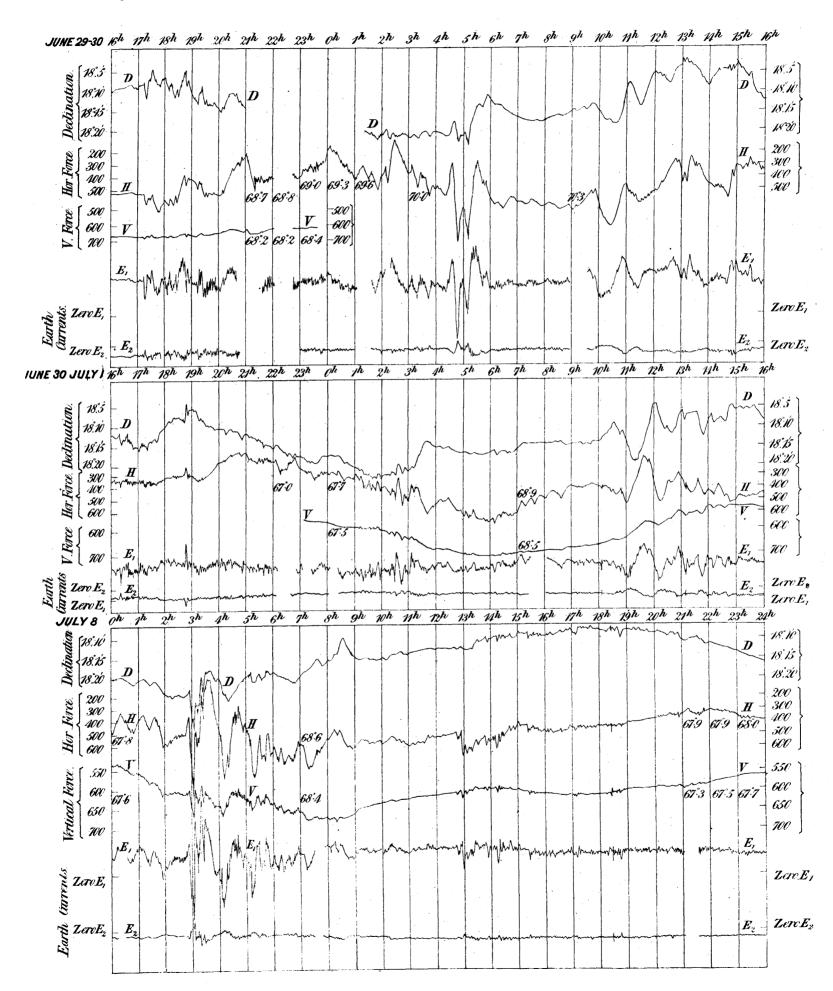
• 3



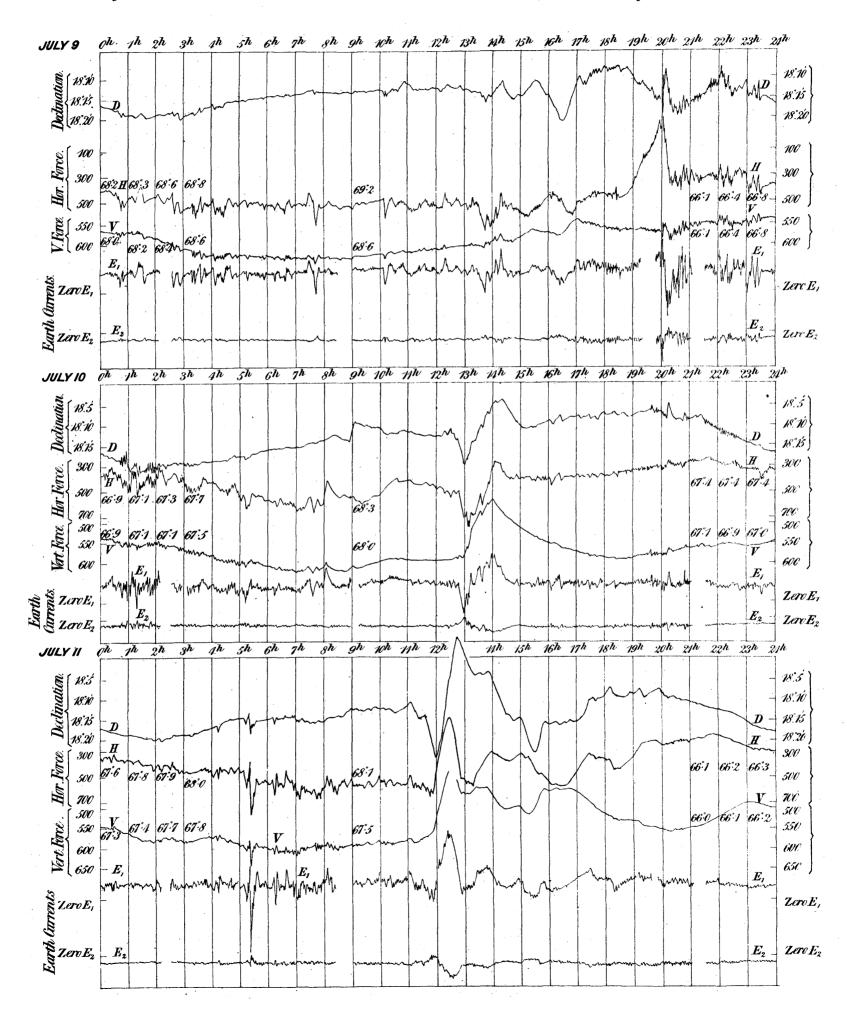
2000 - 2000 2000 - 100 2000 - 100 ~ .

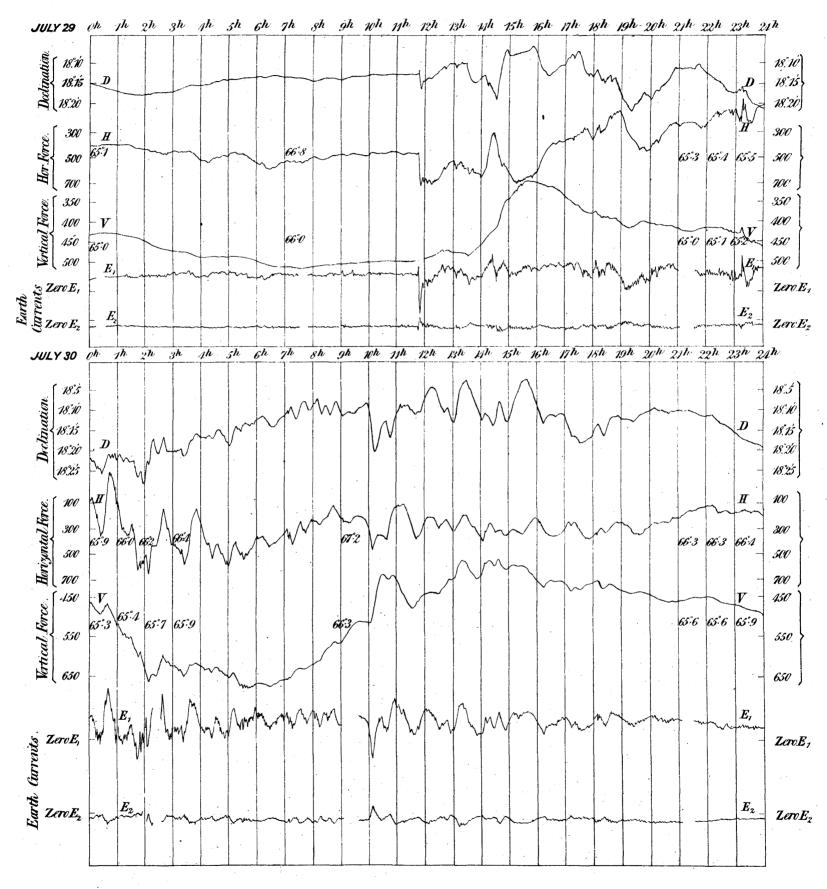

Plate VI.


•

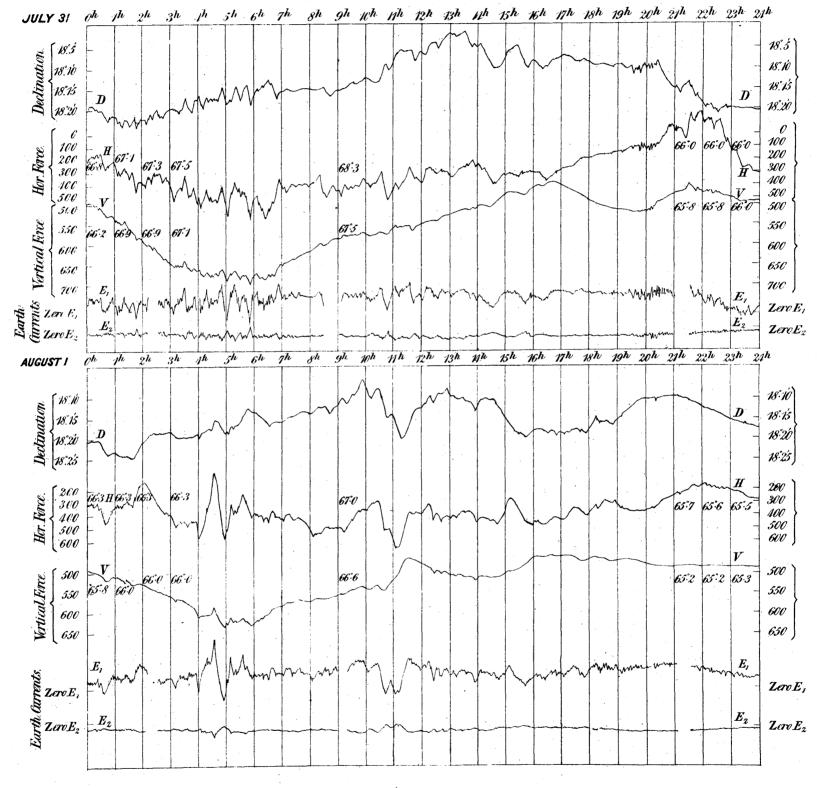


. ,

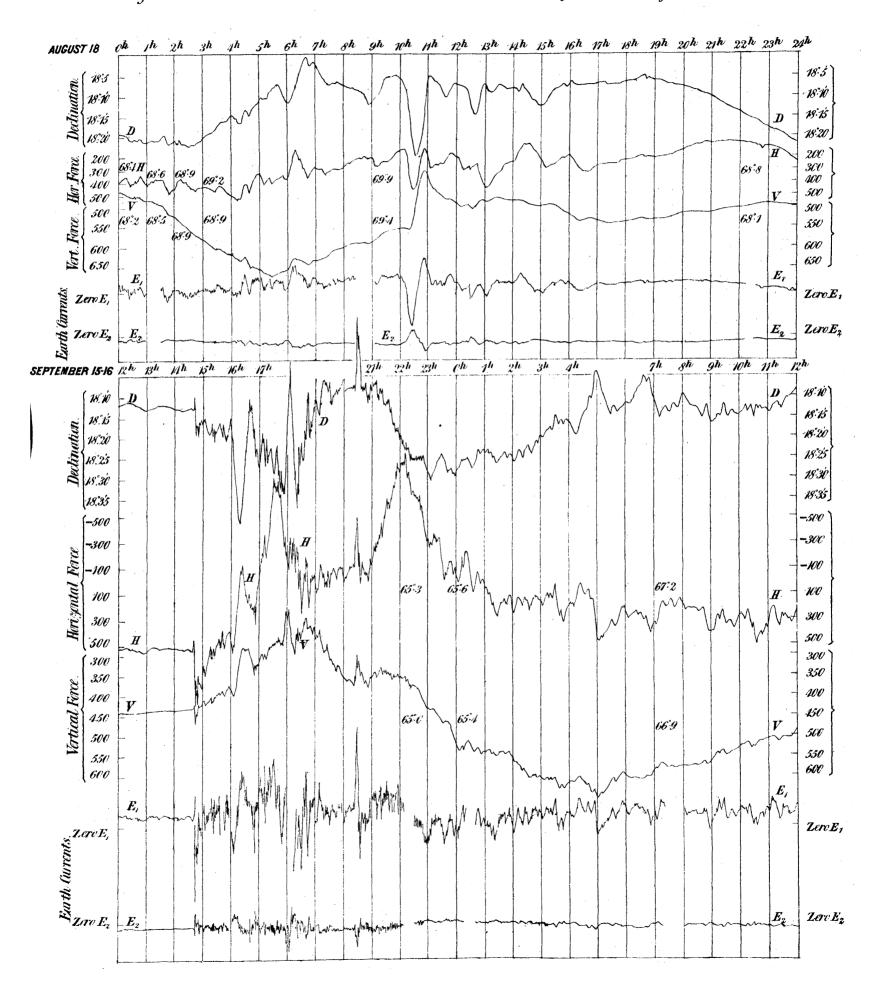

• •



> . Х

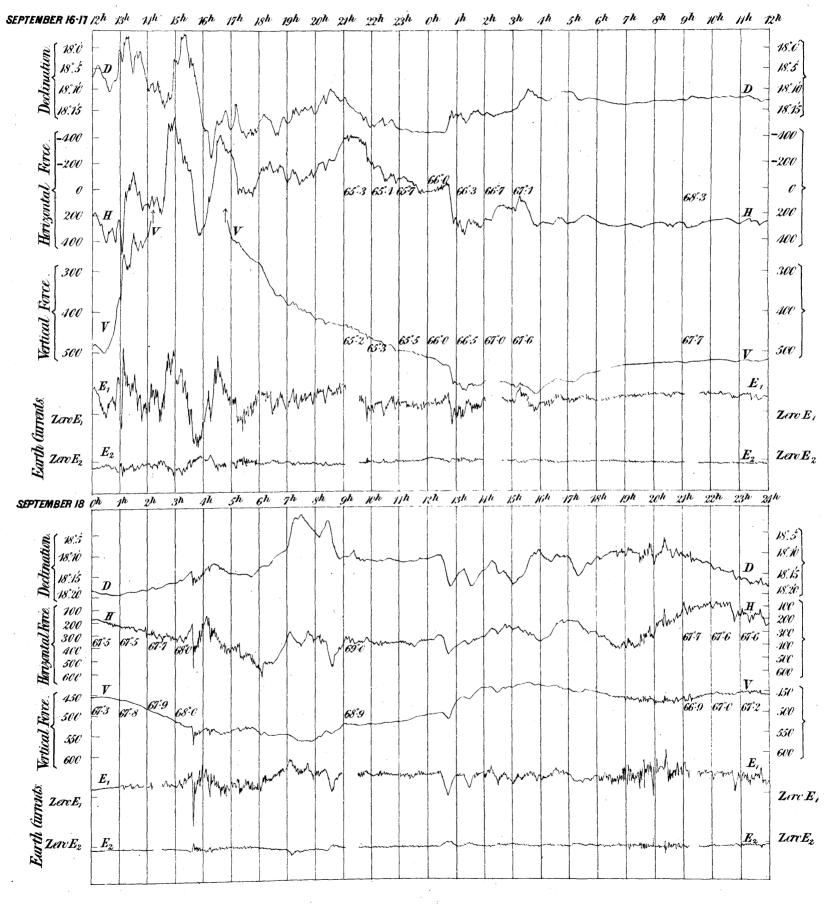


• • • • •

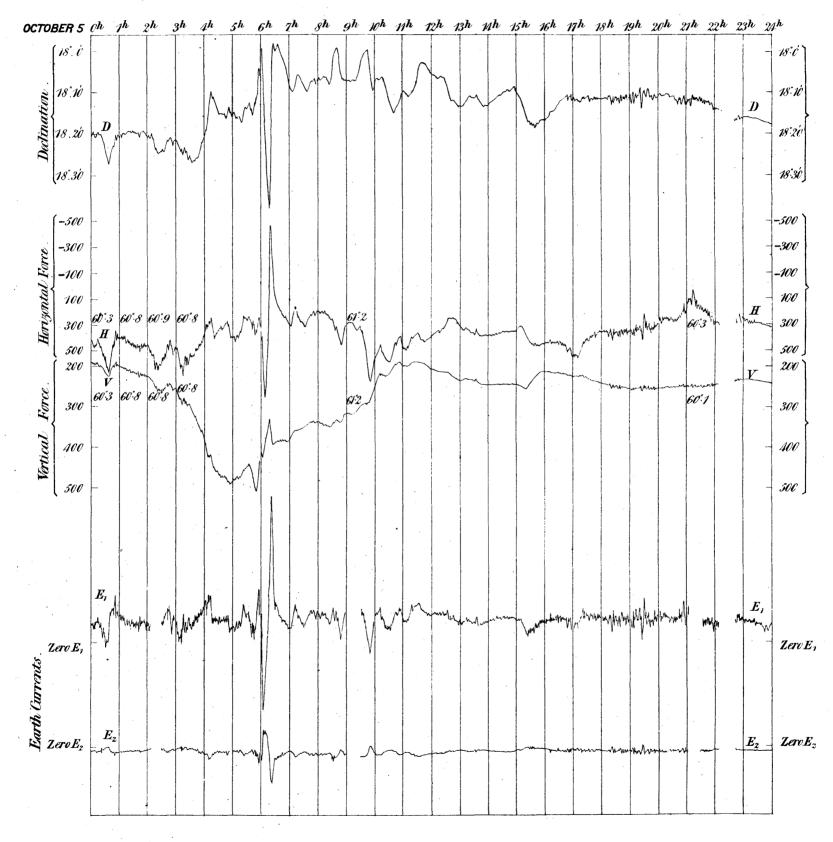


Magnetic Disturbances and Earth Currents recorded at the Royal Observatory Greenwich, 1883.

DANGERFIELD. LITH. 22. BEDFORD ST COVENT GARDEN. 9115.


DANGERFIELD, LITH, 22, BEDFORD ST COVENT GARDEN, 1985

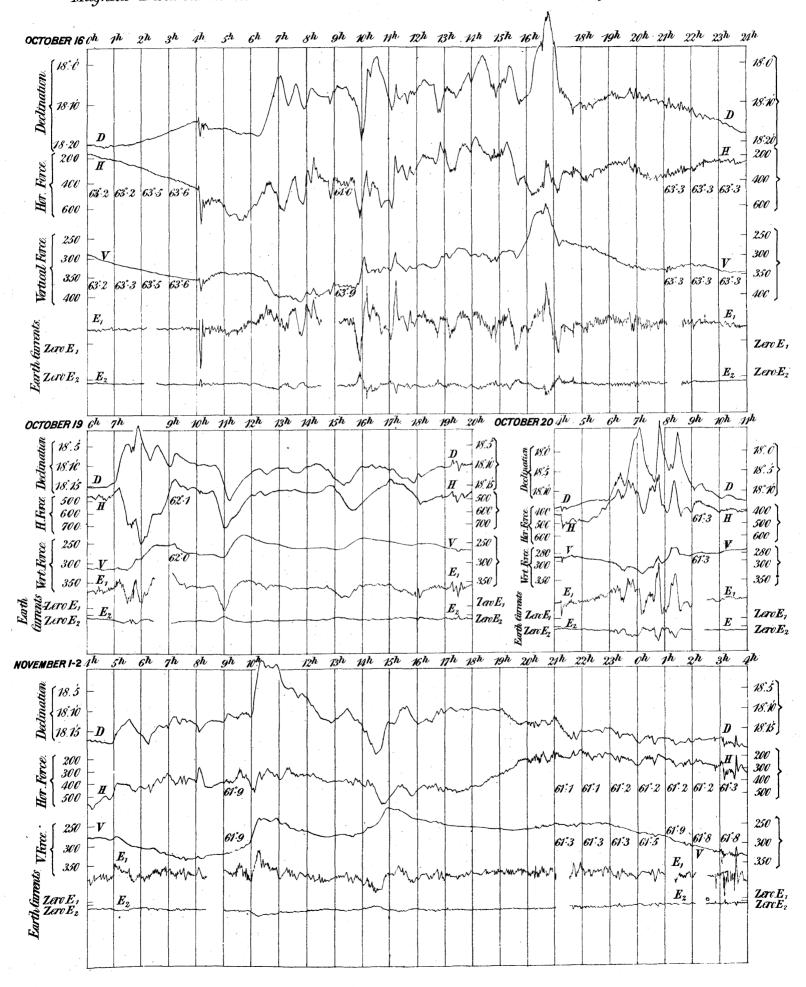
Magnetic Disturbances and Earth Currents recorded at the Royal Observatory Greenwich, 1883.


4 C .

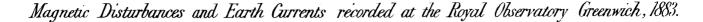
Magnetic Disturbances and Earth Currents recorded at the Royal Observatory Greenwich, 1883.

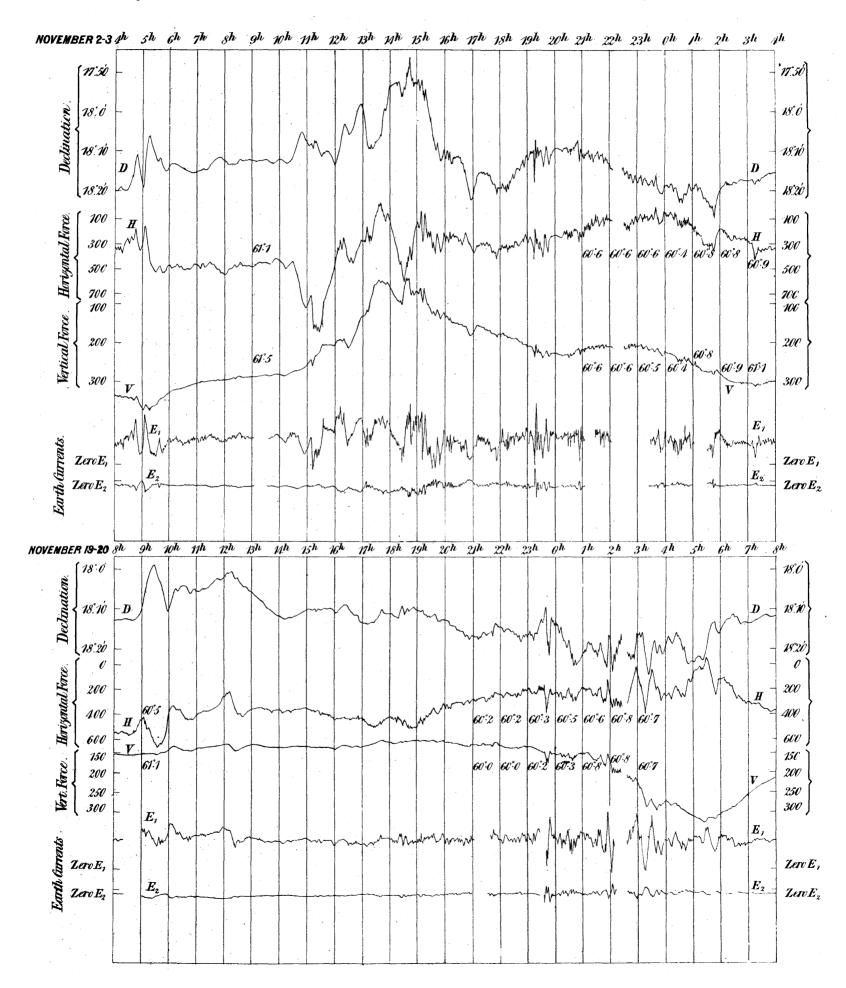
DANGERFIELD. LITH. 22. BEDFORD ST. COVENT CARDEN. 9116.

, 9

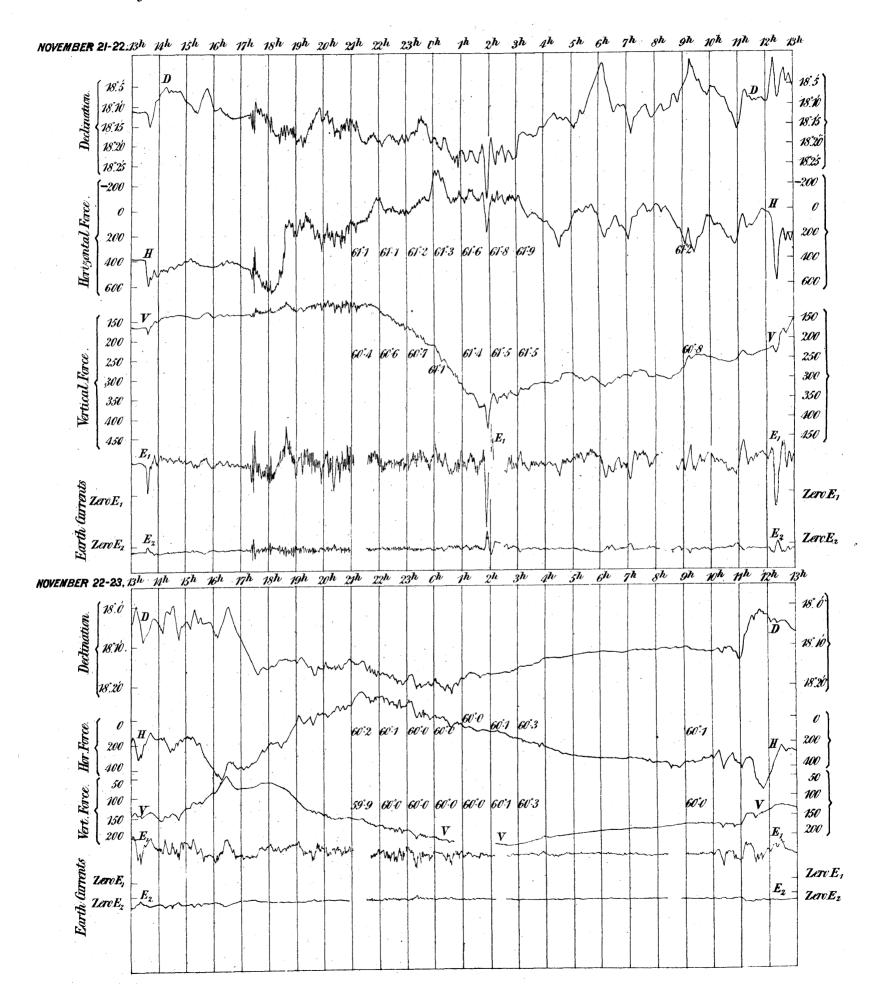


Magnetic Disturbances and Earth Currents recorded at the Royal Observatory Greenwich, 1883.


.


DANCERFIELD LITH 22 BEDFORD ST COVENT GARDEN. 9176.

.



Magnetic Disturbances and Earth Currents recorded at the Royal Observatory Greenwich, 1883.

. . . •

ROYAL OBSERVATORY, GREENWICH.

RESULTS

OF

METEOROLOGICAL OBSERVATIONS.

1883.

GREENWICH MAGNETICAL AND METEOBOLOGICAL OBSERVATIONS, 1883.

.

~

(xxvi)

DAILY RESULTS OF THE METEOROLOGICAL OBSERVATIONS

		BARO- METER.			TI	MPERAT	TURE.			Diff	erence bet	veen			TEMPE	RATURE.		whose inches		
MONTH	Phases				Of the A	jr.		Of Evapo- ration.	Of the Dew Point.	the A	ir Temper d Dew Po emperatu	ature nt	ė	Of Rad	liation.	Of the of the ' at De	Water Thames ptford.	5.0	one.	· ·
and DAY, 1883.	of the Moon.	Mean of 24 Hourly Values (corrected and reduced to 32° Fahrenheit).	Highest.	Lowest.	Daily Range.	Mean of 24 Hourly Values.	Excess above Average of 20 Years.	Mean of 24 Hourly Values.	De- duced Mean Daily Value.	Mean.	Greatest.	Least.	Degree of Humidity (Saturation = 100).	Highest in Sun's Rays.	Lowest on the Grass.	Highest.	Lowest.	Rain collected in Gauge N receiving surface is above the Ground.	Daily Amount of Ozone.	Electricity.
Jan. 1 2 3	Last Qr.	in. 29 [.] 624 29 [.] 519 29 [.] 812	51.8	° 51.7 43.2 42.0	° 3·3 8·6 5·8	° 53•1 47*9 45•5	° +15°0 +10°0 + 7°7	° 52·2 45·0 42·7	∘ 51•3 41•8 39•5	。 1.8 6.1 6.0	° 4'4 9'0 8'2	• •*8 4*2 4*0	94 81 80	63·2 84·0 48·0	° 49 ^{•5} 39•8 37•4	0 •• ••	0 	in. 0°I 20 0°062 0°000	5•3 11•5 0•0	wP wP:mP wP:vP,wN
4 5 6	•••	30.019 30.035 30.221	49 . 2	37·5 37·5 36·1	7*8 11*7 9*1	42·3 44·0 40·9	+ 6.4	39 [.] 9 43 [.] 2 40 [.] 0	37°0 42°2 38°9	5·3 1·8 2·0	8·8 3·6 4 ·2	3·4 0·2 0·5	82 94 93	48.7 61.0 66.0	31°0 30°9 29'4	••	••	0.000 0.144 0.000	0.0 3.0 0.0	mP: sP vN, wP wP
7 8 9	Greatest Declination S.	30 ·256 30·024 29·590	41.3	36°0 30°3 32°2	5.0 11.0 6.0	38·6 36·8 35·2	+ 1°0 - 0°9 - 2°5	37.6 35.0 33.2	36·3 32·5 30•0	2·3 4·3 5·2	4•1 9*7 8•3	0°0 1°6 1°8	92 85 81	52·2 71·3 72·4	32·9 26·3 27·0	••	 	0.000 0.032 0.011	0*2 0*8 0*0	wP:mP wP:mP,mN mP:mP,wN
10 11 12	 Perigee	29 ·423 29·427 29·369	42 . 6 40.5 40.9	35·5 38·0 37·3	7°1 2°5 3°6	39°1 40°0 39°0	+ 2.1	38·5 39·5 38·2	37·7 38·8 37·2	1.4 1.2 1.8	2.6 1.8 3.9	0°0 0°5 0°0	95 96 94	49 ^{.8} 43 ^{.7} 50 ^{.6}	34·3 35•0 36•5	••	••	0°000 0°006 0°000	0°0 0'0 2°0	$wP: mP \\ wP \\ wP: sP$
13 14 15	In Equator •• ••	29·170 29·342 29·225	44'7 42'2 48'2	34°4 33°7 38°4	10•3 8•5 9•8	40°4 38°5 43°6	+ 2°2 + 0°2 + 5°2	39 [.] 6 37 [.] 6 42 [.] 5	38•6 36•4 41•2	1.8 2.1 2.4	3·1 3·5 4·6	0°0 0°0 0'4	94 93 91	61°1 66°4 63°6	29.5 29.0 32.0	•••	· • •	0.020 0.000 0.325	0.0 0.0	wP, wN : mP mP wP, wN : sP, sN
16 17 18	First Qr. 	29*593 29*961 30*002	43°0 49°2 50°6	34·6 32·8 43·7	8·4 16·4 6·9	39•6 43•3 48•3	+ 1°1 + 4°7 + 9°5	38·8 42·5 47·5	37·8 41·5 46·6	1.8 1.8 1.7	4°2 3°1 2°5	0.0 0.2 0.8	94 94 94	51°0 62°8 58°0	28·3 26·7 36·0	••	••	0°130 0°004 0°046	0.0 6.2 3.8	$f{mN:mP} \ f{wP} \ f{wP}$
19 20 21	Greatest Declination N.	30°095 30°066 30°211	48.8	33'0 41'1 41'4	16·5 7·7 6·4	44°0 46°4 44°7	+ 5·1 + 7·3 + 5·4	43 ·2 45·4 44 · 1	42 ·2 44·3 43·4	1.8 2.1 1.3	4°4 4°0 2°6	0°0 0°0 0'4	94 93 95	55°1 51°3 52°4	29 [.] 8 37 [.] 3 37 [.] 3	••	••	0°034 0°023 0°010	3·5 5·0 4·5	mP:wP wP:vP wP
22 23 24	Full	30•352 30•430 30•004	39.0	35·6 29·6 28·8	6·3 9·4 8·1	39 · 8 34·1 34·2	+ 0·3 - 5·5 - 5·5	38·4 32·6 32·4	36 •6 30•0 29•3	3·2 4·1 4·9	6.0 7.6 7.4	0°0 0°0 2°6	89 84 81	53•9 82•7 45•3	28.5 22.9 21.9	••	••	0.000 0.000 0.053	1•3 8•5 2•5	wP:mP mP:sP:sP sP:vP,mN
25 26 27	 In Equator	29 ·3 94 29·078 29 · 408	47.2	33.3	7.6 13.9 16.8	39.9	+ 1.1 0.0 + 0.8			7.8	10 [.] 6 15 [.] 2 10 [.] 9	0.9 2.9 0.7	85 74 79	61.0 78.8 63.8	28.8 29.2 28.8	••	••	0.098 0.040 0.181) j	mN, sP vP, sN : mP mP : vN, vP : mP
28 29 30	Apogee 	29.825 29.396 29.458	49 ^{.8} 52.1 44.5	35•2 40•7 35•0	11.4	42°4 48°4 38°8	+ 2·3 + 8·2 - 1·5	47'1	45.7	2.7	10'7 5'0 9'7	2·1 0·9 2· 0	75 91 82	82·5 56·9 76·6	29'9 38'0 29'5	••	••	0.008 0.346 0.000	11.2	mP wP:vN,mP mP
31	Last Qr.	2 9 ·35 5	41.2	2 9 .2			- 4.6	34.7	33.0	2.8	7.8	0.0	90	60.7	23.4			0.000	0.0	mP
Means		29.732	45.4	36.3	9 .1	41.4	+ 2.7	40.0	38.1	3.4	6.3	1.0	88.4	61.1	31.5			^{8um} 1.693	3.3	••
Number of Column for Reference.	d r	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20 ·

The results apply to the civil day.

The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The average temperature (Column 7) is that determined from the reduction of the photographic records from 1849 to 1868. The temperature of the Dew Point (Column 9) and the Degree of Humidity (Column 13) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables. The mean difference between the Air and Dew Point Temperatures (Column 10) is the difference between the Air and Dew Point Temperatures (Column 10) is the difference between the Air and 9, and the Greatest and Least Differences (Columns 11 and 12) are deduced from the 24 hourly photographic measures of the Dry-bulb and Wet-bulb Thermometers.

The values given in Columns 3, 4, 5, 14, 15, 16, and 17 are derived from eye-readings of self-registering thermometers.

The mean reading of the Barometer for the month was 29ⁱⁿ 732, being oⁱⁿ 003 higher than the average for the 20 years, 1854-1873.

TEMPERATURE OF THE AIR. The highest in the month was 55° • 0 on January 1; the lowest in the month was 28° • 8 on January 24; and the range was 26° • 2. The mean of all the highest daily readings in the month was 45° • 4, being 2° • 3 higher than the average for the 42 years, 1841–1882. The mean of all the lowest daily readings in the month was 36° • 3, being 2° • 8 higher than the average for the 42 years, 1841–1882. The mean of the daily ranges was 9° • 1, being 0° • 5 less than the average for the 42 years, 1841–1882. The mean for the month was 41° • 4, being 2° • 7 higher than the average for the 20 years, 1849–1868.

			WIND AS DEDUC	ED FROM SELF-REGIST	ERING	ANEMO	OMETER	s		•
	hine.			Oslee's.				Robin- son's.	CLOUDS A	ND WEATHER.
MONTH and DAY,	on of Suns	orizon.	General I	Direction.	Pres Sq	sure or uare Fo	n the pot.	lovement		
1883.	Daily Duration of Sunshine.	Sun above Horizon.	А.М.	Р.М.	Greatest.	Least.	Mean of 24 Hourly Measures.	Horizontal Movement of the Air.	А.М.	Р.М.
	hours.	hours.			lbs.	lbs.	lbs.	miles.		
Jan. 1 2 3	0°0 3°5 0°0	7'9 7'9 7'9	SSW: SW SW: WSW W: WNW	SW WSW NW	9°0 13°5 9°0	0'0 0'2 0'0	1.9 4.4 1.3	521 711 371	10, r : 10, r : 10, sc, mr pcl : 1, sqs 10, w : 10	10, sc, mr : 10, sc, mr : v, sc, ocmr, 5, sc, cicu, w, sltsh: 1, sqs, shsr : 10, sqs 10 : 10, sltf
4 5 6	1.1 0.1 0.0		Calm : ESE SSE : S : SSW WNW : NW : N	SE: SSE SSW: WSW N: NNE	0.0 1.5 0.9	0.0 0.0 0.0	0.0 0.1	124 230 200	10 : 10 10, r : pcl, cus, cicu 1, s, d : 9	10 : 1, s, d 10, cus, cicu, sc, r: 10, r : 0, d 7, cicu, cis, cus: 10 : 10
7 8 9	0°7 4°6 4°0	8.0 8.0 8.0	NNE: NE E: ENE E	ENE ENE: E E: ESE	3.9 8.0	0.0 0.0	0°1 0°2 2°1	250 264 434	10 : 2, ci, cicu 10 : 10 : 1, licl 10 : 10 :4,cicu,w,hofr	9 : 10 0 : 10, r : 10, 0cslt 2, cicu, w : 10, sl, sltr
10 11 12	0.0 0.0	8.1 8.1 8.2	ESE : E ESE E : ESE	E ESE: E E: ESE	3.7 0.2 0.3	0.0 0.0	0.3 0.0 0.0	273 189 168	10 : 10 10 : 10, 0cmr 10 : 9, cicu, cis	9, cus, cicu : 10 10 : 10, sltr 10 : 10
13 14 15	0.1 0.2 0.1	8·2 8·2 8·3	E: ESE NE: Calm SSE: S: SW	ENE: NE ESE: SSE SSW: S: SSE	1.9 0.2 4.2	0.0 0.0	0.1 0.0 0.0	210 165 219	10 : 10 : fqthr, soha 0 : 8, ci, cis pcl,sltr: 10, cr : 10	9, sltr : pcl, luha : 0 9, cicu : pcl, s, thcl, lul 8, cis, ci, soha: v : 10, hyr
16 17 18	0.0 0.0	8•3 8•3 8•4	NE:NW SSW SSW	W:SW SSW SSW:WSW	0.4 2.4 4.0	0.0 0.0 0.0	0.0 0.2 0.6	176 312 379	10, r : 10, r : 10,glm,thr pcl : 10 10 : 10, sltr : 10, sc, mr	4, cicu, thcl, h : 0, h0fr, sltf 10 : 10 10, sc, mr : 10, mr : 0, slth
19 20 21	0.0 0.0	8·4 8·5 8·5	SW:S SW:NE ESE:SE	S: SSW S: SE E: SE: SSE	4°0 4°0 0°0	0.0 0.0	0.5 0.3 0.0	283 233 - 88	licl : pcl, f : 8, thcl, f 10, sltr : 10, glm, thr pcl, f : 10, sltf	10, r, sc : 10 : 10, sc 10, glm, mr : 10, fqthr : f 10 : 10
22 23 24	0°0 5°1 0°2	8•6 8•6 8•7	S: NE: E SE SSE: S: SSW	ENE: E: ESE SE: SSE S	0'9 1'0 9'7	0.0 0.0	0'0 0'1 1'3	154 202 378	10 : 10 pcl : 0, hofr : pcl 0, hofr : pcl, s, hofr : 8, thcl	9 : v, licl 4, ci, cicu, cis: 1, ci ; 0, h0fr 10 : 10, frr, sn, r, w
25 26 27	3.0 4.8 0.1	8.8	SSW : W : WNW SW : WSW WSW: SW: SSW	WSW:SW	12•3 15•7 28•0	0°0 0°3 0°2	4.6	413 747 813	10, r, w : 1, m, hofr, h 10, w, shr : 0, w 0 : 10, w, r	2, thcl, cicu, h: pcl : 10, se, w, fqth 4, cicu, cu, cus, w : 0 10, sc, stw, r : v, stw : 0, w
28 29 30	3·2 0·0 3·3	8•9 8•9 9•0	WSW: SW SW WSW: SW	SW: SSW SSW: N: SW WSW: SW	12.0 21.5 7.6	0.0 0.0	3.0 6.2 2.0	616 683 473	0, W : 0 10, sc, W : 10, sltr, stW 10 : 3, ci, cis, licl, hofr	3, ci, cicu, soha : 10, w, thr 10, sc, hyr, w : 10, sc, sltr 5,cicu,cus,sltsh: 0 : 0, hofr
31	0.0	9.0	S: SE: ENE	ENE: NE	1.2	0.0	0.3	218	0, hofr : 3, ci, cus, h, soha	9, thcl, cicu : 10
Means	1.1	8.4	•••	····	•••		1.5	339		
lumber of olumn for	21	22	23	24	25	26	27	28	29	

The mean Temperature of Evaporation for the month was 40°.0, being 2°.6 higher than

The mean Temperature of the Dew Point for the month was 38° 1, being 2° 7 higher than

The mean Degree of Humidity for the month was 88.4, being 1.1 greater than

The mean Elastic Force of Vapour for the month was o'n 230, being o'n 023 greater than

The mean Weight of Vapour in a Cubic Foot of Air for the month was 2878.7, being osr. 3 greater than

The mean Weight of a Cubic Foot of Air for the month was 550 grains, being 2 grains less than

The mean amount of Cloud for the month (a clear sky being represented by o and an overcast sky by 10) was 7.2.

The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0.13. The maximum daily amount of Sunshine was 5.1 hours on January 23. The highest reading of the Solar Radiation Thermometer was 84° o on January 2; and the lowest reading of the Terrestrial Radiation Thermometer was 21° g on January 24.

the average for the 20 years, 1849-1868.

The mean daily distribution of Ozone was, for the 12 hours ending 9 a.m., 1.9; for the 6 hours ending 3 p.m., 0.6; and for the 6 hours ending 9 p.m., 0.8.

The Proportions of Wind referred to the cardinal points were N. 3, E. 10, S. 10, and W. 7. One day was calm.

The Greatest Pressure of the Wind in the month was 28^{1bs}. o on the square foot on January 27. The mean daily Horizontal Movement of the Air for the month was 339 miles; the greatest daily value was 813 miles on January 27; and the least daily value 88 miles on January 21.

Rain fell on 19 days in the month, amounting to 1ⁱⁿ 693, as measured by gauge No. 6 partly sunk below the ground; being oⁱⁿ 352 less than the average fall for the 43 years, 1841-1882.

D 2

(xxvii)

(xxviii)

DAILY RESULTS OF THE METEOROLOGICAL OBSERVATIONS

		BARO- METER.			T	EMPERA'	TURE.			Diff	erence bet	ween			Темрен	RATURB.		whose uches		· · · · · · · · · · · · · · · · · · ·
MONTH	Phases	Values iced to			Of the A	ir.		Of Evapo- ration.	Of the Dew Point,	ar	ir Temper d Dew Po lemperatu	int		Of Rad	liation.	Of the of the ? at Dep	Water Thames otford.	is Si	one.	
and DAY, 1883.	of the Moon.	Mean of 24 Hourly Values (corrected and reduced to 32° Fahrenheit).	Highest.	Lawest.	Daily Range.	Mean of 24 Hourly Values.	Excess above Average of 20 Years.	Mean of 24 Hourly Values.	De- duced Mean Daily Value.	Mean.	Greatest.	Least.	Degree of Humidity (Saturation = 1∞)	Highest in Sun's Rays.	Lowest on the Grass.	Highest.	Luwest.	Rain collected in Gauge No. 6, whose receiving surface is 5 inches above the Ground.	Daily Amount of Ozone.	Electricity.
Feb. 1 2 3	Greatest Declination S.	in. 29:317 28:907 29:533	48.4	° 32°0 36°4 36°5	° 9.8 12.0 9.0	° 36•0 43•8 40•4	° - 4.5 + 3.2 - 0.3	35·2 41·9 38·0	。 34.0 39.7 34.9	° 2°0 4°1 5°5	° 4.8 6.7 9.7	0.0 0.0 2.2 1.7	93 86 81	° 55 ·2 64·0 90 · 0	c 27°0 33°0 31°4	0 	0 	in. 0°070 0°398 0°002	2°0 18°5 4°5	wP,wN:mP,mN wP,wN:vN wP:mP
4 5 6	 	29 ^{.8} 94 30 [.] 045 29 ^{.8} 90		36•7 37•2 33•4	13.6 13.0 11.8	42·5 42·3 38·9	+ 1.8 + 1.7 - 1.5	40 [.] 3 40 [.] 3 37 [.] 1		4'9 4'4 4'2	11·1 11·3 9'9	1.8 1.1 1.2	84 85 86	86·5 88·8 93·8	31·8 30·7 27·3	•••	••	0.000 0.000 0.000	0°0 0°7 6°2	wP:mP wP:mP wP:mP
7 8 9	New Perigee : In Equator.	29.690 29.468 29.581	53.1	36·7 39·4 38·2	7·3 13·7 10·2	39 [.] 7 46 [.] 4 42 [.] 7	- 0.5 + 6.5 + 3.1	38·6 45·8 40·8	45.1	2•5 1·3 4·1	4°4 2°4 9°0	0.0 0.6 0.7	91 96 86	60°4 58°9 88°0	31.8 38.9 34.2	••	••	0°109 0°156 0°496	8·7 5·2 2·2	wP, wN : wP wP mN : mP
10 11 12	 	29 [.] 309 29 [.] 432 29 [.] 406	47.8	41.6 39.8 41.2	7'1 8'0 7'9	46•6 43•8 45•8	+ 4.7	45°0 40°9 43°1	37.5	3·4 6·3 5·8	·7·7 12·6 12·4	1.9 1.3 2.9	89 78 81	51.7 98.3 72.0	35·9 34·8 35·3	••	••	0'180	22.0 5.5 18.3	wwN, wwP: wN, w wN, wP: mP wwP: vN, wP
13 14 15	First Qr.	29 [.] 683 29 [.] 760 29 [.] 814	47 °O	, ³ 7°9 40°5 39°0	6.5	42.8 44.7 46.7	+ 4°0 + 6°0 + 8°0	40°2 43°2 44°8	37·1 41·5 42·7	5•7 3•2 4•0	10.5 5.1 7.2	2·3 2·1 2·3	81 89 87,	94°7 53°7 101°3	31°0 32°9 33°0	••	••	0'010 0'125 0'100	7°7 15°0 11°2	wP:vN,vP:mP wwP:wwN wwP:vP,vN
16 17 18	Greatest Declination N. ••	30°258 30°161 29°832	47.1	32·5 30·9 34·3	13·2 16·2 11·1	38·4 39·6 40·6	+ 0.7	36·3 37·1 39·0	33·5 33·9 37·0	4°9 5°7 3°6	11.7 10.1 7.0	2·1 0·9 0·9	83 80 87	60.6 81.3 62.1	26·4 26·2 27•5	••	••	0°000 0°000 0°482	0°0 1°8 5°2	vP mP wP, vN : vP
19 20 21	••	29 [.] 938 30 [.] 104 30 [.] 246	48.3	32.0 34.9 44.3		38·1 42·8 48·6	- 1.1 + 3.5 + 9.1	36·7 41•5 46•8	34·8 39·9 44·9	3·3 2·9 3·7	6.6 4.0 4.6	1.0 1.9 2.6	88 90 87	49°0 56°3 61°0	25.7 30.9 41.1	••	•,•	0°009 0°050 0°001	0°0 1°0 3'7	vP mP:wP wP
22 23 24	Full In Equator	30:314 30:616 30:500	50.1	38•8 33•9 34•2	16·2 16·2 17·9	49 ^{.6} 41.4 42.1	+ 10°0 + 1°7 + 2°3	47°1 38°6 40°8	44°4 35°1 39°2	5·2 6·3 2·9	9.8 11.6 7.8	2·3 3·0 0·4	83 79 90	76•0 80•8 80•7	31. 0 27.1 30.1	••	••	0.000 0.000 0.000	2.2 0.0 0.0	wP:mP vP mP
25 26 27	Apogee 	30·499 30·439 30·291	47'4	42·5 35·7 36·8	11.7	42.0	+ 5.5 + 2.0 + 2.8	43•8 40 ^{.7} 40•9	39'1	3·5 2·9 4·3	5·2 6·9 8·4	0.7 0.7 0.9	88 90 85	58•2 90•1 77•7		••	••	0.010 0.000 0.000	0.0 0.0	wP:mP wP:mP wP:vP
28		30.302	55.2	44.8	10.4	47.5	+ 7.3	45•4	43.1	4.4	11'2	0.6	86	87.8	36.9		•••	0.000	0.0	wP, wN : vP
Means		29.901	48.5	37.2	11.3	42 .9	+ 3.3	41.1	38.8	4'1	8.2	1.4	86 · o	74*2	31.8	· · ·	· · ·	2*888	5.1	••
umber of olumn for Reference.	I	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20

The results apply to the civil day.

The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The average temperature (Column 7) is that determined from the reduction of the photographic records from 1849 to 1868. The temperature of the Dew Point (Column 9) and the Degree of Humidity (Column 13) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables. The mean difference between the Air and Dew Point Temperatures (Column 10) is the difference between the numbers in Columns 6 and 9, and the Greatest and Least Differences (Columns 11 and 12) are deduced from the 24 hourly photographic measures of the Dry-bulb and Wet-bulb Thermometers.

The values given in Columns 3, 4, 5, 14, 15, 16, and 17 are derived from eye-readings of self-registering thermometers.

The mean reading of the Barometer for the month was 29ⁱⁿ 901, being 0ⁱⁿ 069 higher than the average for the 20 years, 1854-1873.

TEMPERATURE OF THE AIR.

The highest in the month was $55^{\circ} \cdot 2$ on February 28; the lowest in the month was $30^{\circ} \cdot 9$ on February 17; and the range was $24^{\circ} \cdot 3$. The mean of all the highest daily readings in the month was $48^{\circ} \cdot 5$, being $3^{\circ} \cdot 0$ higher than the average for the 42 years, 1841-1882. The mean of all the lowest daily readings in the month was $37^{\circ} \cdot 2$, being $2^{\circ} \cdot 8$ higher than the average for the 42 years, 1841-1882. The mean of the daily ranges was $11^{\circ} \cdot 3$, being $0^{\circ} \cdot 2$ greater than the average for the 42 years, 1841-1882.

The mean for the month was 42°.9, being 3°.3 higher than the average for the 20 years, 1849-1868.

			, WIND AS DEDUC	ED FROM SELF-REGISTI	BRING	ANEM	OMETE	RS.		
MONTH	shine.			Osler's.				Robin- son's.	CLOUDS .	AND WEATHER.
and DAY, 1883.	on of Sun	Horizon.	General I	Direction.	Pres Sq	sure o uare F	n the oot.	lovement		
	Daily Duration of Sunshine.	Sun above H	А.М.	P.M.	Greatest.	Least.	Mean of 24 Hourly Measures.	Horizontal Movement of the Air.	А.М.	Р.М.
Feb. 1 2 3	hours. 0°8 0°1 4°4	hours. 9°1 9°2 9°2	N : SW SSE : S SW : SSW	W:SE SSW:SW SSW	1bs. 6.6 28.5 9.7	1bs. 0°0 0°6 0°3	lbs. 0°3 7°2 2°3	miles. 187 812 509	10 : h, ghm, f, hofr 10, w, r : 10, sc, w, fqr 10, w : 3, ci, cis, lishs	tkf : 7, cus, r 10, sc, mr, w : 10, sc, r, g 5,cus,cicu,sltsh: 0 : 10
4 5 6	5.0 2.5 6.8	9·3 9·3 9·4	WSW S:SSE E:ESE	WSW: SSW SSE: SE: ESE ESE: SE	2°4 1°2 2°5	0.0 0.0	0.0	212	1c, slt-sh : 2, cicu pcl : 9,cis,thcl,soha 0, hofr : 1, ci	1, cicu : 0 : v 7,cicu,cus,cis,thcl: 0, d 2, cu, cicu : 0, hyd
7 8 9	0.0 0.0 2.9	9 [•] 4 9 ^{•5} 9 ^{•6}	SE : SSE SE : SSE N: NW: WSW	SE: E SSW: NW SW: S	4.8 3.4 10.5	0.0 0.0	0.2	303	o, d : 10, se, r 10 : 10, mr 10, cr : 10, mr	10 : 10 10 : 10, fqmr : 10, cr 8,cus,cicu : 0 : v, w
10 11 12	0'0 4'1 0'3	9.6 9.7 9.8	S : SSW S : WSW S : SSE	S : SSW SW : SSE SSE : SSW	24 [.] 0 13 [.] 0 10 [.] 7	0.0 0.0	1.7	482	10, w, r : 10, sc, w, sltr hyr, hysqs : 2, ci, cicu 0 : v, r, w	10, sc, r : 10, sc, r, w : 7, sc, th. 6, sc, hl, w : v 10, w, cr : 10
13 14 15	5·3 0'0 1'2	9•8 9•9 9•9	SSW : SW S SSW	SW : S S : SSW SW : WSW	4°0 14°3 8°4	0'0 0'1 0'0	4.1	580	10 : 2,thcl,sc,sltsh,hl 0, h : 10,sc, mr, w 10, sc, sltr : 8,ci,cis,sc,ocsltr	5, cu, cicu, thcl : 0, d 10, sc, fqthr, w : 10, sc. fqmr, w 9, sc, fqr : v
16 17 18	1.4	10.1 10.1 10.0	W:WSW SE:SSE SSE	NW : SW : S S : SSE N: WNW: WSW	1.5 3.8 2.4	0.0 0.0	1 /	299	v, hofr : 0, hofr, f, h 0, hofr : 9 10 : 10, hyr : 10,hyr,f,glm	4, cicu, h, sltf : thcl, hofr, slt 9, cicu. cus : 10 10,r,gtglm,f: 0 : 0, h
19 20 21	0.0	10 ·2 10·3 10·3	WSW: W: NW SW WSW: SW	NNW: N SW SW	1.9 4.0 3.6	0.0 0.0	1 /	1	10 : 10, sltf, hofr 10, luha : 10, sc : 10, thr 10, cus, s : 10, sc	10, mr : 10 10, fqmr : 10, fqmr : 10 10 : vv
22 23 24	6•2	10°4 10°5 10°5	SW:WSW WSW SW:WSW	WSW:NW:NNW WSW: SW WSW	5•4 1•6 2•0	0.0 0.0	1.7 0.1 0.2	456 255 308	10 : 10, sc o, hofr : o, m, h o, d : 10, m	9, ci, cicu : 2, cicu, h, d 0, h : 0, d 5, ci, cus, h : 0, m, d : 10
25 26 27	1.3	10 [.] 6 10 [.] 7 10 [.] 7	W: NW: WSW WSW : SW SW : W	WSW : SW SW W: WSW	0 [.] 3 1 0 2 [.] 4	0.0 0.0	0.0 0.0 0.2	223	10 : 10, m 10 : 10, f 10 : 10, glm	10, glm, m : 10 5,thcl,eicu: 0, d : v, d 9,cus,eicu: v, h : 10, sltr
28	1.0	10.8	WSW: NNW	NW: WSW	0.0	0.0	0.0	207	10 : 10, f, glm, sltr	8,cus,cicu,thcl,h: 4, m, sltf
Means	1.2	9.9		•••	•••		1.5	349		
Number of Column for Reference.	21	22	23	24	25	26	27	28	29	30

The mean Temperature of Evaporation for the month was 41° 1, being 3° 2 higher than

The mean Temperature of the Dew Point for the month was 38°.8, being 3°.4 higher than

The mean Degree of Humidity for the month was 86.0, being 1.2 greater than

the average for the 20 years, 1849-1868.

The mean Elastic Force of Vapour for the month was oⁱⁿ · 236, being oⁱⁿ · 029 greater than

The mean Weight of Vapour in a Cubic Foot of Air for the month was 2^{grs.} 7, being 0^{gr.} 3 greater than The mean Weight of a Cubic Foot of Air for the month was 551 grains, being 3 grains less than

The mean amount of *Cloud* for the month (a clear sky being represented by o and an overcast sky by 10) was 6.7.

The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0.17. The maximum daily amount of Sunshine was 6.8 hours on February 6.

The highest reading of the Solar Radiation Thermometer was 101°.3 on February 15; and the lowest reading of the Terrestrial Radiation Thermometer was 25°.7 on February 19.

The mean daily distribution of Ozone was, for the 12 hours ending 9 a.m., 3'2; for the 6 hours ending 3 p.m., 0'8; and for the 6 hours ending 9 p.m., 1'1.

The Proportions of Wind referred to the cardinal points were N. 2, E. 3, S. 13, and W. 10.

The Greatest Pressure of the Wind in the month was 28^{1b} 5 on the square foot on February 2. The mean daily Horizontal Movement of the Air for the month was 349 miles; the greatest daily value was 812 miles on February 2; and the least daily value 141 miles on February 25.

Rain fell on 15 days in the month, amounting to 2ⁱⁿ 888, as measured by gauge No. 6 partly sunk below the ground; being 1ⁱⁿ 405 greater than the average fall for the 42 years, 1841–1882.

(xxix)

(xxx)

DAILY RESULTS OF THE METEOROLOGICAL OBSERVATIONS

		BARO-			TE	MPRRAI	URE.			Diff	erence bet	ween			TEMPE	BATURE.		whose inches		1
MONTH	Phases	Values ced to			Of the A	ir.		Of Evapo- ration.	Of the Dew Point.	the A	ir Temper d Dew Poi emperatu	ature int		Of Rad	liation.	Of the of the 1 at Dep	l'hames	se No.6 is 5	one.	a
and DAY, 1883.	of the Moon.	Mean of 24 Hourly Values (corrected and reduced to 32° Fahrenheit).	Highest.	Lowest.	Daily Range.	Mean of 24 Hourly Values.	Excess above Average of 20 Years.	Mean of 24 Hourly Values.	De- duced Mean Daily Value.	Mean.	Greatest.	Least.	Degree of Humidity (Saturation = 1∞)	Highest in Sun's Rays.	Lowest on the Grass.	Highest.	Lowest.	Rain collected in Gau receiving surface above the Ground.	Daily Amount of Ozone.	Electricity.
		in.	0	0	0	0	0	0	0	0	0	0	. .	° 65•8	°	0	0 [`] \	in. 0°134	o•8	vP, wN : mP
Mar. 1 2 3	Last Quarter : GreatestDec.S.	30°278 30°440 30°504	45.4	41.0 35.5 30.8	7.6 9.9 18.3	45.7 40.6 39.2	+ 5.4 + 0.2 - 1.3	43·5 38·1 36·6	41°0 34°9 33°2	4.7 5.7 6.0	6·1 9 ^{.2} 15·3	2.3 2.9 0.6	84 81 80	84.7 107.1	30.0 24 .0	•••	•••	0.000	6·2 0·0	mP mP:sP
4 5 6	••	30°505 30°387 29°991	52.1	29°2 30°7 30°2	20'7 21'4 13'1	39 ·1 39 [.] 8 36· 9	- 1.4 - 0.7 - 3.6	36·6 37·8 33·7	33·3 35·2 29·2	5·8 4·6 7'7	13·9 13·6 14·5	0.7 .0.0 .5.4	80 84 74	104·3 89·8 97·5	24.9 23.9 26.2	••	•••	0.000 0.003 0.006	0.0 0.0 0.0	mP wP:vP wP:wN,wP
7 8 9	New : In Equator : Perigee.	29 .75 9 29.610 29.773	37.0	28·2 23·8 23·4	10 ^{.3} 13 ^{.2} 13 [.] 9	33•1 28·8 29·3	- 7 ^{.5} -11 ^{.8} -11 ^{.4}		27 ^{.5} 23 [.] 7 20 ^{.5}	5·6 5·1 8·8	9°8 10°5 10°5	1.2 0.0 2.6	79 81 68	81•4 103•6 99•5	26.0 21.0 20.8	••• ••• ••	••	0°052 0°060 0°026	2°0 0°0 0°0	vP, wN -: vP, vN : -: vP
10 11 12	· • • • • • •	29·683 29·524 29 ·6 64	40 ' 4	22.6 25.6 27.9	14.1 14.8 12.5	29°2 33°8 33°3	-11.5 - 7.0 - 7.5	28.0 31.2 31.0	23·9 26·5 26·6	5·3 7·3 6·7	7*2 9*6 13*4	0.0 3.0 1.3	79 74 76	93·3 70·2 92·6	20°0 19°2 23°3	••	•••	0°000 0°000 0°007	0°0 0°3 5°7	sP — : mP mP: vP, vN
13 14 15	GreatestDec.N. First Quarter.	29 · 810 29·559 29 · 473	43.7	26.9 32.4 26.6	17°4 11°3 12°8	35 ·1 36·5 3 3·2	- 5·8 - 4·5 - 7·9	31.8 34.8 31.2	26.6 32.4 27.3	8·5 4·1 5·9	15.6 9.9 10.1	1.9 0.6 2.1	69 86 78	78.0 66.5 96.3	21.6 31.0 22.0	••	••	0.016 0.006 0.007	0°0 0°5 1°5	vP vP mP:vP
16 17 18	••	29 [.] 398 29 [.] 351 29 [.] 475	49 ' 4	23•9 32•1 30•5	17°2 17°3 14°9	32·7 38·0 36·9	- 8·5 - 3·3 - 4·5	30°4 35°5 34°1	25.7 32.1 30.1	7.0 5.9 6.8	13·3 15·7 14·1	0.0 1.0 0.0	74 79 77	81·3 101·7 88·6	17·3 27·8 26·9	•••	•••	0°002 0°045 0°003	2°0 0°0 0°0	vP mP:vP,vN sP
19 20 21	••• ••	29•557 29•468 29•498	41.0	33·3 36·7 34·5	10°0 4°3 7°0	37·5 38·6 37·6	- 3.9 - 2.9 - 4.0	36•4 37•5 36•0	34•9 36•0 33•8	2·6 2•6 3·8	5·7 3·6 7·0	0'2 0'5 2'1	91 91 86	64 [•] 7 47 [•] 9 78•1	30·9 36•0 34•5		••	0*292 0*020 0*000	0°0 2°5 3°2	vP: wP, sN vP vP
22 23 24	In Equator Full Apogee	29 . 910 29.979 29.760	38.4	29*8 25*5 20*6	6.4 12.9 26.2	32·4 31·8 33·5	- 9 ^{.3} - 10 ^{.0} - 8 ^{.5}	29*8 29*3 31*0	24°2 23°4 26°3	8·2 8·4 7·2	11°0 14°9 14°7	4'9 1'4 0'7	71 70 74	101°9 98°0 92°0	29°0 20°0 14°3	••	••	0.011 0.000 0.000	15 .0 9 .2 0.0	vP mP vP
25 26 27	 	29°492 29°086 29°402	46.7	26'0 28'8 24'7	18'0 17'9 20'4	36 ·1 36·9 34 · 4	- 6·2 - 5·7 - 8·6	32·2 33·7 31·7	26·4 29·2 27·2	9'7 7'7 7'2	16 [.] 9 17 [.] 6 15 [.] 2	0.3 2.2 0.6	67 74 74	90.6 105.7 105.8	20°2 24°0 19°3	••	••	0.000 0.003 0.003	5·2 4·8 0·0	sP sP: sP, sN mP: sP, sN
28 29 30	Greatest Declination S.	29·905 29·869 29·348	49'I	27°7 28°5 37°7	17.7 20.6 13.9	36·0 40·3	- 7'4 - 3'5	31.7 35.6 43.5		10 [.] 8 10 [.] 8 5 [.] 6	18.0 17.0 9.9	4°2 6°6 1°8	64 65 82	97'9 104'5 65'3	22.0 22.5 30.5	••	••	0:000 0:000 0:087	0.2 3.2 10.2	vP:vP,wN mP wP,vN:vP
31	Last Qr.			32.7	24.0		- 1.3	39.5	34.8	8.7	16.6	1.6	72	109'4	27.0	•		0.000	2.0	sP:vP
Means	••	29.749		29.3	14.8	36•3		33.8	29.7	6.6	12.3	1.2	76.9	89.2	25.0		•	^{Sum} 0.783	2.4	
Number of Column for Reference.	1	2	3	4	5	6	, 7	8	. 9	10	II	12	13	14	15	16	17	18	19	20

The results apply to the civil day.

The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The average temperature (Column 7) is that determined from the reduction of the photographic records from 1849 to 1868. The temperature of the Dew Point (Column 9) and the Degree of Humidity (Column 13) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables. The mean difference between the Air and Dew Point Temperatures (Column 10) is the difference between the numbers in Columns 6 and 9, and the Greatest and Least Differences (Columns 11 and 12) are deduced from the 24 hourly photographic measures of the Dry-bulb and Wet-bulb Thermometers.

The values given in Columns 3, 4, 5, 14, 15, 16, and 17 are derived from eye-readings of self-registering thermometers.

The mean reading of the Barometer for the month was 29in 749, being oin 027 higher than the average for the 20 years, 1854-1873.

TEMPERATURE OF THE AIR.

The highest in the month was 56° ? on March 31; the lowest in the month was 20° .6 on March 24; and the range was 36° .1. The mean of all the highest daily readings in the month was 44° .1, being 5° .9 lower than the average for the 42 years, 1841-1882. The mean of all the lowest daily readings in the month was 20° .3, being 5° .0 lower than the average for the 42 years, 1841-1882. The mean of the daily ranges was 14° .8, being 5° .1 greater than the average for the 42 years, 1841-1882. The mean for the month was 36° .3, being 5° .2 lower than the average for the 20 years, 1849-1868.

			WIND AS DEDUC	ED FROM SELF-REGIST	ERING	ANEM	OMETE	RS.		
	shine.		· · · · · · · · · · · · · · · · · · ·	Oslee's.				ROBIN- SON'S.	Arr	CLOUDS AND WEATHER.
MONTH and DAY, 1883.	ion of Sun	Horizon.	General	Direction.	Pres Sq	sure oi uare Fo	oot.	Movement .		
	Daily Duration of Sunshine.	Sun above I	A.M.	Р.М.	Greatest.	Least.	Mean of 24 Hourly Measures.	Horizontal Movement of the Air.	A.M.	Р.М.
	hours.	hours.			lbs.	lbs.	lbs.	miles.		
Mar. <u>1</u> 2 3	1.1	11.0 10.3 10.8	WSW: NW: NNE NE: ENE NE: E	NNE: NE: E ENE: E E	3•8 2•7 2•0	0°0 0°0 0°0	0'2 0'2 0'1	299 267 192	10 : 10, hysl 10 : 10 0 : 0	9,cus,cicu: pcl : 2
4 5 6	4.4	11.1 11.1 11.2	NE: ENE NE: N NNW: N	ENE : ESE : E NE : N : NNW N : NNW	2.0 1.7 24.4	0.1 0.0 0.0	0'1 0'1 5'3	187 141 620	o : c	o, hofr o : o o, f o, h : o, h, sltf : thcl, h csn, w 6, cus, ocsn, w : v, w
7 8 9	5.5	11.2 11.3 11.4	NNW : N NNW: N: NNE NNE	NNW NNE NE: NNE	11.7 9.7 4.8	0.3 0.1 0.0	3·4 2·0 1·1	510 476 421	v, w : 10 10, sn : 1 pcl, sn : 1	, cicu, thcl, fr 7, sn : 4, ocsn, fr
10 11 12	0.0	11.4 11.5 11.6	NNE: N NW: WSW: NNW NNW	NE: N NNW N: NNW	3·5 8·3 8·4	0.0 0.0	0.2 1.1 1.4	315 333 369		s, cicu s, cicu s, cicu, scisn, sltsn : 7, cus, cicu, sn ; 7, cus, cicu, sn ; 7, cus, cicu, sn ; 6, cus, cu, sltsn ; 10, sltsn ;
13 14 15	0'7	11.6 11.7 11.8	W:WSW:NW NW:WSW ENE	W : WSW Ní: NE NE : ENE : N	1.8 0.3 4.3	0.0 0.0	0°4 0'0 0'4	303 155 257	10, sltsn : 1	b, h, m, hofr 6, cu, cus, m : 9, m, sltr, sl g, cu, cus, m : 10, sltsh, sltm g, cu, cicu,sltsn 7, ocsn : vv, ocsn, f
16 17 18	5.8	11.8 11.9 12.0	SW: WSW WSW SW: SSW	$\begin{array}{c} \mathbf{WSW} \\ \mathbf{SW} \\ \mathbf{SSW: SSE: ESE} \\ \end{array}$	6·7 8·4 0·4	0°0 0°0	0.0 0.8 0.0	395 353 168		8,cus,cu,sltsn: 10, sltsn, sltr: v 7,cus,cu,ocshs,sl: 10, ocr 10 : 10
19 20 21	0.0	12.0 12.1 12.2	NNE ENE ENE	NNE: N ENE ENE	2·3 5·2 8·8	0.0 0.0	0.3 0.8 1.3	241 393 489	10 : 10 10, 00r : 10 10, 80 : 10	
22 23 24	9.6	12°2 12°3 12°4	ENE ENE N:W	ENE ENE: NE NW: NNE	17.5 12•0 6·8	0.0 0.0 0.0	3·3 1·9 0·4	741 565 279	w : 0	us,th-cl,slt.sn,stw 8, cicu, cus, stw: 9, w v, w 0, w : 0 v, h, m, hofr 3, h : 10, sltr : 10
25 26 27	4.6	12.4 12.5 12.6	NNW: NW WSW: NNW WSW: NNW: N	WSW:SW NW:NNW:WSW N:SW	5•4 2•8 4•5	0.0 0.0	0.8 0.4 0.4	324 250 214	10 : V	.cicu,thcl,h,m o, h : pcl : v, sltr .cicu 6,thcl,cus: 10, sltsn, sl: o, slth .licl 5,cu,cicu,sltsn: 4, cu, cicu: o, f
28 29 30	5 ·5	12.6 12.7 12.8	SW:WSW:NNW S:SSE SSE:S	NNW: NW: SW S: SSE SSW: WSW	2•2 5•4 9•2	0.0 0.0	0°2 1°1 2°8	201 362 528	f : 1	b, cicu, cus 5, cu, cus : 0, f, hofr c, s, thcl 6,cis,ci,thcl: pcl, h <td: td="" v<=""> s, sc, lishs, w 10, sc, w, mr : 0</td:>
31	4 ° 4	12.8	SW: WSW	WNW: NNW: NNE	1.1	0.0	0.1	200	o, d : 7	, ci, soha, m 7, thcl, cus, cu, h : 0, d
Means	3.8	11.8	·····	•••		•••	1.0	340		
Number of olumn for Reference.	21	22	23	24	25	26	27	28	29	

The mean Temperature of Evaporation for the month was 33°.8, being 5°.2 lower than

The mean Temperature of the Dew Point for the month was 29°.7, being 6°.3 lower than

The mean Degree of Humidity for the month was 76.9, being 4.0 less than

The mean Elastic Force of Vapour for the month was oin 165, being oin 047 less than

The mean Weight of Vapour in a Cubic Foot of Air for the month was 1823.9, being 082.6 less than

The mean Weight of a Cubic Foot of Air for the month was 556 grains, being 6 grains greater than

The mean amount of Cloud for the month (a clear sky being represented by o and an overcast sky by 10) was 5 6.

The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0.32. The maximum daily amount of Sunshine was 9.7 hours on March 25. The highest reading of the Solar Radiation Thermometer was 109° 4 on March 31; and the lowest reading of the Terrestrial Radiation Thermometer was 14° 3 on March 24. The mean daily distribution of Ozone was, for the 12 hours ending 9 a.m., 1.2; for the 6 hours ending 3 p.m., 0.7; and for the 6 hours ending 9 p.m., 0.5.

The Proportions of Wind referred to the cardinal points were N. 12, E. 8, S. 4, and W. 7.

The Greatest Pressure of the Wind in the month was 24^{1bs} 4 on the square foot on March 6. The mean daily Horizontal Movement of the Air for the month was 340 miles; the greatest daily value was 741 miles on March 22; and the least daily value 141 miles on March 5.

the average for the 20 years, 1849-1868.

Rain fell on 14 days in the month, amounting to o^{in •}783, as measured by gauge No. 6 partly sunk below the ground; being o^{in •}666 less than the average fall for the 42 years, 1841-1882.

(xxxi)

(xxxii)

DAILY RESULTS OF THE METEOROLOGICAL OBSERVATIONS

		Baro- meter.			Т	MPERAT	fure.			Diffe	erence betw	ween			TEMPEI	ATURE.	· · · ·	whose inches		
MONTH	Phases			I	Of the A	ir.		Of Evapo- ration.	Of the Dew Point.	the A an	ir Temper d Dew Poi emperatu	ature int		Of Rad	liation.	of the	Water Thames ptford.		one.	
and DAY, 1883.	of the Moon.	Mean of 24 Hourly Values (corrected and reduced to 32° Fahrenheit).	Highest.	Lowest.	Daily Range.	Mean of 24 Hourly Values.	Excess above Average of 20 Years.	Mean of 24 Hourly Values.	De- duced Mean Daily Value.	Mean.	Greatest.	Least.	Degree of Humidity (Saturation = 1∞)	Highest in Sun's Rays.	Lowest on the Grass.	Highest.	Lowest.	Rain collected in Gauge No. 6 receiving surface is 5 above the Ground.	Daily Amount of Ozone.	Electricity.
Apr. 1 2 3	•• •• ••	in. 30°095 29°944 30°008	64 · 1	° 29 [.] 5 28 [.] 4 36 [.] 4	° 25•9 35•7 29•9	∘ 42.5 47.1 51.4	° - 2.8 + 1.4 + 5.3	° 38·2 42·4 47·2	0 33.0 37.1 42.9	° 9 ^{.5} 10 ^{.0} 8 ^{.5}	° 19.4 18.6 16.6	° 2°9 0°9 2°8	70 69 73	° 109'3 118'6 105'8	° 20 [.] 5 20 [.] 3 27 [.] 7	0 •• ••	• •• ••	in. 0°000 0°000 0°000	0°0 0°0	mP sP:mP:sP mP,mN:vP,wN
4 5 6	 In Equator 	30°054 30°061 30°335	69.1	43.6 41.6 37.6	20.7 27.5 20.5	52·9 54·6 48·0		49 ^{.6} 49 ^{.8} 43 [.] 4	46·3 45·2 38·3	6·6 9·4 9'7	15·2 19·4 20·7	1.2 0.4 1.8	79 70 69	101.8 120.6 118.7	36•4 34•0 31•0	••	••	0,000 0,000	0°0 0°0 4°0	vP vP vP
7 8 9	Perigee : New.	30 [.] 444 30 [.] 345 30 [.] 205	54.5	33·1 35·0 28·2	20.8 19.5 29.9	42.6 44.2 44.4	- 4 ^{.2} - 2 ^{.6} - 2 ^{.5}	39 [•] 4 40 [•] 3 40 [•] 1	35•5 35•7 35•1	7°1 8°5 9°3	17°2 18°2 20°0	0.3 1.6 2.9	77. 72 .70	127·3 113·8 106·0	28.0 26.0 18.6	••	•••	0.000 0.000	1.8 5.2 0.0	vP:mP wP:mP -:vP
10 11 12	Greatest Declination N.	30 ·2 05 30·156 30·003	57.0	35·3 28·7 36·7	19°1 28°3 22°6	44 ^{•3} 43 [•] 9 46 [•] 0	- 3.1	40°3 40°5 42°2	35•6 36•5 37•8	8·7 7·4 8·2	16·2 14·1 19·2	0.0 1.8	71 75 74	110'9 78'0 120'0	26°0 20°9 31°0	••	•••	0.000 0.000 0.000	0°0 0°0 1°5	vP vP,wN mP
13 14 15	 First Qr. 	29·732 29·686 29·714	50.4		18.2 15.5 22.3	44 ^{.5} 44 ^{.0} 50 ^{.0}	- 3·4	41°4 42°4 44°6	37·8 40·5 38·9	6.7 3.5 11.1	13·4 10·3 18·8	1.0 1.0 1.8	77 87 66	106 ·2 62·0 115·9	• i	•••	•••	0.000 0.001 0.000	4 ^{.5} 0.0 0.0	vP:vP,wN mP,mN mP
16 17 18	 In Equator	29:850 29:793 29:398	57.1	39·6 35·0 41·5	18.8 22.1 24.5	48°1 46°4 53°3	+ 0.5 - 1.4 + 5.4	43°0 41°5 47°9	37 ·4 35·9 42·5	10.7 10.5 10.8	20°4 18°6 19°3	2.0 3.1 3.8		122·3 117·4 120·1	30°0 28°0 32°6	••	••	0.010 0.000 0.000	0°0 6°5 13°5	mP, wN mP wP : vP, vN
19 20 21	Apogee	29 [.] 492 29 [.] 890 30 [.] 045	59.5	44'9 43'1 38'4	4°1 16°1 14°6	47°0 48`9 44`4	-1.0 + 0.8 - 3.8	46°0 45°6 41°7	44*9 42*1 38*5	2·1 6·8 5·9	4.8 12.9 10.9	0.6 2.2 0.9	93 78 79	67.0 111.0 123.5	41.9 38.5 33.6	••	•••	0*546 0*010 0*015	e•o o•2 o•8	sP, sN : wN, vP vP vP, vN : mP
22 23 24	Full 	29 [.] 997 29.665 29.409	43.8	37·6 32·6 31·7	15·1 11·2 20·1	43.6 38.0 41.0	- 4.6 - 10.3 - 7.3	40°6 36°2 38°9	37 ·1 33·8 36·3	6·5 4·2 4·7	14.9 13.6 9.2	0.0 1.8	77 85 83	123.2 99.5 93.2	32·8 31·3 27·8	••		0.010 0.268 0.027	0.0 0.0	wP: vP, mN: mP vP: ssP, ssN mP, wN: mP, mN
25 26 27	Greatest Declination S.	29.470 29.532 29.281	60.1	32.6	27.5	47.6	- 3.9 - 0.8 + 4.1	41°4 43°2 49°2	37·8 38·3 45·9	6·7 9•3 6•6	17°4 20°1 11°4	1.4 0.0 2.4	77 71 79	114.7 122.1 88.9	30.0 27.1 43.5	••	•••	0°004 0°000 0°143	0.0 0.8 6.2	vP, wN : vP mP mP : mP, mN
28 29 30	 Last Qr.	29·250 29·307 29·509	59.2	47.7	11.2	51.2	+ 3·3 + 3·0 + 1·7	50°5 49°5 45°9	49 ^{•2} 47 ^{•5} 41•3	2.6 4.0 9.0	7.8 10.6 18.0	0°2 0°6 0°4	86	103·8 94·2 117 ·0	46.0	••	•••	0.421 0.217 0.000	0°0 0°5 6°5	vN:vP wN,wP:mP mP:vP,wN
Means		29.829	57.6	37.4	20.2	47.0	– o•5	43.4	3 9 · 5	7.5	15.6	1.4	75.7	107.8	31.1	•••		^{Sum} 1°702	1.2	• •
Number of Column for Reference.	I	2	3	4	5	6	7	8	9	10	II	12	13	14	15	16	17	18	19	20

The results apply to the civil day.

The results apply to the Gronn tay. The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The average temperature (Column 7) is that determined from the reduction of the photographic records from 1849 to 1868. The temperature of the Dew Point (Column 9) and the Degree of Humidity (Column 13) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables. The mean difference between the Air and Dew Point Temperatures (Column 10) is the difference between the numbers in Columns 6 and 9, and the Greatest and Least Differences (Columns 11 and 12) are deduced from the 24 hourly photographic measures of the Dry-bulb and Wet-bulb Thermometers. The results on April 15 for Air and Evaporation Temperatures are deduced from eye-observations on account of failure of the photographic registers.

The values given in Columns 3, 4, 5, 14, 15, 16, and 17 are derived from eye-readings of self-registering thermometers.

The mean reading of the Barometer for the month was 29ⁱⁿ.829, being 0ⁱⁿ.026 higher than the average for the 20 years, 1854-1873.

TEMPERATURE OF THE AIR.

The highest in the month was 69° 1 on April 5; the lowest in the month was 28° 2 on April 9; and the range was 40° 9.

The mean of all the highest daily readings in the month was 57°.6, being the same as the average for the 42 years, 1841-1882.

The mean of all the lowest daily readings in the month was 37° 4, being 1° 8 lower than the average for the 42 years, 1841-1882.

The mean of the daily ranges was 20° 2, being 1° 8 greater than the average for the 42 years, 1841-1882.

The mean for the month was 47°.0, being 0°.5 lower than the average for the 20 years, 1849-1868.

		(XX
 	 _		

xiii)

			WIND AS DEDUC	ed from Self-registi	RING	ANEM	OMETEI	RS.		
	shine.			Osler's.				Robin- son's.	CLOUDS .	AND WEATHER.
MONTH and DAY,	Duration of Sunshine.	orizon.	General 1	Direction.		sure or uare Fo		ovement		
1883.	Daily Duratic	Sun above Horizon.	А.М.	Р.М.	Greatest.	Least.	Mean of 24 Hourly Measures.	Horizontal Movement of the Air.	А.М.	Р.М.
April 1	9.4	12.9	NE	ESE	1bs. 2.6	lbs. O°O	lbs. OʻI	miles. 170	0, sltf : 5,cis,ci,cicu,b	3, ci, cicu, h : 0
2 3	9.8	13.0 13.0	ESE Variable	SSE WNW	2·3 0·3	0.0 0.0	0°2 0°0	170 110	0 : 0 0, m : 2, licl, m, f, glm	4, cicu, cu, cus : 0, d 5, licl, cu, cicu, f : 0, f
4 5 6	7.8	13·1 13·2 13·2	SW:WSW SW NNE:NE	SW:S WSW:NW:N ENE:ESE	0°4 2°3 4°5	0.0 0.0	1.0 0.1 0.0	186 216 384	0, f : pcl : 9, m 0 : pcl,m,d : 2,cicu,ci,sltm 10 : 6,cicu,cis,thcl	8, cus, cicu, h : 5, cus, thcl 5, ci, cu, cus : 0, h 0 : 0
7 8 9	9.6	13·3 13·4 13·4	NNE: ENE NE N: NE	ESE: E E: ESE NE: E	2°2 2°0 0°2	0.0 0.0	0.3 0.3 0.0	244 225 84	0 : 9 v : 2, cicu 0, hofr : 0, m, slth	4,cu,cicu,cis: 0 : vv o : 0 6,cus,cicu,licl: 0, sltm : 0, sltm
10 11 12	0.0	13·5 13·6 13·6	N: NNE Calm: S: SW NNE:NNW: N	N:NE NW:N NNE:ESE	4°0 1°0 2°7	0.0 0.0 0.0	0.8 0.1 0.4	253 72 137	0, sltm : 10 : 10 0 : 10, sltf 10 : 10	6,cus,cicu,ci,soha: 0 : 0 9, thcl : 10 7, ci, cis : 9
13 14 15	0.0	13.7 13.7 13.8	SE: SSE: SW Calm: SW WSW	W: NW: NE SSW: NNW WSW	0.2 0.2 4.2	0.0 0.0	0'1 0'0 0'4	115 112 330°	10 : 10 o : 10, sltf, glm pcl, s, thcl : 8, cicu, cis	9,cus,cicu: 10 : v 10,glm,slt-f,mr: 10, sltf : 6,cicu,s,th6 9, cicu, cis : 8
16 17 18	9.3	13.9 13.9 14.0	W SW:SSW SE:S	WNW: WSW SSW: SE S	2·7 3·8 7 ^{.8}	0.0 0.0	0°2 0°4 0°6	300 291 316	pcl : 7, licl o : 4, cu, cicu, ci 10, thcl : 6, cu, cicu, ci	4, cicu, cu, cus : 0, luha 5, cus, cu, cicu : v 8,cicu,cus,lishs: 10, shr
19 20 21	0.0	14°1 14°1 14°2	Variable N:NNW N:NE	NW . NNW N : NNE ENE : NE	0.9 2.7 4.2	0.0 0.0	0'0 0'3 0'9	145 269 374	10, lishs : 10, cr : 10, r, glm, f 10 : 8, cicu, ci 10, sltr : 8, cus, cu	10, fqthr, glm : 10, m 9, cus, cu, cicu : 9, sltr 10, cus, cu : vv, d, sltsh
22 23 24	2.0	14 ·2 14·3 14·4	NE N:NE NNE:NE	ENE: NE E: NNE NE: N	5•0 7•8 5•0	0.0 0.0	0.8 0.9 0.7	370 306 343	V : 6, cicu, cu, lishs V : 8, cu,cus, cicu,sltsn 10 : 10, 0Cshs	8,cicu,cu,hl: 0 : v 9, cus, cu, sn : 7 9, ocshs, hl : 10
25 26 27	10.3	14'4 14'5 14'5	NNW: NW: W SE: SSE E: ESE	SW:SSW SE:E SE	2·3 5·8 2·7	0.0 0.0	0°2 1°1 0°2	228 309 222	10 : 8, m pel,thcl: v, s, cis: v, licl 10 : 10, ocsltr	7,cus.cu.sltr: 0 : 0 4, cicu, cu, cis : 10 10, r : 10 : 10, r
28 29 30	0.4	14 [.] 6 14.7 14.7	Calm: WSW: NW NW : WNW WSW	N NW:SW Variable	0°0 1°1 1°2	0.0 0.0	0.1 0.0 0.0	55	10, r : 10, r 10, cr : 10, sltr v : 3, cus, cicu	10 : 10, r : 10, cr 10, lishs : v 7, cus, cu, cicu : v, licl
Means	4'4	13.8	• • •	•••		•••	0.3	227		
Number of Column for Reference.	21	22	23	24	25	26	27	28	29	30

The mean Temperature of Evaporation for the month was $43^{\circ} \cdot 4$, being $0^{\circ} \cdot 5$ lower than

The mean Temperature of the Dew Point for the month was 39°.5, being 0°.8 lower than

The mean Degree of Humidity for the month was 75.7, being 1.2 less than

The mean Elastic Force of Vapour for the month was oⁱⁿ · 242, being oⁱⁿ · 008 less than

The mean Weight of Vapour in a Cubic Foot of Air for the month was 2873.8, being 057.1 less than

The mean Weight of a Cubic Foot of Air for the month was 545 grains, being 1 grain greater than

The mean amount of Cloud for the month (a clear sky being represented by o and an overcast sky by 10) was 6.4.

The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0.32. The maximum daily amount of Sunshine was 10.3 hours on April 26. The highest reading of the Solar Radiation Thermometer was 127°.3 on April 7; and the lowest reading of the Terrestrial Radiation Thermometer was 18°.6 on April 9. The mean daily distribution of Ozone was, for the 12 hours ending 9 a.m., 0.8; for the 6 hours ending 3 p.m., 0.5; and the 6 hours ending 9 p.m., 0.4.

The Proportions of Wind referred to the cardinal points were N. 10, E. 7, S. 6, and W. 6. One day was calm.

The Greatest Pressure of the Wind in the month was 7^{bs} 8 on the square foot on April 18 and 23. The mean daily Horizontal Movement of the Air for the month was 227 miles; the greatest daily value was 384 miles on April 6; and the least daily value 72 miles on April 11.

the average for the 20 years, 1849-1868.

Rain fell on 10 days in the month, amounting to 1ⁱⁿ 702, as measured by gauge No. 6 partly sunk below the ground; being 0ⁱⁿ 035 greater than the average fall for the 42 years, 1841-1882.

(xxxiv)

DAILY RESULTS OF THE METEOROLOGICAL OBSERVATIONS

		BARO- METER.			ТЕ	MPERAT	URE.			Diffe	rence betv	veen			Темрев	ATURE.		whose inches		
MONTH	Phases			. (Of the A	i r.		Of Evapo- ration.	Of the Dew Point.	the A an T	rence betw ir Tempera d Dew Poi emperatur	ature nt e.		Of Rad	iation.	Of the of the I at Dep	hames	<u> </u>	sone.	
and DAY, 1883.	of the Moon.	Mean of 24 Hourly Values (corrected and reduced to 32° Fahrenheit).	Highest.	Lowest.	Daily Range.	Mean of 24 Hourly Values.	Excess above Average of 20 Years.	Mean of 24 Hourly Values.	De- duced Mean Daily Value.	Mean.	Greatest.	Least.	Degree of Humidity (Saturation = 1∞).	Highest in Sun's Rays.	Lowest on the Grass.	Highest.	Lowest.	Rain collected in Gauge No. 6 receiving surface is 5 above the Ground.	Daily Amount of Ozone.	Electricity.
May 1 2 3	 In Equator	in. 29 · 579 29 · 715 29 · 663	49.8	° 4 ^{1.} 7 40 [.] 3 35 . 5	° 19:3 9:5 20:4	。 50·5 44·3 43·8	• + 1.8 - 4.6 - 5.3	° 46*5 40*8 40*8	36.7	∘ 8•2 7•6 6•5	° 20°0 12°0 13°6	。 0.0 3.7 2.1	75 74 77	0 124'9 88'0 125'1	∘ 36•0 38•3 32•0	0 	、0 ・・ ・・	in. 0°000 0°000 0°046	0.8	wP:mP vP:mP mP:vP,vN
4 5 6	 Perigee New	29·665 29·667 29·669	56.1	30·3 30·8 41·5	22.0 25.3 25.5	40 ^{.5} 44 ^{.0} 53 ^{.0}	- 8.9 - 5.7 + 3.0	40.8	34.6 37.1 45.0	5°9 6'9 8'0	14.9 16.8 16.9	1.1 0.0 0.0	80 76 74	1 17 . 4 1 27.9 1 28.1	23·9 26·0 36·7	••	•••	0.000 0.000	0'0	sP: vP, vN mP —: mP
7 8 9	Greatest Declination N.	29·526 29·400 29·358	50.1	40°0 38°8 41°4	19'4 11'3 5'6	49 ^{.3} 46 [.] 1 44 [.] 9	- 1.0 - 4.5 - 5.9	45.2	44 ^{.3} 44 ^{.2} 4 ² .9	1.0	11°4 5°0 3°8	1.2 0.0 0.0	83 94 93	103·3 83·8 57·0		••	•••	0.116 0.316 0.012	0.0	wP: vP, vN: ml vP, vN: wN, wP wP: wN, vP
10 11 12	•••	29·462 29·715 29·703	55.5	38·1 35·7 41·1	9.2 19.8 15.3	41.6 43.3 51.4	- 9 ^{.5} - 8 ^{.1} - 0 ^{.4}	40'9	39°1 38°0 49°2	2·5 5·3 2·2	6.5 15.0 4.0	0.2 0.0 0.0	92 83 92	78•8 123•5 75•0	29.3	••	•••	0.223 0.129 0.335	5.5	vP, vN sP: ssP, ssN wP, wN : wP
13 14 15	First Qr.	29.778 29.756 29.922	66.1	50•7 50•6 50•5	18.6 15.5 19.9		+ 6.5 + 3.8 + 5.8		49 ^{.3} 51 ^{.6} 53 ^{.2}	9·3 4·7 5·5	16•7 10•8 12•4	2.0 0.2 0.0	71 85 82	129.7 117.5 133.1	49°0 45°3 42°0	•••	· · · · · · · · · · · · · · · · · · ·	0.000 0.177 0.000	11.0	wP:mP wP:vP,vN wP
16 17 18	In Equator Apogee	30°115 30°185 30°042	66•5	47°7 43°8 46°7	26.6 22.7 18.3	60°0 53°7 55′0	+ 6.7 + 2.0 + 0.9		52°1 45°0 42°6	7'9 10'7 12'4	17·3 21·1 19·0	0.0 2.3 5.2	75 68 63	136·7 133·3 121·8	1 -	•••	··· ··	0.000 0.000	4.2	wP wP wP, wN : wN, v]
19 20 21	••	29·845 29·876 29·995	56.1	49°0 46°1 39°5	13.9 10.0 29.6	54·5 51·9 54·5	+ 0.1 - 2.8 - 0.5		43·5 46·3 44·5	5.6	16.5 8.0 19.3	7'4 2'8 0'2	66 81 69	123 [.] 8 86 [.] 5 141 [.] 0	35°9 39°0 29°1	 	••	0.000 0.001 0.000	5.7	wP, wN wP, wN mP
22 23 24	Full Greatest Declination S.	29.992 29.949 29.905	78.4	4 2'4 49'0 49'0	31.7 29.4 32.0	58·7 64·1 63·3	+ 3·4 + 8·6 + 7·6	57.2	46'0 51'5 50'1	12.7 12.6 13.2	21.6 21.9 27.0	3·3 2·6 2·8	63 63 62	140'8 141'7 146'4	32°0 36°7 38°4	· · · · · · · · · · · · · · · · · · ·	···	0.000 0.000 0.000	0.0	vP wP:wN:mP mP:vP
25 26 27	•••	29.713 29.461 29.787	59.9	47.6	9.3	54.9	+ 5.1 - 1.2 0.0	56·8 54·2 51·5	53.5		14.6 3.0 19.1	0.0 0.0 1.8	76 95 71	133·1 77·7 139 [.] 8	37°7 41°0 39°0		•••	0.000 0.322 0.000	0.0	vP:mP mP,mN:wP,w mP
28 29	Last Qr. In Equator	29.890 29.861	71 ° 0 73·5	44 •1	26°9 24°8	58.7	+ 0.5 + 1.9 - 1.4	53.5	48.9	9.8 9.3	20'9 16'7 16'0	2·1 6·0 3·8	66 70 71	142.1	41.3	 	 	0.000 0.000 0.000	4.5	mP:vP mP:vP mP:wP,wN:w
31	••	30.031	7 2 .4	4 2. 7	2 9 ' 7	57.5	+ 0.3	51.2	46 °0	11.2	21.6	1.0	65	143.1	34.1		<u> </u>	0.000	2.8	vP
Means	•••	29.782	63·7	4 3· 5	20.1	53.1	- 0.1	49.2	45°4	7.7	14.9	1.7	76.0	117.8	36.3	<u> </u>	<u> </u>	Sum 1*707	3.9	••
umber of olumn for Reference.	 I	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20

The values given in Columns 3, 4, 5, 14, 15, 16, and 17 are derived from eye-readings of self-registering thermometers.

The mean reading of the Barometer for the month was 29ⁱⁿ 782, being 0ⁱⁿ 005 higher than the average for the 20 years, 1854-1873.

TEMPERATURE OF THE AIR. The highest in the month was 81° o on May 24; the lowest in the month was 30° 3 on May 4; and the range was 50° 7. The mean of all the highest daily readings in the month was 63° 7, being 0° 6 *lower* than the average for the 42 years, 1841-1882. The mean of all the lowest daily readings in the month was 43° 5, being 0° 3 *lower* than the average for the 42 years, 1841-1882. The mean of the daily ranges was 20° 1, being 0° 4 *less* than the average for the 42 years, 1841-1882. The mean for the month was 53° 1, being 0° 1 *lower* than the average for the 20 years, 1849-1868.

			WIND AS DEDUC	CED FROM SELF-REGISTE	RING A	NEMO	METER	s.		
	hine.			Osler's.				Robin- son's.	CLOUDS /	AND WEATHER.
MONTH and DAY,	ion of Suns	orizon.	General Dir	ection.	Pres Šqi	sure oi uare Fo	n the pot.	Iovement		
1883.	Daily Duration of Sunshine.	Sun above Horizon.	А.М.	Р.М.	Greatest.	Least.	Mean of 24 Hourly Measures.	Horizontal Movement of the Air.	Δ.M.	Р.М.
May 1 2 3	0.3	hours. 14.8 14.8 14.9	N: NE: ENE NNE: N NNW: N	ENE: NNE N NNE: ENE	1bs. 6•9 3•6 1•8	lbs.	lbs. 1°I 1°O 0°2	miles. 400 381 204	licl : 9 10 : 10 v : 8, cus,cu,cicu	6,cus,cu,cicu: vv : 10 9, cus, cicu : 10 10, sltr : 10, fqr : vv .
4 5 6	6.5	14°9 15°0 15°1	NNE: N N: NE N: NE	NE: N ENE: ESE: NNE ENE: NNE	2·6 2·3 4·6	0.0 0.0	0'1 0'2 0'6	186 215 369	0, h0fr : 7, cus, cicu 0 : 7, cicu, cus 10 : 6, cicu,cus,soha	6,eu,cicu,cu s,sl: vv, cicu, licl 3, cu, cicu, ci : 10 9 : v, m
7 8 9	0.0	15·1 15·2 15·2	NE : ENE SW : NE N : NNE	SW: SSW $NE: N: SE$ $N: NNE$	1.6 0.0 1.2	0.0 0.0	0'1 0'0 0'3	198 107 246	pel : 10, fqr v : 10, hr 10 : 10	9, cus, cu : pcl : 0 10, ocr : 10, ocr 10, sltr : 10
10 11 12	6.0	15·3 15·3 15·4	NNE: NNW WSW: W SE: SSW: SW	W: WSW SW: NW SW	1°1 3·8 8·5	0.0 0.0	1	214 300 488	10, hyr : 10, fqr, glm 3 : 7, cu, cus, cicu, lishs 10, cr : 10, sc, cr	10,fqthr,glm: vv, mr : 0 9, cus, cu, r, sn, t glm: 10, 0cr, glm 10, sc, sltsh : 10
13 14 15	0.0	15°4 15°5 15°5	SSW : SW SW : S W : NE	SSW: SSE: S SW: SSW NE: ESE	7'7 1'2 0'6	0.0 0.0			10 : 5, cu, cicu v : 10, s, cis v : 0, h	3, cu, cicu : pcl : v, licl 10, fqthr 0, hyr 9,cu,cus,cicu: pcl : 1, licl, d
16 17 18		15.6 15.6 15.7	NE NE: ENE WSW: NNW	NE: ESE: ENE ESE NW: NNW: SW	1.6 0.3 2.6	0.0 0.0 0.0	0.0	242 146 259	licl : 3, licl, soha o, d : 0 thcl, h : 5, cicu, ci, thcl, soha	2, ci, cicu : 0 : 0, d 6, cis, ci, soha : pcl : v, m, h, luco 6, thcl, h, soha : 3, thcl, luco
19 20 21	0.0	15.7 15.8 15.8	W:NW NNW SE:ESE	NNW ESE SE: S: SSW	3.7 0.2 0.1	0.0 0.0	0.0 0.0 0.0	352 90 106	10 : 9 10 : 10 thcl : 1, cicu	9, cus, cu : 10 10, thr : 10 4, cu, cicu, ci : 9, thcl, luha
23		15.9	SSW WSW WSW: SW	SW WSW:W SW:SSW	1.0 4.0 1.3	0.0 0.0	0'I 0'7 0'2	175 296 219	pcl : 0 : 0 1, thcl, d : 0 0, m : 0	1,licl,cicu: 1, licl : v,cus,licl o : o o : o, d
25 26 27	0.0	16.0 16.0 16.1	SW: NE Calm: NNW Variable	ENE: SSW: SE N: NNW SW: S	1.1 3.0 0.2	0.0 0.0	0.5		0 : v, cicu 0, sltm : 10, fqr, m, glm 10 : 7, cu, cicu, m	9, thcl, cicu, soha: 0, sltm 10, fqthr, glm : 10, fqr, glm 4, cus, cicu : 3, cicu, l icl
28 29 30		16.1	S: SW SSE: SSW WSW: NNW: SSE	SW:SSW SW:W SSE:SW	2.8 2.7 0.1	0.0 0.0	0.3	301	o : 1, licl pcl : 7, cicu, cus pcl : 9, m, glm	'2, cu, ci, cicu : 6, s, cis, licl 8, cu, cus, cicu, sltsh: 9 7, cu, cus, cicu : 9
31	10.6	16.3	SW: SE: SSW	SSW:SSE	1.6	0.0	0.0	161	o : o : pcl	7, cus, cu : 0
Means	5.7	15.6	•••	•••	••	••	° .4	233		
Number of Column for Reference.	21	22	23	24	25	26	27	28	29	30

The mean Temperature of Evaporation for the month was $49^{\circ \cdot 2}$, being $0^{\circ \cdot 3}$ higher than

The mean Temperature of the Dew Point for the month was 45°.4, being 0°.3 higher than

The mean Degree of Humidity for the month was 76.0, being 0.6 greater than

The mean Elastic Force of Vapour for the month was oin . 304, being oin . 003 greater than

The mean Weight of Vapour in a Cubic Foot of Air for the month was 3grs 4, being the same as

The mean Weight of a Cubic Foot of Air for the month was 538 grains, being the same as

The mean amount of Cloud for the month (a clear sky being represented by 0 and an overcast sky by 10) was 6.3.

The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0.37. The maximum daily amount of Sunshine was 13.7 hours on May 24.

The highest reading of the Solar Radiation Thermometer was 146° 4 on May 24; and the lowest reading of the Terrestrial Radiation Thermometer was 23° 9 on May 4.

The mean daily distribution of Ozone was, for the 12 hours ending 9 a.m., 1.4; for the 6 hours ending 3 p.m., 1.0; and for the 6 hours ending 9 p.m., 1.5.

The Proportions of Wind referred to the cardinal points were N. 9, E. 6, S. 9, and W. 7.

The Greatest Pressure of the Wind in the month was 8^{1bs} 5 on the square foot on May 12. The mean daily Horizontal Movement of the Air for the month was 233 miles; the greatest daily value was 488 miles on May 12; and the least daily value 90 miles on May 20.

the average for the 20 years, 1849-1868.

Rain fell on 9 days in the month, amounting to 1ⁱⁿ 707, as measured by gauge No. 6 partly sunk below the ground; being oⁱⁿ 296 less than the average fall for the 42 years, 1841-1882.

E 2

(xxxv)

(xxxvi)

DAILY RESULTS OF THE METEOROLOGICAL OBSERVATIONS

		BARO- METER.			TE	MPERAT	TURE.			Diff	erence bet	ween			TEMPE	RATURE.		whose inches		
MONTH	Phases			-	Of the A	ir,		Of Evapo- ration.	Of the Dew Point.	the A ar	erence bet Lir Temper Id Dew Po Cemperatu	rature int re.		Of Rad	liation.	Of the of the 7 at Dep	Water Thames tford.	2.0	one.	
and DAY, 1883.	of the Moon.	Mean of 24 Hourly Values (corrected and reduced to 32° Fahrenheit).	Highest.	Lowest.	Daily Range.	Mean of 24 Hourly Values.	Excess above Average of 20 Years.	Mean of 24 Hourly Values.	De- duced Mean Daily Value.	Mean.	Greatest.	Least.	Degree of Humidity (Saturation = 1∞)	Highest in Sun's Rays.	Lowest on the Grass.	Highest.	Lowest.	Rain collected in Gauge N receiving surface is above the Ground.	Daily Amount of Ozone.	Electricity.
June 1 2 3	Perigee	in. 29 [.] 875 29 [.] 925 29 [.] 982	° 74 ` 4 74 ` 3 71 ` 9	° 40 [.] 8 47 [.] 6 47 [.] 6	• 33·6 26·7 24·3	° 59·3 61·0 60·3	+ 3.3	° 52·7 55·9 54·1	° 46·9 51·5 48·6	° 12.4 9.5 11.7	° 21·2 18·7 21·6	。 2.6 1.1 1.4	63 71 65	° 135 ·6 110·8 136·7	• 31•9 40•9 38•0	。 … 64°1	。 … 61°0	in. 0'000 0'000 0'000	6 ·2 5·0 0·0	mP mP:mN,wP:mP mP:wP,wN:vP
4 5 6	New : Greatest DecN.	29 [.] 822 29 [.] 680 29 [.] 651	74 [•] 1 75•0 68•3	46 ·1 48·4 44 ^{·8}	28.0 26.6 23.5	60.3	+ 2.1 + 2.1 - 2.7	55·3 51·6 51·4	51.0 44.0 47.4	9 ^{.2} 16 ^{.3} 8 ^{.2}	15.6 29.2 16.9	2·3 5·7 0·0	71 55 74	138·1 137·2 140·8	42.0 42.6 42.0	63·3 63·3 63·1	62°0 61°5 61°0	0.000 0.000	0.8 5.2 2.5	wP wP, wN mP
7 8 9	••	29 ^{.5} 91 29 ^{.631} 29 ^{.705}	68.1	47 [.] 7 47 [.] 7 4 ^{5.} 7	8·4 20·4 27·7		- 0.9	50 [•] 4 53 [•] 8 55 [•] 2	49 ^{•2} 50•3 51•7	2.4 7.3 7.4	5·4 15·8 19·3	0.6 0.0 0.2	92 77 77	77·3 130·6 145·2	42 [.] 9 39 [.] 0 37 [.] 9	62·3 62·1 62·1		0.000 0.000 0.000	7°0 1°5 0°0	mP mP
10 11 12	In Equator : First Quarter.	29 [.] 776 29 [.] 960 30 [.] 122	73·1 59•0 76•8	47 [.] 6 47 [.] 5 41 [.] 5	25·5 11·5 35·3	53.3	+ 0.9 - 5.4 + 0.6	55•0 50•7 53•5	51.0 48.1 48.3	8·5 5·2 11·1	21.6 10.1 24.7	0.6 2.5 0.7	74 82 67	136·3 74·2 130·0	39.8 40.0 31.0	62·9 62·6 61·6	62.0 61.0 61.0	0.000 0.000 0.000	5•0 0•0 0•0	mP wP: vP mP, mN: wP, wN
13 14 15	 Apogee 	30 [.] 190 30 [.] 052 29 [.] 708	75·5 77·2 63·6	54·3 54·6 46·6	22.6	65.1	+ 6.2 + 6.0 - 3.5	59°0 59°4 52°8	54°0 54'7 50°0	11°1 10°4 5°8	19.0 20.6 12.0	4.4 1.9 1.5	68 70 82	131 [.] 9 130 [.] 0 109 [.] 0	45·1 47·3 43·1	62·1 62·8 64·1	62·0 62·8 63·0	0.000 0.000 0.000	2°0 0'0 2°0	mP: wP, wN wP: wN: wN, wP wP: vN, vP
16 17 18	•••	29 [.] 651 29 [.] 753 29 [.] 767	64•3 63•4 68•2	44°1 40°4 46°4	23.0	51.9		47°1 47°8 50°8	43 · 2 43·7 45 · 9	7°6 8'2 10'1	20 ^{.5} 16 ^{.0} 18 ^{.7}	1.9 2.0 2.9	76 74 69	123·1 129 ^{.7} 128 ^{.7}	38.0 32.0 38.1	62.6 62.0 61.9	61·5 61·0 61·0	0.003	0.0 0.0 1.0	vP, vN mP: ssP, ssN mP, wN
19 20 21	Greatest Dec S.: Full.	29.715 29.692 29.713	65 [.] 2 62 [.] 9 67 [.] 6	48.6 47.7 50.7	16.6 15.2 16.9	54.5	- 6.0	52.0 51.5 54.0	49°0 48°6 51°7	6°1 5°9 4°7	14°2 10°8 14°2	0.8 0.6 0.0	81 80 85	108·3 133·6 141·8	41.5	61.9 61.9 61.7	61.8 61.0 61.0	0°070	1.0 8.0 1.2	vP, vN wP: wP, vN ssN, wP: ssP, ssN
22 23 24	••	29 [.] 831 29 [.] 839 29 [.] 782	69 · 4 74 [·] 4 76·2	49 ^{.8} 52.3 57.6		61.1	- 0.3	53•5 56•9 59•7	50°4 53°2 55°8		14.4 19.8 18.9	1.4 0.6 1.3	79 76 74	122.8 141.9 141.7	47 [.] 9 45 [.] 6 56 [.] 3	61.6 61.6 64.1	60 [.] 8 61.0 62.0	1		vP, wN : mP vP wP
25 26 27	In Equator LastQr.	29 [.] 632 29 [.] 617 29 [.] 729	67.2	53·2 50·4 49·3	16.8	55.4	+ 1.3 - 6.6 - 4.5	59 [.] 6 53 [.] 1 54 [.] 5	56•6 50•9 51•8	6.6 4.5 5.7	19°0 12°3 11°8	0°2 1°6 1°2	79 86 82	143.0 136.3 126.7	45.2	63.6	62.0	0 ·12 6 0 · 377 ′0 · 059	15.7	vP, vN wP: ssP, ssN: sP, sN wP
28 29 30	 Perigee	29·765 29·829 29·828	84.8	56·5 54·5 56·0	30.3	69.9	+ 0·3 + 8·1 + 7·6	60°0 63°6 64°2	58 ·1 58·7 60·3			0.8 0.0 1.1	67	126·1 139·8 136·3	48.0	63•9 64•9	63·9 64 · 5	0°013 0°000 0°267	3.0 4.5	wP wP:mP vP,vN
Means		29 .794	70.8	48 [.] 9	21.9	58.9	— o·8	54.6	50.8	8.1	17.2	1.4	75.2	128.1	42.6	(28 days) 62 · 8	(28 days) 61 * 8	^{8um} 1•343	4.6	••
Number of Column for Reference.	I	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20

The results apply to the civil day.

The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The average temperature (Column 7) is that determined from the reduction of the photographic records from 1840 to 1868. The temperature of the Dew Point (Column 9) and the Degree of Humidity (Column 13) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables. The mean difference between the Air and Dew Point Temperatures (Column 10) is the difference between the numbers in Columns 6 and 9, and the Greatest and Least Differences (Columns 11 and 12) are deduced from the 24 hourly photographic measures of the Dry-bulb and Wet-bulb Thermometers. The results on June 7 for Barometer and for Air and Evaporation Temperatures, are deduced from eye-observations, on account of accidental failure of photographic registration.

The values given in Columns 3, 4, 5, 14, 15, 16 and 17 are derived from eye-readings of self-registering thermometers.

The mean reading of the Barometer for the month was 29ⁱⁿ 794, being 0ⁱⁿ 034 lower than the average for the 20 years, 1854-1873.

TEMPERATURE OF THE AIR.

The highest in the month was 84°.8 on June 29; the lowest in the month was 40°.4 on June 17; and the range was 44°.4. The mean of all the highest daily readings in the month was 70°.8, being 0°.1 lower than the average for the 42 years, 1841-1882. The mean of all the lowest daily readings in the month was 48° 9, being 1° 0 lower than the average for the 42 years, 1841-1882. The mean of the daily ranges was 21° 9, being 0° 9 greater than the average for the 42 years, 1841-1882.

The mean for the month was 58° 9, being 0° 8 lower than the average for the 20 years, 1849-1868.

			WIND AS DEDUC	ED FROM SELF-REGIST	ERING	ANBM	OMETE	RS.		
	shine.			Osler's.				Robin- son's.	CLOUDS	AND WEATHER.
MONTH and DAY,	ion of Sun	above Horizon.	General 1	Direction.	Pres Sq	sure o uare F	oot.	I ovement		
1883.	Daily Duration of Sunshine.	Sun above I	А.М.	Р.М.	Greatest.	Least.	Mean of 24 Hourly Measures.	Horizontal Movement of the Air.	А.М.	Р.М.
June 1 2. 3	hours. 6•3 7•0 13•6	16.3	Calm : SE : SSW WSW NE : ENE	SSW NE:E NE	1bs. 1°0 1°2 7°0	1bs. 0°0 0°0 0°0	1bs. 0°0 0°0 I°4	miles. 149 127 382	o : 7, ci, cis, soha o : 2, thcl, m, h o, f : 0	8, cus, cu, cicu : 0 7, cus, cicu, cu, h: 0 0 : 0
4 5 6	9.2 12.9 11.3	16.4	NNE: NE NNE: NE ENE	ENE: NE ENE: NE ESE: E	4.6 4.8 2.7	0.0 0.0	1.0 1.3 0.4		v : 10 : v o : 1, cu o : 2, cicu	0 : 0 1, cicu : 0 1, cicu : 4, cis, ci, s, d
7 8 9	0°0 4°6 6°1	16·4 16·4 16·4	ENE: NE: NNE SE : ESE SE : ENE	NNE:NE:SE SE:E ESE:E	0.2 0.0 1.1	0.0 0.0	0.0 0.0	102 121 135	10 : 10, sltsh pcl : 10 : 8, cicu o, h, m,t,hyd: licl : 8, cicu	10, sltr : 10 sltsh : vv, h, m 8,cicu,eus: pcl : 2, h, d 5, cicu, cu, cus : 5, cus, s, h
10 11 12	9°0 0°2 5°4	16•5 16•5 16•5	NE NNE NNE: NW	NE: E: ESE NNE NNW: N	1.5 7.1 1.0	0.0 0.0	0'2	167 271 164	o : 4, cu, cicu pcl, m : 10, sc, fqmr licl : 2, thcl, h, m	6, thcl, soha : v, thcl, m 10, sc : 1, thcl 7, cicu, cus : 9, cus
13 14 15	6.4	16 [.] 5 16.5 16.5	N: NNW S: SW: NNW N: NNW	N: NE: SSE NW: N SW: W	0°2 0°3 2°8	0.0 0.0	0°0 0°0 0°2	158 129 237	vv : 9, s, cis, cicu v : 10 o, h : pcl : 10, sltr	8, cus, cu : 8, cus, thcl ^{7,cu,cicu,cus,h} : pcl : 3,cicu,thc 10, r : 10, shsr
16 17 18	7.3	16.6	W : WSW : NW SW : WSW WSW:SW:WNW	NW:WSW W:WSW N	6.6 4.5 1.0	0.0 0.0	0.0 0.1	321 240 153	10, r : 10, ocshs v : 8, cu, lishs pcl, cus, cicu: 7, cu, cus	6, cu, cicu: ocshs : v vv, ci, cicu : 4,cicu, cis,s, li 7, cu, cicu, cus : 10, sltr
19 20 21	1.4	16 [.] 6 16 [.] 6 16 [.] 6	NNW:W:SW SW:SSE E:ESE	NE: S: SW SE: E E: NE: NNE	0°0 4°6 1°3	0.0 0.0	0.0 0.1	123 212 153	10 : 10, sltr 10 : 10, sltr 10, hyr : 9, cicu, cu	g, cus, cu, lishs : 10, cus 8, cu, cicu, cus : 10, r 10, cus, cu, lishs, t: 10, fqr
22 23 24	7.8	16·6 16·6 16·6	NNE: SW SW SSW	SW SSW SSW	2°4 2°0 1°0	0.0 0.0	0.1 0.1 0.1	221 225 201	10, shsr : 10, thcl, m v : 3, licl, cicu 10 : 9, cus, cu, cicu	9, cus, cu, soha: lishs : 10, m, r 4, cicu, ci : 10 9, cus, cu, cicu: pcl : 8,cus,lie
25 26 27	3.6	16·6 16·5 16·5	Variable SW SSW	SW SSW SSW	1.6 4.3 5.0	0,0 0,0	0.1	•	10, r : 8, cicu, cus, lishs 10 : 8, cu, cicu, shsr licl : 8, cu, cicu, sc	
28 29 30	10.2	16·5 16·5 16·5	SSW: SW SSE: SE SW	SW:S SSE:E SW	5.0 1.0 1.3	0.0 0.0	0.0	166	10, lishs : 10, sc, mr 0 : 1, cu tsm, hyr : 5, cicu	7, eu, eieu: pel : v 5, eus, eu : 7, thel, l, t 8, eus, eu, t: pel : 0
Means	5.5	16.2		•••	•••	•••	0.5	220		
Number of Column for Reference.	21	22	23	24	25	26	27	28	29	30

The mean Temperature of Evaporation for the month was 54°.6, being 0°.6 lower than

The mean Temperature of the Dew Point for the month was 50°. 8, being 0°. 4 lower than

The mean Degree of Humidity for the month was 75.2, being 1.9 greater than

The mean Elastic Force of Vapour for the month was 0ⁱⁿ · 371, being 0ⁱⁿ · 006 less than

The mean Weight of Vapour in a Cubic Foot of Air for the month was 4grs 2, being the same as

The mean Weight of a Cubic Foot of Air for the month was 531 grains, being the same as

The mean amount of Cloud for the month (a clear sky being represented by 0 and an overcast sky by 10) was 6.7.

The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0.33. The maximum daily amount of Sunshine was 13.6 hours on June 3.

The highest reading of the Solar Radiation Thermometer was 145° 2 on June 9; and the lowest reading of the Terrestrial Radiation Thermometer was 31° 0 on June 12.

The mean daily distribution of Ozone was, for the 12 hours ending 9 a.m., 1.8; for the 6 hours ending 3 p.m., 1.5; and for the 6 hours ending 9 p.m., 1.3.

The Proportions of Wind referred to the cardinal points were N. 8, E. 8, S. 8, and W. 6.

The Greatest Pressure of the Wind in the month was 7^{10s} o on the square foot on June 3. The mean daily Horizontal Movement of the Air for the month was 220 miles the greatest daily value was 412 miles on June 5; and the least daily value 102 miles on June 7.

the average for the 20 years, 1849-1868.

Rain fell on 13 days in the month, amounting to 1ⁱⁿ 343, as measured by gauge No. 6 partly sunk below the ground; being oⁱⁿ 710 less than the average fall for the 42 years, 1841-1882.

(xxxvii)

(xxxviii)

DAILY RESULTS OF THE METEOROLOGICAL OBSERVATIONS

<u> </u>		BARO- METER.			TE	MPERAT	URE.			Diffe	erence betv ir Temper	veen			TEMPE	RATURE.		whose		
MONTH	Phases	Values iced to	•	1	Of the A	.ir.		Of Evapo- ration.	Of the Dew Point.	an	ir Temper d Dew Poi emperatur	nt		Of Rad	liation.	Of the of the 7 at Dep	hames	geNo.6,v is 5 ii	one.	
and DAY, 1883.	of the Moon.	Mean of 24 Hourly Values (corrected and reduced to 32° Fahrenheit).	Highest.	Lowest.	Daily Range.	Mean of 24 Hourly Values.	Excess above Average of 20 Years.	Mean of 24 Hourly Values.	De- duced Mean Daily Value.	Mean.	Greatest.	Least.	Degree of Humidity (Saturation = 1∞)	Highest in Sun's Rays.	Lowest on the Grass.	Highest.	Lowest.	Rain collected in Gauge No. 6, receiving surface is 5 above the Ground.	Daily Amount of Ozone.	Electricity.
July 1 2 3	Greatest Declination N.	in. 29.924 29.872 29.711	83.3	° 50·5 53·7 59·7	° 28·8 29·6 19·6	° 64·9 69·4 68·1	+ 7.9	° 59 °2 62°1 63°8	° 54·5 56·4 60·4	° 10'4 13'0 7'7	° 19 ^{.5} 25°0 13°1	° 1.8 1.7 1.8	69 63 76	° 140°2 149°3 134°4	° 42°2 47°9 53°0	。 65·3 66·6 68·2	。 64·8 66•0 	in. 0.000 0.000 0.123	7 ·3 15•5 8•7	mP mP : wP : vP, vN sP, sN : mP, sN
4 5 6	New 	29 [.] 669 29 [.] 707 29 [.] 671	73.3	52.7 50.8 49.6	20.7 22.5 25.1	61·5 60·3 62·5	- 1.5	57 ·2 55·8 57·0	53·5 51·9 52·3	8.0 8.4 10.2	16·7 17·1 20·0	2.2 1.0 0.8	76 74 70	132.6 140.3 142.0	48°0 46°3 41°9	68·2 68·2 68·2	66•o 	0.000 0.000	7°0 15°0 16°2	mP mP mP
7 8 9	 In Equator	29 ^{.6} 79 29 ^{.702} 29 ^{.666}	78.1	55•4 57•0 56•4		63·5 64·3 63·8	+ 1.6 + 2.1 + 1.3	59.3	54°1 54°9 57°2	9'4 9'4 6'6	16·2 20·1 14·8	3·4 0·8 0·8	72 72 79	143·5 151·6 137·7	48·1 53·1 48·5	67•7 67•2 68•0	67.0	0°000 0°164 0°009	12.5	wP:mP vP:mP:vP,sN mP
10 11 12	First Quarter : Apogee.	29 ^{.7} 21 29 ^{.5} 12 29 ^{.3} 98	73.7	52•7 55•5 53•7	21.4 18.2 11.0	61.2	- 0.5 - 1.2 - 4.8	57.0	52·7 52·9 53·7	9.5 8.8 4.6	18.5 20.2 9.9	3.0 1.9 0.0	71 74 85	135.0 143.9 98.5	• 44·3 50 · 9 49 · 5	67 ·2 66·9 66·1	65.8	0.000 0.008 0.218	13.2	mP: vP mP: wP, wN wP: vP, wN
13 14 15	••	29·508 29·582 29·696	65.0	52.7 51.0 46.8		56.5			52·8 53·0 46·2	7.8 3.5 7.2	15.8 10.4 16.7	1•0 0•6 1•4	75 88 77	141°7 122°5 129°7	48°0 46°2 40°0	65 [.] 9 65 [.] 1 65 [.] 1	65 · o	0.000 0.471 0.089	12.0 2.5 2.0	vP mP: sP, sN: vN, vP mP: sP, sN
16 17 18	Greatest Declination S.	29 [.] 948 29 [.] 856 29 [.] 747	64.0	43·6 52·3 49 ° 7		57.7	- 5.8	50°0 54°J 52°I	45•6 50•8 47•8	6.9	13·3 13·5 15·8	4.6 2.6 1.8	71 78 72	112°1 113°3 123°0	36·6 46·5 43·9	65·1 63·1 61·6		0*004 0*000 0*000	1.0 2.7 0.0	mP: vP, wN: vP vP vP: vP, wN
19 20 21	Full	29 [.] 618 29 [.] 552 29 [.] 424	65.1	46·4 47·6 50·2	23°0 17°5 13°9	57.3	- 6.5 - 5.9 - 7.1	52.4 54.3 53.3	48•4 51•6 50•9		18·4 14·8 12·5	1.0 0.4 0.2	73 81 84	139'7 96'7 130'4	37 ^{.0} 40 ^{.1} 47 [.] 4	61'9 61'1 61'1	60 . 0	0.000 0.178 0.170	0°0 1°5 13°2	vP, vN vP, wN wP: sP, sN: vP, vN
22 23 24	 In Equator	29.608 29.629 29.606	66.5	47.7	18.2	54•8 56•4 58•3	$ \begin{array}{r} - 8.1 \\ - 6.4 \\ - 4.4 \end{array} $	51·2 53·4 53·8	47°8 50°6 49°8	7•0 5•8 8•5	14•4 12·7 16•9	2·1 1·3 0·0	81	113·5 115·7 126·8	. 41 . 0 39.9 43.7	60°6 60°6 60°5	••	0°095 0°003 0°282	3•0 5•2 5•0	vN, vP mP: vP vP, wN
25 26 27	Perigee Last Qr.	29.918	68·5	50.6	17.9	58.7	- 4.0	54.7	48•6 51•1 51•4	8•6 7•6 5•9	16.0 14.9 11.4	2·8 2·4 2·4	76	123·2 120·8 124•7	4 3 •6 44•1 39•8	60.8 60.6 61.1		0.002 0.004 0.018	0°0 0°0 5°0	vP: vP, wN vP, wN mP: vP, wN
28 29 30	Greatest Declination N.	29.918 29.721 29.464	74 ' 0	46.6	27.4	60 ·1 59·8 58·6	- 2·5 - 2·8 - 4·0	54.5	50°0 49°8 53°8	10°1 10°0 4°8	19 [.] 6 18 [.] 9 12 [.] 1	3•6 2•5 0·8	70	132·3 132·7 119·3	47°0 37°2 49°1	61.1 61.1 61.1	60.5	0.000 0.044 0.084	1.8	mP: vP mP: vP : vP
31	•••	29.551	76 ·6	53 · 5	23.1	61.6	- 1.0	58.4	55.7	5.9	16.9	0.9	81	132.1	47.7	61.9		0.029	0.0	wP:vP,vN
Means	••	29.689	70 .7	51.3	19.3	59.8	- 2.9	55•6	51.9	7.8	16.0	1.2	75.6	129.0	44'9	64.1	(22 days) 63.5	sum 1.998	6.2	••••
Number of Column for Reference.	I	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20

The results apply to the civil day.

The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The average temperature (Column 7) is that determined from the reduction of the photographic records from 1849 to 1868. The temperature of the Dew Point (Column 9) and the Degree of Humidity (Column 13) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables. The mean difference between the Air and Dew Point Temperatures (Column 10) is the difference between the numbers in Columns 6 and 9, and the Greatest and Least Differences (Columns 11 and 12) are deduced from the 24 hourly photographic measures of the Dry-bulb and Wet-bulb Thermometers.

The values given in Columns 3, 4, 5, 14, 15, 16, and 17 are derived from eye-readings of self-registering thermometers.

The mean reading of the Burometer for the month was 29ⁱⁿ.689, being oⁱⁿ.120 lower than the average for the 20 years, 1854-1873.

TEMPERATURE OF THE AIR.

The highest in the month was 83°·3 on July 2; the lowest in the month was 43°·6 on July 16; and the range was 39°·7. The mean of all the highest daily readings in the month was 70°·7, being 3°·5 lower than the average for the 42 years, 1841–1882. The mean of all the lowest daily readings in the month was 51°·3, being 1°·9 lower than the average for the 42 years, 1841–1882. The mean of the daily ranges was 19°·3, being 1°·7 less than the average for the 42 years, 1841–1882. The mean for the month was 59°·8, being 2°·9 lower than the average for the 20 years, 1849–1868.

			WIND AS DEDUC	ED FROM SELF-REGISTI	RING	ANEMO	OMETE	RS.		
	hine.			Osler's.				Robin- son's.	CLOUDS .	AND WEATHER.
MONTH and DAY, 1883.	on of Suns	orizon.	General 1	Direction.	Pres Squ	sure or tare Fo	ot.	cvement		
1003.	Daily Duration of Sunshine.	Sun above Horizon.	А.М.	Р.М.	Greatest.	Least.	Mean of 24 Hourly Measures.	Horizontal Movement of the Air.	А.М.	Р.М.
July 1 2 3			SW : SSW SE SE : S	SW:SSW SSE:ESE SW:SSW	1bs. 2°1 2°7 1°9	1bs, 0°0 0°0 0°0	lbs. 0°1 0°2 0°2	miles. 212 207 197	o : 6, cu, cicu o : 2, ci, cicu pcl, hyr, l, t : 7, cicu	6, cus, cu, cicu : 0 2, cu, cicu : 3, licl : l, t 8, thcl : 10, sltsh : 7, l, t
4 5 6	10.8	16.4 16.4 16.4	SW: SE: S SSW Calm: SE	SSW SSW S: SSW	4°7 4°0 1°1	0.0 0.0	0'7 0'7 0'1	247 299 186	10 : 9, lishs, t 0 : 0 : 9,cu,cicu,sltsh pcl,cis, s, licl: 7, ci, cis, cicu	7, cus, cu : 0 6, cu, cicu : 1, thcl, s, cis, d 9, cus, cu, cicu: pcl : 1, cus, l
7 8 9	5.5	16·3 16·3 16·3	SSW: SW SSW: SW SSE: SSW: SW	SSW SSW: SE WSW: SW	3.0 2.0 4.0	0.0 0.0	0°4 0°2 0°9	273 215 348	pcl : 9, cus, cu pcl : 6, cu, cus 10, shr : 9, cicu	9, cus, cu, cicu : 9, s, cis 7, cu, cus : v,soha,sltr: 10, r, l, t 9, cu, cicu : 2, cu, cicu, licl
10 11 12	7'1	16·3 16·2 16·2	WSW SSW:S SW:SSW	SW:SSW SW SSW:SW	2.6 12.0 7.6	0.0 0.0	0.5 2.3 1.3	305 460 354	pcl, cus : 3, licl, cu 10 : 10, mr 10 : 10, sc, fqthr, w	8, cu, cus, sltsh : 10 5, sc, cu, mr, w : vv, w 10, sc, r : v
13 14 15	2.2	16•2 16•1 16•1	SW: WSW SSW: NW: NE WSW: WNW	SW:SSW S:NNW:WNW WNW:WSW:NNW	4°0 4°4 6°3	0.0 0.0	0.9 0.3 0.9	362 189 308	v : 7, cu, cus licl : 10, glm, lishs, t 10 : 6, cus, cu	5, cu, cicu : 1, licl 8,glm,tsm,r: tsm, hyr : 10, shsr 8, cus, cu, tsm, hl : 1, licl
16 17 18	° '4	16•1 16•0 16•0	WSW: W WSW W: WNW	WSW WSW WNW: NW	3·6 8•2 2•5	0'0 0'3 0'0	0.6 1.7 0.6	335 477 278	0 : pcl : 10 10 : 10 V : 10	10 : 10, lishs 10, W : VV 10 : 10
19 20 21	o•5	16•0 15•9 15•9	WSW ENE: ESE S: WSW	WNW: SW SE: SSW WSW: W	1•7 1•0 5•6	0.0 0.0 0.0	1.1 0.1 0.1	164 130 360	10 : 8, ci-cu, ci 10, cis, s : 10 10, shr : 6, cu, cus, hyr	9, cus, n, thr : 7, cus, thcl,h, soha 10, sltr : 10, r 8, tsm, shsr : 7, cus, oc -sltr
22 23 24	2.6	15.8 15.8 15.7		W: WNW: SW SW: S: WNW NNW: NW	6.1 1.7 3.9	0.0 0.0	1.6 0.3 0.7	438 253 246	10, shr : 10, sltsh licl : 9, cus, ci pcl, hyr : 7, cicu, cis	9, shsr : 5, s, cis, licl 10, cicu, cu, sltr : 10, ocsltr 7, cus, cicu : 10
25 26 27	5.5	15.7 15.7 15.6	WSW: NNW	W: NW: WSW N: NE NNW:NNE:N	2•7 1•7 6•7	0.0 0.0	0°3 0°2 1°2	241 187 337	pcl : 9, cis, s, m 10 : 8,cus,cu,cicu,sltm v, d : 10 : 10	9, cus, cicu : 10, lishs 8, cus, cicu, sltm: v, cicu, m, sltsh 10, lishs : 10
28 29 30	8.1	15•6 15•5 15•5	NNW: N SW SE: SSE: S	NNW: ENE: SW SW: SSW SSW	3·5 3·5 1·2	0.0 0.0	0.0 0.3 0.1	244 247 181	10 : pcl 0 : 3, cu, ci 10, hysh : 9, cus	5, ci, cis, thcl : v, ci, cicu 7, cu, cus, ci, soha: v, m, hysh 9, cicu, cus, lishs: 9, cus
31	4.3	15 · 4	SSW: WSW	SW: WSW	3.2	0.0	0'2	188	10 : 10 : 7	5, cu, r, t : 10, sltr, t
Means	4.8	16.0	•••				0.6	273		
Number of Column for Reference.	21	22	23	24	25	26	27	28	29	30

The mean Temperature of Evaporation for the month was 55°.6, being 2°.1 lower than

The mean Temperature of the Dew Point for the month was 51°.9, being 1°.8 lower than

The mean Degree of Humidity for the month was 75.6, being 2.6 greater than

The mean Elastic Force of Vapour for the month was oin 386, being oin 027 less than

The mean Weight of Vapour in a Cubic Foot of Air for the month was 4grs 3, being 0gr 3 less than

The mean Weight of a Cubic Foot of Air for the month was 528 grains, being the same as

The mean amount of Cloud for the month (a clear sky being represented by 0 and an overcast sky by 10) was 7.5.

The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0'30. The maximum daily amount of Sunshine was 13'2 hours on July 2.

The highest reading of the Solar Radiation Thermometer was 151°.6 on July 8; and the lowest reading of the Terrestrial Radiation Thermometer was 36°.6 on July 16.

The mean daily distribution of Ozone was, for the 12 hours ending 9 a.m., 3'3; for the 6 hours ending 3 p.m., 1'6; and for the 6 hours ending 9 p.m., 1'8.

The Proportions of Wind referred to the cardinal points were N. 4, E. 2, S. 12, and W. 13.

The Greatest Pressure of the Wind in the month was 12¹⁰⁵. 0 on the square foot on July 11. The mean daily Horizontal Movement of the Air for the month was 273 miles; the greatest daily value was 477 miles on July 17; and the least daily value 130 miles on July 20.

the average for the 20 years, 1849-1868.

Rain fell on 16 days in the month, amounting to 1ⁱⁿ 998, as measured by gauge No. 6 partly sunk below the ground; being oⁱⁿ 434 less than the average fall for the 42 years, 1841–1882.

(xxxix)

DAILY RESULTS OF THE METEOROLOGICAL OBSERVATIONS

		BARO- METER.			TE	MPERAT	URE.			Diff	erence bet	ween			Temper	ATURE.		whose inches		
MONTH	Phases				Of the A	lir.		Of Evapo- ration.	Of the Dew Point.	the A ar J	lir Temper id Dew Po Temperatu	rature int re.		Of Rad	iation.	Of the of the ' at Dep	Chames	ige No.6, w is 5 ir L.	one.	
and DAY, 1883.	of the Moon.	Mean of 24 Hourly Values (corrected and reduced to 32° Fahrenheit).	Highest.	Lowest.	Daily Range.	Mean of 24 Hourly Values.	Excess above Average of 20 Years.	Mean of 24 Hourly Values.	De- duced Mean Daily Value.	Mean.	Greatest.	Least.	Degree of Humidity (Saturation = 100)	Highest in Sun's Rays.	Lowest on the Grass.	Highest.	Lowest.	Rain collected in Gauge No. 6, receiving surface is 5 above the Ground.	Daily Amount of Ozone.	Electricity.
Aug. 1 2 3	 New	in. 29:839 30:001 30:032	73.4	° 52°0 51°7 53°9	° 16·7 21·7 17·9	° 59 [.] 9 61.2 61.6	- 1.2	° 55·2 56·5 58·0	° 51 ·1 52·4 54·9	。 8·8 8·8 6·7	° 17.8 16.9 14.9	。 2·1 2·6 0·6	73 74 79	° 124°0 125°7 117°3	° 47*8 45*2 46*9	° 62•7 63•1 63•1	° 62·5 62·0 62·0	in. 0°069 0°000 0°000		vP: wN, vP mP: wP, wN vP, wN
4 5 6	 In Equator	30.0 34 29.931 29.763	7C*2	53•2 56•9 57•5	20°0 13°3 13°8	61·3 61·9 62·3	- o·8	58·9 60·1 59·4	56•9 58•6 56•9	4°4 3°3 5°4	14.0 7.4 14.8	0.0 0.4 0.6	86 89 83	123.2 107.7 127.3	46°0 56°0 50°0	63•1 63•9 63•4	61.8	0.000 0.016 0.006	5 •5	wP wP wP, wN
7 8 9	 Apogee	29°781 29°669 29°451	62.8	52°0 49°7 51°5	20°0 13°1 17°8	61·5 57·1 59·2	- 5.6	56·8 54·6 53·5	52·7 52·3 48·4	8.8 4.8 10.8	17.1 11.6 18.9	0°2 0°8 1°7	74 84 68	121·8 106·3 133·7	44°7 42°3 43°5	63 [.] 1 63 [.] 7 62.6	62.5	0.000 0.1 <i>0</i> 0	10'5	vvP, wN mP: vP, wN:vvP, ssN vP, wN
10 11 12	First Qr.	29°453 29°726 29°976	72.3	49°7 51°5 46°3	19 .2 20.8 28.1	57*5 59*3 59*5	- 3·4	52°6 54°3 55°0		9'4 9'5 8'5	19 [.] 1 18 [.] 9 17 [.] 8	3.4 3.2 0.8	71 71 74	138.0 138.3 134.5	42.7 42.0 36.5	62·1 62·1 61·5	61.0 61.0 61.2	0°004 0°000 0°000	6.0	mP:vvN:wN,vP mP:vvP mP
13 14 15	Greatest Declination S. ••	29•786 29•598 29•53c	77'2	54°7 57°0 55°3	28.6 20.2 14.7	68·3 66·5 60·2	+ 4.1	59°9 60°3 56°0		15°0 11°2 7°9	27·2 22·1 17·1	5·3 3·2 2·1	58 67 75	148 ·2 147·6 118·1	48.9 51.0 51.0	63·5 63·1	63°0 62°0 	0.000 0.006 0.020	8.3	mP vP:mN,mP vP,wN
16 17 18	 Full	29 [.] 831 29 [.] 902 29 [.] 977	70.4	49 ^{.0} 47 [.] 9 55 [.] 6	18·5 22·5 20·5	58.0 59.6 65.1	- 2.3	51.7 57.5 61.1	46°0 55°7 57°8	12.0 3.9 7.3	18·7 5·9 17·3	4°4 1°8 ′ 0°4	64 87 78	115°0 101°7 126°0	40°0 39°4 44°5	 63•1	 63 [.] 0	0*000 0*000 0*007	2•0 2•0 0•0	vP, wN mP wP: wN, mP
19 20 21	 In Equator Perigee	30. 077 29.967 29.979	81.9	52·5 46·4 58·3	26·6 35·5 26·8	63°0 63°0 69°1		59 [.] 4 57 [.] 6 62 [.] 1	56•4 53•0 56•6	6.6 10.0 12.5	17.7 26.3 26.3	0.4 0.4 3.4	79 70 64	150°2 144°0 139°8	40 ^{.0} 32 ^{.8} 52 [.] 9	64·3 64·1 64·6		0.004 0.000 0.000	3.8	wP wP:vP mP:wP,wN
22 23 24	 	30.001 30.089 30.083	77 ° 0	58·6 50·7 44 ^{.8}	16·7 26·3 31•6	65·9 62·8 61·0		62·7 57·2 55·6	60'1 52'4 50'9	5.8 10.4 10.1	12·1 22·8 24·7	2·3 1·4 0·0	82 69 70	113·2 133·0 144·6	49°2 43°0 35°2	65°1 65°1 65°1	64.5	0*007 0*000 0*000	0.0 0.0	vP, vN vP vP
25 26 27	Last Qr. Greatest Declination N.	29°995 29°948 29°863	7 ^{8:} 4	50.7 49.1 54.8	26·7 .29•3 22•6	63.8	+ 2.1 + 2.9 + 4.3	58·2 57·7 58·2	52.7	9'0 11'1 12'5	23.6 23.5 22.3	0.0 0.0 3.2	73 67 64	146.9 120.5 122.0	38·9 42·0 44·0	65·1 	65°0 	0.000 0.000	0.0	vP: wP vP wP
28 29 30	• • • • • •	29 · 798 29 · 683 29·717	72.1	58•0 56•7 54•5	20°4 15°4 22°1	63.9	+ 5.1 + 3.3 + 2.3	59'7 59'4 58'6	54·7 55·6 55·1	11°1 8•3 7•6	21.9 15.1 19.2	2·5 3·6 1·7	68 75 77	140 [.] 6 109 [.] 3 152 [.] 7	49°7 46°0 43°2	••	••	0.000 0.000 0.000	3.2	wP, wN wP, wN vP
31	·•	29.561	64.7	55.6	9.1	59.0	- 1.3	57.5	56.1	2.9	9.3	0.6	91	94.8	46 · 3		••	0.381	0.0	vvP, vvN
Means		29.840	74.0	52.8	21.5	62.2	+ 0.3	57.6	53.7	8.5	18.1	1.2	74.3	127.9	44.6	(22 days) 63.5	(22 days) 62*7	^{Sum} 0.700	3.4	
Number of Column for Reference.	I	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20

The results apply to the civil day.

The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The average temperature (Column 7) is that determined from the reduction of the photographic records from 1849 to 1868. The temperature of the Dew Point (Column 9) and the Degree of Humidity (Column 13) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables. The mean difference between the Air and Dew Point Temperatures (Column 10) is the difference between the numbers in Columns 6 and 9, and the Greatest and Least Differences (Columns 11) and 12) are deduced from the 24 hourly photographic measures of the Dry-bulb and Wet-bulb Thermometers.

The values given in Columns 3, 4, 5, 14, 15, 16, and 17 are derived from eye-readings of self-registering thermometers.

The mean reading of the Barometer for the month was 29ⁱⁿ.840, being 0ⁱⁿ.041 higher than the average for the 20 years, 1854-1875.

TEMPERATURE OF THE AIR.

The highest in the month was $85^{\circ} \cdot 1$ on August 21; the lowest in the month was $44^{\circ} \cdot 8$ on August 24; and the range was $40^{\circ} \cdot 3$. The mean of all the highest daily readings in the month was $74^{\circ} \cdot 0$, being $1^{\circ} \cdot 2$ higher than the average for the 42 years, 1841-1882. The mean of all the lowest daily readings in the month was $52^{\circ} \cdot 8$, being $0^{\circ} \cdot 4$ lower than the average for the 42 years, 1841-1882. The mean of the daily ranges was $21^{\circ} \cdot 2$, being $1^{\circ} \cdot 6$ greater than the average for the 42 years, 1841-1882. The mean for the month was $62^{\circ} \cdot 2$, being $0^{\circ} \cdot 3$ higher than the average for the 20 years, 1849-1868.

				ED FROM SELF-REGIST				1		
	shine.			Osler's.				ROBIN- SON'S.	CLOUDS	AND WEATHER.
MONTH and DAY, 1883.	ion of Sun	Horizon.	General 1	Direction.		ssure o uare F	oot.	fovement		
1003.	Daily Duration of Sunshine.	Sun above l	А.М.	Р.М.	Greatest.	Least.	Mean of 24 Hourly Measures.	Horizontal Movement of the Air.	A . M .	Р.М.
	hours.	hours.			lbs.	lbs.	lbs.	miles.	· · · · · · · · · · · · · · · · · · ·	
Aug. 1 2 3	3·5 1·9 3·1	15·3 15·3 15·2	WSW	WSW: WNW NW: WSW Variable	2.7 1.1 0.8	0.0 0.0	0.3 0.1 0.1	262 160 141	10, shr : 5, cicu, cu thcl : 10 pcl : 10, sltshs	9, cu, cicu : v, sltr 9, cu, cus, n, t : 10 7, cus, cu, ci, ocsltr, glm: v, m
4 5 6	3·5 0'2 1·0	15°2 15°1 15°1	Calm : SW WSW SW	SW WSW: SW WSW	0.9 1.5 3.7	0.0 0.0 0.0	0.0 0.2 0.3	130 239 254	m : 10, m, mr 10 : 10, octhr 10 : 10, sltshs	8, cicu : 7, cus, thcl 10, 0cm,-r : 10 9,cus,cicu,ocmr: v, shsr
7 8 9	4'9 0'9 9'6	15.0	WSW: N:NW SW SW: WSW: W	N:NW SW WSW	2.0 10.1 7.8	0.0 0.0	0°1 1°5 1°5	185 443 464	v : 3, cicu, h v : 9,thcl,cus,sc,slt o : 4,licl,cu,cus,v	
10 11 12	11.0 7.3 6.1	14.9 14.8	SW:WSW WSW	WSW W:WSW SW:SSW:SSE	12.0 5.5 2.4	0.2 0.0 0.0	2.5 1.4 0.2	614 406 178		r 6,cu,cus,sltsh,stw: v, stw 7, cicu, cus : 2, cus, h 8, cu, cicu, ci : 9, cus, licl
13 14 15	11.6	14.7 14.6 14.6	SSE: SSW SW SW	SW:S SW WSW:W	4°4 13·5 9°2	0.1 0.0 0.0	0.9 3.1 3.0	287 481 497	licl : v, ci, cicu, cis 10 : 3, cu, w 10, w : 9,cicu,cus,lishs,v	3, licl,cu,w: 1, stw : v, sltsh,
16 17 18	0.4	14.5 14.4 14.4	NW SSW WSW: W: NNW	NW:SW SSW:SW NE	6.0 2.5 0.7	0.0 0.0	1.2 0.3 0.0	360 261 124	10, sltr : 9 o, d : 10, mr 10 : 10, ocsltr: pcl, glm	7, cus, cicu : 1, licl, d, luha 10 : 10, ocmr 5, cu, cicu, h : 2, h, m
19 20 21	6.4	14·3 14·3 14·2	Calm: NE: SE Calm: E: SE Variable	SE: E SE: SW : SSE SW: N: SSW	1.4 1.0 0.9	0.0 0.0	0.0 0.1 0.1	110 106 106	thcl, m : 4, ci, cicu licl : v, f, m 10 : 9, m	5, cu, cicu : 4, licl 2, cu, cicu, ci : 6, cus, licl, m 6, cicu, cu : 0, m, d
22 23 24	11.1	14'1 14'1 14'0		N NE: E ENE: ESE: E	0.7 1.2 1.5	0.0 0.0	0'I 0'I 0'2	130 171 148	v : 6, cus, cu, cicu, m, glr IO : 0, sltm o, m, hyd, sltf: 0, f : 0	n 9, glm, m, sltsh : pcl : 3, licl, m 2, licl : 0 : 0, d, slth, 0 : 0, slth, sltm, d
25 26 27	7.9	13.9 13.9 13.8	SE:SW:WSW	SE: NE: Calm WNW: SW SW: WSW	0.6 1.6 3.1	0.0 0.0	0.1	99 155 293	o, m, d : 8, thcl, tkf o, m, f : 7, thcl, f, m o : 10, s, cis	o : thcl : o, h, m, d 10, thcl, m : thcl : o 10, thcl, soha: pcl, sltsh : v
28 29 30	0.5	13·8 13·7 13·7	WSW: WNW WSW: W SW	W:WSW WNW:WSW:SW SW	2·6 5·1 4·5	0.0 0.0	1.1	301 365 336	o : 8, cicu, cus,m 10, w : 10, sc, ocmr pcl : 10	o : o : v, h, m, c 9, sc, cu, cus: pcl : o 7, cicu, ci : 10 : 10, octh.
31	0.0	1 <i>3</i> .6	WSW	WSW: NE:NNW	1.4	0.0	0'1	136	10, ocshs : 10, thr	10, fqthr : fqthr : 10, hyr
Means	5.1	14.5	•••	•••			0.2	256		ж
umber of olumn for eference.	21	22	23	24	25	26	27	28	29	

The mean Temperature of Evaporation for the month was 57°.6, being 0°.3 lower than

The mean Temperature of the Dew Point for the month was 53° . 7, being 0° . 7 lower than

The mean Degree of Humidity for the month was 74.3, being 2.2 less than

The mean Elastic Force of Vapour for the month was o'n . 413, being o'n . 011 less than

The mean Weight of Vapour in a Cubic Foot of Air for the month was 45". 6, being 05". 1 less than

The mean Weight of a Cubic Foot of Air for the month was 528 grains, being the same as

The mean amount of Cloud for the month (a clear sky being represented by o and an overcast sky by 10) was 6.3.

The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0.35. The maximum daily amount of Sunshine was 11.6 hours on August 14. The highest reading of the Solar Radiation Thermometer was 152°.7 on August 30; and the lowest reading of the Terrestrial Radiation Thermometer was 32°.8 on August 20. The mean daily distribution of Ozone was, for the 12 hours ending 9 a.m., 1.1; for the 6 hours ending 3 p.m., 1.0; and for the 6 hours ending 9 p.m., 1.3.

The Proportions of Wind referred to the cardinal points were N. 4, E. 3, S. 9, and W. 14. One day was calm.

The Greatest Pressure of the Wind in the month was 13^{1bs} 5 on the square foot on August 14. The mean daily Horizontal Movement of the Air for the month was 256 miles; the greatest daily value was 614 miles on August 10; and the least daily value 99 miles on August 25.

the average for the 20 years, 1849-1868

Rain fell on 10 days in the month, amounting to oⁱⁿ 709, as measured by gauge No. 6 partly sunk below the ground; being 1ⁱⁿ 749 less than the average fall for the 42 years, 1841-1882.

(**(xli)**

(xlii)

DAILY RESULTS OF THE METEOROLOGICAL OBSERVATIONS

[BARO- METER.			Tr	MPERAT	URE.			Diffe	erence betv ir Temper	ween			TEMPEE	ATURE.		whose inches		
MONTH	Phases				Of the A	ir.		Of Evapo- ration.	Of the Dew Point.	an	ir Temper d Dew Poi emperatur	int		Of Rad	iation.	Of the of the ' at Dep	Thames	ige No. 6, v 3 is 5 i	one.	
and DAY, 1893.	of the Moon.	Mean of 24 Hourly Values (corrected and reduced to 32° Fahrenheit).	Highest.	Lowest.	Daily Range.	Mean of 24 Hourly Values.	Excess above Average of 20 Years.	Mean of 24 Hourly Values.	De- duced Mean Daily Value.	Mean.	Greatest.	Least.	Degree of Humidity (Saturation = 1∞)	Highest in Sun's Rays.	Lowest on the Grass.	Highest.	Lowest.	Rain collected in Gauge No.6, receiving surface is 5 above the Ground.	Daily Amount of Ozone.	Electricity.
Sept. 1 2 3	New In Equator	in. 29°295 28°74 I 29°232	° 68·2 61·9 67·1	° 51•3 54•7 51•8	° 16·9 7·2 15·3	° 57°7 58°8 58°5	• - 2·4 - 1·2 - 1·3	° 54•9 56•5 53•9	° 52·4 54·4 49·8	° 5·3 · 4·4 8·7	° 13·5 7·8 16·9	° °4 1°9 4°2	83 85 74	° 130.8 95.3 128.2	° 41·3 53·5 46·0	0 •• ••	0 •• ••	in. 0°070 0°275 0°015		mP: vP, vN wP: wwP, vN wP: mP, sN
4 5 6	 Apogee	29 [.] 558 29 [.] 685 29 [.] 793	64'1	48·2 46·0 41·5	17°9 18°1 17°5	54·8 53·0 51·2	- 4.9 - 6.5 - 8.1	50 [.] 5 50 [.] 0 49 [.] 4	46°4 47°0 47°6	8·4 6·0 3·6	19'4 14'8 11'4	1.7 1.0 0.4	73 80 88	122 .1 118.0 89.1	39∙0 36∙5 33∙0	••	••	0.000 0.404 0.000	7*5 0*0 0*0	vvP, vvN wP, wN : mP wP
7 8 9	 First Qr.	29 .7 21 29.771 29.946	66.1	47°6 48°6 41°6	14.7 17.5 28.5		- 4.5 - 2.9 - 3.4	51·2 52·7 51·0	48°0 49'7 47'1	6·5 6·2 8·0	16.7 17.6 19.3	0.0 1.1 1.3	78 81 75	107°6 114°0 127°8	38·1 37·5 31·0	••	••	0.000 0.112 0.000	0'0 0'0 2'0	mP:vP wP:mP sP:mP
10 11 12	Greatest Declination S.	29 [.] 788 29 [.] 843 29 [.] 987	60.1	50·8 54·3 53·0	14.6 5.8 19.8	56.6	- 0.3 - 1.5 + 1.8	55·1 56·3 57·9		5·5 0·6 3·5	11·3 3·4 12·1	0.0 0.0	82 98 89	88·3 74·9 125·9	42·9 53·0 43·5	••	• • • •	0°140 1°370 0°010	8.7 2.2 0.0	wP wP, wN wP
13 14 15	 	30°043 29°910 29°800	73.1	52·5 52·6 51·6	17 °9 20°5 14°4	58·6 59·8 57·7	+ 0.8 + 2.2 + 0.3	57.0 56.9 55.7	55•6 54•4 53•9	3.0 5.4 3.8	13·3 16·4 9'7	0.0 0.0 0.0	89 83 87	128.7 128.1 100.3	41.8 45.8 42.6	···	••	0.000 0.000 0.000	3.0 0.0 1.0	wP:mP wP:mP vP,wN
16 17 18	In Equator: Full Perigee	29.968 30.031 30.012	77.1	48·1 48·6 49 · 8	25·1 28·5 25·3	1	+ 1.3 + 3.1 + 4.7	55·7 57·0 58·7	53·1 54·2 56·2	5·5 6·0 5·4	16·9 20·4 15·0	0.0 0.0 0.0	82 81 83	116:6 126:3 133:3	40°4 40°8 41°2	60°1 60°1 60°7	59•8 60•0 60•0	0.000 0.000 0.000	0.0 0.0	vP wP:vvP,vN vP
19 20 21	 	29.904 29.602 29.548	62.8	50·8 52·7 49 [•] 4	24·3 10·1 9·6	57.9	$+ 4^{\cdot 3}$ + 1^{\cdot 3} - 2^{\cdot 3}	57·3 56·6 53·9	54.0 55.4 53.7	7°1 2°5 0°4	18·9 4·6 2·7	0.0 0.8	78 92 99	121°0 77°0 89°8	43.0 43.5 38.1	 61°1 61°1	 61.0 60.0	0.000 0.001 0.162	0.0 1.0 0.0	wP:mP wP,wN:wP vP,wN
22 23 24	Greatest Declination N. Last Qr.	29·558 29·854 29·371	60°7 67`5 67`3	49°0 42°1 53°4	11.7 25.4 13.9	54•7 54•6 59•6	- 1.5 - 1.5 + 3.7	53·3 52·0 58·1	51·9 49·5 56·8	2·8 5·1 2·8	7°0 16°9 9°4	0.0 0.0 0.0	90 82 91	80.1 151.5 109.5	40°0 32°3 47°1	 60'1 60'4	60°0 60°0	0.000 0.000 0.230	0.2 1.8 4.2	${f wP: mP} \ {f mP} \ {f: mP}$
25 26 27	 	29 ·6 45 29·570 29·495	69.7	54·3 53·9 51·4	14.9 15.8 13.8	60·7 59·8 56·5	+ 4.9 + 4.1 + 1.0	57:8 57:1 53:7	55·3 54·7 51·1	5•4 5•1 5•4	13.9 13.7 11.6	0.6 0.0 2.0	84	135.0 128.8 122.9	47°0 47°6 45°0	60.9 61.1 60.3	60.2	0'004 0'063 0'105	2·3 3·8 4·5	wP:mP —:mP wP:vvP,vN
28 29 30	 In Equator • •	29.430 29.090 29.178	59.4	49 ^{.5} 47 ^{.0} 44 ^{.2}	12.4		- 3.0	50.3	51°0 48°2 47°4		14°2 12°0 3°8	°*4 c*0 o*0		116 ·5 129·7 96·0	42·3 43·4 40·9	59.3	59'4 59'0 58'2	0°066 0°452 0°260	4.0 4.0 0.0	mP: vP: — —: vP, vN: vvP, vvN vvP, vvN
Means		29.652	66.4	49'7	16.8	56.9	— o 6	54.4	52.1	4.8	12.8	0.6	84.6	112.7	41.9			^{Sum} 3.815	2.8	••
Number of Column for Reference.	I	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20

The results apply to the civil day.

The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The average temperature (Column 7) is that determined from the reduction of the photographic records from 1849 to 1868. The temperature of the Dew Point (Column 9) and the Degree of Humidity (Column 13) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables. The mean difference between the Air and Dew Point Temperatures (Column 10) is the difference between the numbers in Columns 6 and 9, and the Greatest and Least Differences (Columns 11 and 12) are deduced from the 24 hourly photographic measures of the Dry-bulb and Wet-bulb Thermometers.

The values given in Columns 3, 4, 5, 14, 15, 16 and 17 are derived from eye-readings of self-registering thermometers.

The mean reading of the Barometer for the month was 29ⁱⁿ.652, being 0ⁱⁿ.135 lower than the average for the 20 years, 1854-1873.

TEMPERATURE OF THE AIR.

The highest in the month was 77° 1 on September 17; the lowest in the month was 41° 5 on September 6; and the range was 35° 6. The mean of all the highest daily readings in the month was 66°.4, being 1°.0 lower than the average for the 42 years, 1841-1882. The mean of all the lowest daily readings in the month was 49°.7, being 0°.6 higher than the average for the 42 years, 1841-1882. The mean of the daily ranges was 16°.8, being 1°.5 less than the average for the 42 years, 1841-1882.

The mean for the month was 56° , being 0° . 6 lower than the average for the 20 years, 1849-1868.

	}		WIND AS DEDUC	CED FROM SELF-REGIST	BRING	ANEMO	OMETEI	RS.			· · · · · ·
	Sunshine.			Osler's.				Robin- son's.		CLOUDS	AND WEATHER.
MONTH and DAY, 1883.	ion of Suns	Iorizon.	General :	Direction.	Pres Squ	sure oi uare F	oot.	fovement			
1003.	Daily Duration of	Sun above Horizon.	A.M.	Р.М.	Greatest.	Least.	Mean of 24 Hourly Measures.	Horizontal Movement of the Air.		A.M.	Р.М.
Sept. 1 2 3	0.2	hours. 13.5 13.4 13.4	W:SW:SSW SSE:S SW		168 7.0 18.8 17.0	1bs. 0.0 0.8 0.5	168. 0°9 5°6 4°8	miles. 292 663 663	10 10, lishs, w pcl, stw	: 6, cus, cicu : 10, sc, shsr, stw : 9, stw	10, sltr : 10, fqr 10, sc, fqr, stw : 10, sc, stw, slr 8,cus,cu,iishs,w: v, sltsh : 1
4 5 6	4.0	13·3 13·2 13·2	WSW:WNW SSW:NNW SW:WSW	W: SW N: NNE SW: WSW	3.4 5.6 5.6	0.0 0.0	0.6 0.2 0.2	320 238 278	0 10, hyr 0, d	: 3, cu, cicu, h, m : 10, r, sltm : 10, sltm, sltr	7,cus,cicu: vv, ocsltr: v, h 6, cu, cicu, cis : o, d 10, ocmr : 10, ocmr : o, slth,hyc
7 8 9	4.8	13·1 13·0 13·0	WSW SW SW	WSW: SW NW: NNW S: SSE	7 ^{.2} 4 ^{.3} 0 ^{.6}	0.0 0.0	1'2 0'9 0'0	387 326 136	v, s, cis 10 v, d	: 10 : 10, fqr : 0, m, h	io, soha : 10 6, cus, cu : 0 : 0, d 2, cu, cis : 8, cis, licl
10 11 12	0.0	12.9 12.9 12.8	SE ESE: NNE N	SSE: ESE NNE: N N: ENE: E	1.8 1.9 0.2	0.0 0.0 0.0	0.1 0.1 0.1	217 218 155	licl 10, hyr 10	: 10, sltr : 10, hyr : 10, sltm	10 : 10, fqr 10, ocmr : 10, hyshs 5, cus, cu. cicu : 0, m, hyd, f
13 14 15	6.1	12.7 12.7 12.6	NNE NNE NNE: N	NNE ENE: ESE SSW: SW	0.2 0.9 0.2	0.0 0.0	0.0 0.0	184 189 144	f pcl v, m	: 10, f, mr : 9 : 7, thcl, h, m	6,cicu,cus: h v, sltm 3, cus, cu : v : o, hyd 2, h, thcl : o, h, m, hyd
16 17 18	6.5	12.6 12.5 12.4	SW Calm: NE: ESE ENE: SE	WSW: NW: Calm SE SSE	0.0 0.0 0.3	0.0 0.0	0.0 0.0	84 82 115	o, m, hyd o, f o, sltf, hyd	: 0, f, m, h : 0, h, sltf : 0, sltf	o, h, sltm : o, m, d, f 4, cicu, cu, t : 4, cus, licl, h, m, d, luh 3, cicu, licl : o, h, hyd, luha, luco
19 20 21	0.0	12·3 12·3 12·2	ENE : SE ESE : ENE Variable	SSE : ESE SE : SSW SW : Calm	0'4 0'0 0'0	0.0 0.0	0.0 0.0	122 117 83	o, tkf thcl licl, hyd, f	: 3, cu, cicu : 10, 0cr : 10, r, m, f	1, ci, cicu : 2, thcl, luha 10, ocr : pcl : 5,liel, luha 9, cus, r, sltf : v, m, f
22 23 24	8.4	12°2 12°1 12°0	NE: NNE: N SW: SE: 8 SSE: SSW	NNW : N SSW : SSE WSW : SW	1·1 1·0 7·5	0.0 0.0 0.0	0.0 0.0 1.4	152 150 397	10 licl 10, r	: 10, sltr, sltm : 0,\tkf : 10, cr, w	10, sltsh : v, licl 0 : 0 : v 9, cicu, cus : v
25 26 27	5.3	11.9 11.9 11.8	SW:WSW SSE:SW SW	WSW: SSW SW SW: WSW	4.0 13.0 7.3	0.0 0.0	0.5 2.4 1.6	316 480 442	v 10, hysh 0	: 6,licl,cicu,cus,sc : v, sc, mr, w : 4, cu, cicu, w	6, lishs : vv : v, thcl, d 4, w : o, hyd 8, hyshs : vv : v
28 29 30	5.7	11.7 11.7 11.6	SW: WSW W: WSW N: NNW	SW:SSE:SSW WSW:SW NE:N:NNW	3·6 4·1 9·6	0.0 0.0	0.0	345 345 352	10 10, r 10, r	: 9, cicu, cis : 8,cu,cus,sltm,sltsh : 10, sc, fqr, w	7, cus, cu : 10, fqmr : 10, r 6,cu,cicu,shr,hl: 10, hyr : 10, fqslis 10, fqslis, w: 10, shsr : 10, sltr
Means	3.9	12.6	•••	•••			0.8	266			
Number of Column for Reference.	21	22	23	24	25	26	27	28	······································	29	30

The mean Temperature of Evaporation for the month was 54°.4, being 0°.1 higher than

The mean Temperature of the Dew Point for the month was 52° · 1, being 0° · 7 higher than

The mean Degree of Humidity for the month was 84.6, being 4.5 greater than

the average for the 20 years, 1849-1868.

The mean Elastic Force of Vapour for the month was oⁱⁿ · 389, being oⁱⁿ · 010 greater than The mean Weight of Vapour in a Cubic Foot of Air for the month was 4^{gra} · 3, being o^{gr} · 1 greater than

The mean Weight of a Cubic Foot of Air for the month was 531 grains, being 1 grain less than

The mean amount of Cloud for the month (a clear sky being represented by o and an overcast sky by 10) was 6.1.

The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0.31. The maximum daily amount of Sunshine was 9.6 hours on September 9. The highest reading of the Solar Radiation Thermometer was 135° o on September 25; and the lowest reading of the Terrestrial Radiation Thermometer was 31° o on

September 9. The mean daily distribution of Ozone was, for the 12 hours ending 9 a.m., 1.5; for the 6 hours ending 3 p.m., 0.5; and for the 6 hours ending 9 p.m., 0.8.

The Proportions of Wind referred to the cardinal points were N. 6, E. 5, S. 11, and W. 7. One day was calm.

The Greatest Pressure of the Wind in the month was 18^{lbs}. 8 on the square foot on September 2. The mean daily Horizontal Movement of the Air for the month was 266 miles; the greatest daily value was 663 miles on September 2 and 3; and the least daily value 82 miles on September 17.

Rain fell on 17 days in the month, amounting to 3ⁱⁿ 815, as measured by gauge No. 6 partly sunk below the ground; being 1ⁱⁿ 520 greater than the average fall for the 42 years, 1841-1882.

(xliii)

(xliv)

DAILY RESULTS OF THE METEOROLOGICAL OBSERVATIONS

					•															
		BARO- METER.			TE	MPERAT	URE.			Diffe	rence betv ir Temper	reen			TEMPEL	ATURE.		whose inches		
MONTH	Phases	Values loed to		(Of the Ai	ir.		Of Evapo- ration.	Of the Dew Point.	an	d Dew Poi emperatur	nt		Of Rad	iation.	Of the of the T at Dep	Water hames tford.	ngeNo.6, is 5 i L	юпө.	
and DAY, 1883:	of the Moon.	Mean of 24 Hourly Values (corrected and reduced to 32° Fahrenheit).	Highest.	Lowest.	Daily Range.	Mean of 24 Hourly Values.	Excess above Average of 20 Years.	Mean of 24 Hourly Values.	De- duced Mean Daily Value.	Mean.	Greatest.	Least.	Degree of Humidity (Saturation = 1∞)	Highest in Sun's Rays.	Lowest on thè Grass.	Highest.	Lowest.	Rain collected in Gauge No. 6, receiving surface is 5 above the Ground.	Daily Amount of Ozone.	Electricity.
Oct. 1 2 3	New Apogee	in. 29 [•] 549 29 [•] 779 29 [•] 444		° 44'7 40'3 41'4	° 10.8 14.6 7.7	° 49°2 46°8 46°3	° - 5·5 - 7·6 - 7·7	° 46·1 43·5 45·2	° 4 2· 8 39 · 8 44 · 0	° 6·4 7·0 2·3	° 12°0 14°4 4°0	0.8 0.4 1.3	78 78 92	° 110'0 111'6 66'7	0 38.0 33.1 32.1	° 58·3 55·9 55·3	° 57°0 55°5 53°5	in. 0°030 0°043 0°249	0.0	: vP, vN : vP vvP : vP, wN wP, wN : ssN, vP
4 5 6	••	29.413 29.890 30.050	52•5 53•9	40 ^{.5} 44 ^{.7} 40 ^{.3}	12'0 9'2	47 ^{.6} 48 ^{.8} 48 ^{.8}	- 6·1 - 4·6	45.3	42.8	4.8	7.6 13.8 10.8	1°1 1°7 1°1	84 76 82	60°0 93°3 108°8	34·5 38·0 31·5	54·3 53·3 53·4		0°052 0°027 0°000	3.0	vP, vN vP: vP, vN vP: mP
7 8 9	Greatest Declination s. First Qr.	30°258 30°321 30°189	61.2	41°0 49'9 48'4	14.4 11.6 10.8	48·6 55·0 54·5	+ 2.5	46.7 53.9 52.8	44°7 52°8 51°2	3.9 2.2 3.3	7.6 4.9 7.0	0*2 0*8 0*8	87 92 89	68·5 74 ^{.0} 76·9	32`7 49`3 40'0	53·6 52·4	51°2 52°0	0.000 0.000	3.0	vP:mP wP,wN:vP wP:mP
10 11 12	 	29 [.] 868 29.715 29.869	56.2	43.7 47.6 42.5	18·4 8·6 13·6	51.6		50°8 50°8 49°4	49 [•] 3 50•0 48•4	3.0 1.6 1.9	10·3 3·8 6·2	0.0 0.0	90 94 94	99 · 8 76·2 70 · 0	-36•9 38•1 32•8	52·9 53·1 52·9	52•5 52•5 51•0	0.000 0.000	0.0	mP wP,wN wP:vP
13 14 15	 In Equator 	29.890 29.728 29.551	64.6	40°6 46°3 48°5	18.3	54.7	-1.1 + 3.3 + 2.0		48*9 50*8 47*7	1.6 3.9 5.6	10°1 13°9 13°1	0.0 0.0	94 87 81	99 ^{.8} 107 [.] 3 108 [.] 4	32·8 35·1 41·8	52·9 53·3 53·1		0.000 0.303 0.089	8.5	wP:mP wP:vP,wN vP:mP,wN
16 17 18	Full : Perigee.	29.276 29.289 29.786	59.2	50°0 45°8 42°4	10°3 13°4 13°2	53.6		52°0 49°9 44°2	49 ^{.5} 46 ^{.3} 39 [.] 7	5·1 7·3 8·6	10 [.] 6 15 [.] 4 15 [.] 4	1.6 1.4 5.0	82 76 72	97'7 114'3 113'9	45°4 40°0 36°1	53·1 53·5 53·9	53°0 53°5 52°5	0 ·246 0 ·2 79 0 ·00 0	6.3	wN, wP:mP vP, vN mP
19 20 21	Greatest Declination N.	29 ^{.677} 29 ^{.548} 29 ^{.652}	51.8	46 [.] 7 39°1 38°6	9.5 12.7 17.6	50°0 46°4 45°4	- 4'2	48·4 43·7 43·1	46·7 40·6 40·5	3·3 5·8 4·9	6·1 11·8 13·4	0.6 2.3 0.2	89 81 83	60'1 76'4 9 ^{3'2} .	41.6 31.8 31.0	52.7 52.9 51.1	51.8		2.0	wwP:vP mP:sP mP:sP,sN
22 23 24	Last Qr. 	29 ^{.827} 29 ^{.621} 29 ^{.607}	56.8	36·7 40·0 43·2	14°4 16°8 14°4	43°1 49°1 51°2	- 0.6	41.6 47.4 49.3	39·8 45·5 47·3	3·3 3·6 3·9	9°0 6°4 8`8	0.0 1.3 0.4	88 88 87	85.0 73.7 84.6	29 ·6 31·1 33·9	51°1 50°9 50°5	49.8	0°123 0°006	0.0	vP, wN : vP vP, wN mP
25 26 27	 In Equator	29.657 29.829 29.893	50.1	52.7	6·5 6·4 17·4	55.2	+ 8.7 + 6.4 + 6.3	55·1 53·1 53·0	52·7 51·1 51·2	5·1 4·1 3·6	8.0 8.4 9.1	0.0 1.8 1.3	83 87 87	81.9 78.3 91.5	49 ° 9 50°1 37°5	50°9 51°6	49 ^{.8} 51.5 	0.000 0.011 *	3·5	
28 29 30	Apogee : New	30 ·0 19 30·063 30·247	57.8	42 · 9 47·3 46·3	16.9 10.2 7.8	51.0	+ 3·4 + 4·0 + 2·6			2.6 0.6 2.5	10 [.] 8 3 [.] 8 7 [.] 2	0°0 0°0 0°0	91 98 92	100°5 70°7 64°1	36•7 40•2 39•0		51.6	0.002 0.002 0.000	1.0	wP:mP wP wP:vP
31		30.115	52.3	47.3	5.0	49 ' 7	+ 2.4	47'7	45.6	4'1	6.8	2.5	87	61-1	46.0			0.000	0 .0	mP
Means		29 • 794	57-1	44.5	12.6	50.7	- 0.4	48.7	46.2	4'1	9.4	0.0	86.1	86.4	37.6	(29 days) 52*9	(29 days) 52 ° 2	sum 1•594	2.3	••••
Number of Column for Reference.	I	2	3	4	5	6	7	8.	9	. 10	11	12	13	14	15	16	17	18	19	20

The results apply to the civil day.

The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The average temperature (Column 7) is that determined from the reduction of the photographic records from 1849 to 1868. The temperature of the Dew Point (Column 9) and the Degree of Humidity (Column 13) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables. The mean difference between the Air and Dew Point Temperatures (Column 10) is the difference between the numbers in Columns 6 and 9, and the Greatest and Least Differences (Columns 11 and 12) are deduced from the 24 hourly photographic measures of the Dry-bulb and Wet-bulb Thermometers. The results for October 13 for Air and Evaporation Temperatures are deduced from eye-observations on account of failure of the photographic registers.

The values given in Columns 3, 4, 5, 14, 15, 16, and 17 are derived from eye-readings of self-registering thermometers. * Rainfall (Column 18). The amount given for October 28 is derived from dew.

The mean reading of the Barometer for the month was 29ⁱⁿ 794, being 0ⁱⁿ 074 higher than the average for the 20 years, 1854-1873.

TEMPERATURE OF THE AIR.

The highest in the month was $64^{\circ} \cdot 6$ on October 14; the lowest in the month was $36^{\circ} \cdot 7$ on October 22; and the range was $27^{\circ} \cdot 9$. The mean of all the highest daily readings in the month was $57^{\circ} \cdot 1$, being $1^{\circ} \cdot 0$ lower than the average for the 42 years, 1841-1882. The mean of all the lowest daily readings in the month was $44^{\circ} \cdot 5$, being $1^{\circ} \cdot 0$ higher than the average for the 42 years, 1841-1882. The mean of the daily ranges was $12^{\circ} \cdot 6$, being $1^{\circ} \cdot 9$ less than the average for the 42 years, 1841-1882. The mean for the month was $50^{\circ} \cdot 7$, being $0^{\circ} \cdot 4$ lower than the average for the 20 years, 1849-1868.

	· .		WIND AS DEDUC	CED FROM SELF-REGIST	ERING	ANEM	OMETE	RS.			
MONTH	hine.			Osler's.				Robin- son's.		CLOUDS	AND WEATHER.
and DAY, 1893.	on of Suns	Horizon.	General]	Direction.	Pres Squ	sure on lare Fo	the ot.	ovement			
1033.	Daily Duration of Sunshine.	Sun above H	A.M.	Р.М.	Greatest.	Least.	Mean of 24 Hourly Measures.	Horizontal Movement of the Air.	•	А.М.	Р.М.
Oct. 1 2 3	3·5 7·8	hours, 11.6 11.5 11.4	NNW: N NNW SW	NNW: NW NNW:WNW:WSW WSW: W: WNW	Ibs. 6·3 5·2 2·8	lbs. 0°0 0°0 0°0	1bs. 1·7 1·3 0·5	miles 422 373 360	10 10, r 10, r	: 9, cicu, cis, w : 1, licl : 10, thr	7, cus, cu, cicu : v, thcl, sltsh 5, cicu, cu : v, h, f, d 10, cr : v : v, h, m
4 5 6	1.4	11.4 11.3 11.2	W:NNW NNW NNW:N	N:NNW NNW:NW N	17'0 4'0 4'4	0.0 0.0	5.0 1.1 0.2	607 346 296	10 10 10	: 10 : 10,sc,stw,r : 10 : 1	10, sc, fqthr, stw: 10, sc, w 7,cus,cicu: 10 : vv, d 5, cu, cicu : 0, hyd
7 8 9	0.0	11.0 11.1	SW: WSW SW SW	WSW SW SW: S	0.0 0.0	0.0 0.0	0.0 0.0	147 111 116	0, hyd 10 f 10	: 9, thcl, glm, f : 10, f, glm : 10	10, sltf, sltsh : 10, sltf 10 : 10 10 : vv, m, d
10 11 12	0.0	10,ð 11,0	SW: Calm: SE Calm: W NNE	SE Calm: N NE: Calm	0'0 0'3 .0'2	0.0 0.0	0.0 0.0	79 75 136	o, hyd 10, f 10, sltf	: 10, sltf, m : 10, f, gtglm : 10	5,cicu,cu,licl: v, licl, m : 10, f 10, f : 10, f 9, cicu, cis : v, f
13 14 15	4.3	10'8 10'7 10'7	Calm : SE SE : SSE SW	SSE S: SSE SW: S: SSE	1.0 7.4 12.3	0.0 0.0	0'0 0'8 1'2	129 287 364	10, sltf licl 10, r	: 8, f : 8, cicu, cis : 1, licl	8, cicu, cus : v, thcl, sc, luco 7, cis, licl: 10, fqr : 10, fqr 5, cu, cicu : vv, sltsh : 10, sc, luhs, r, w
16 17 18	4.5	10°6 10°5 10°5	SSW SSW: SW: WSW WSW: SW	SW: SSW SSW: SW WSW: SW	10°2 20°5 8°6	0°0 0°0 0°3	3·2 3·5 3·0	559 644 594	10, w, r 0 licl, w	: 2, ci, licl, w, sltsh : w : v, w : 6, cus, cicu, w	7, cus, cicu: pcl, hysh, hysqs: 1, hysqs
19 20 21	0.4	10'4 10'3 10'3	SW: SSW WSW WSW	S:NW:WSW WSW WSW	7°1 3°9 2°8	0,0 0,0	1.2 0.6 0.7	430 341 297	10 10 0	: 10, r : 10, se : 0	10, sc, cr : 7, cus, cicu, ci 9,cus,cicu,h: pcl : 0 6, cu, cicu, sltsh: 0, h, m
22 23 24	0'2	10'2 10'2 10'1	WSW: N SSW: SW WSW	N:W:SSW WSW:SW SW:WSW	0·3 4·2 7·0	0.0 0.0	0.0 0.0	183 376 370	m 10 10	: 10 : 10, r : 5, cicu	9,cus,cu,sltf: 0, m : v, m, d 9, sc, lishs : v 10, ocsltr : 10, fqmr, w
25 26 27	0.0	9.9 10.0	SW SW: SSW S: SW: W	SW SSW: S: SSE SW: SE: S	10°9 * 1°7 0°0	0°2 0°0 0°0	3·1 0·1 0°0	579 240 161	10, W 10 10	: 8, cicu, sc, w : 8, cicu, cus, ocmr : vv, cicu	10, sc, ocsltr : 10 10 : 10, sltsh 6, ci, cicu, cus : 0, d, sltf
28 29 30	4.8 0.0 0.0	9.8	SE: E E NE: ENE	E E:ENE ENE	1.1 0.0 0.4	0.0 0.0	0.0 0.0	138 130 147	0, f 10 f 10, sltf	: 8, cicu, f, m : 10, f, mr : 10, sltf	0 : 0, d : 10, f, m 7, cus, cu, cicu : vv, hyd, sltf 10 : 10, m
31	0.0	9'7	E: ESE	ESE: SE	0.0	0.0	0.0	75	10, m	: 10, m	10, glm : 10
Means	2.3	10.6	•••		•••		o •9	2 94			
Number of Column for Reference.	21	22	23	24	25	26	27 ·	28		2 9	30

The mean Temperature of Evaporation for the month was 48°.7, being 0°.2 lower than

The mean Temperature of the Dew Point for the month was 46°. 5, being 0° 3 lower than

The mean Degree of Humidity for the month was 86.1, being the same as

The mean Elastic Force of Vapour for the month was oin . 317, being oin . 004 less than

The mean Weight of Vapour in a Cubic Foot of Air for the month was 381. 6, being the same as

The mean Weight of a Cubic Foot of Air for the month was 540 grains, being 1 grain greater than

The mean amount of Cloud for the month (a clear sky being represented by o and an overcast sky by 10) was 7.2.

The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0.22. The maximum daily amount of Sunshine was 7.8 hours on October 2 and 18. The highest reading of the Solar Radiation Thermometer was 114°.3 on October 17; and the lowest reading of the Terrestrial Radiation Thermometer was 29°.6 on October 22. The mean daily distribution of Uzone was, for the 12 hours ending 9 a.m., 1.3; for the 6 hours ending 3 p.m., 0.7; and for the 6 hours ending 9 p.m., 0.2.

the average for the 20 years, 1849-1868.

The Proportions of Wind referred to the cardinal points were N. 6, E. 5, S. 10, and W. 9. One day was calm.

The Greatest Pressure of the Wind in the month was 20^{lbs} 5 on the square foot on October 17. The mean daily Horizontal Movement of the Air for the month was 294 miles; the greatest daily value was 644 miles on October 17; and the least daily value 75 miles on October 11 and 31.

Rain fell on 14 days in the month, amounting to 1ⁱⁿ 594, as measured by gauge No. 6 partly sunk below the ground; being 1ⁱⁿ 398 less than the average fall for the 42 years, 1841-1882.

(xlv)

(xlvi)

DAILY RESULTS OF THE METEOROLOGICAL OBSERVATIONS

		BARO- METER.			TE	MPERAT	URE.			Diffe	rence betv	veen			Темреі	RATURE.	/	whose nches		
MONTH	Phases	Values ced to		1	Of the A	ir.		Of Evapo- ration.	Of the Dew Point.	an	ir Temper d Dew Poi emperatur	nt	_	Of Rad	iation.	Of the of the T at Dep	Water hames otford.	ted in Gauge No. 6, whose s surface is 5 inches e Ground.	one.	¢
and DAY, 1883.	of the Moon.	Mean of 24 Hourly Values (corrected and reduced to 32° Fahrenheit).	Highest.	Lowest.	Daily Range.	Mean of 24 Hourly Values.	Excess above Average of 20 Years.	Mean of 24 Hourly Values.	De- duced Mean Daily Value.	Mean.	Greatest.	Least.	Degree of Humidity (Saturation = 100).	Highest in Sun's Rays.	Lowest on the Grass.	Highest.	Lowest.	Rain collected in Gau receiving surface above the Ground	Daily Amount of Ozone.	Electricity.
		in.	0	0	0	0	0	0	0	0	0	0		0	0	0 5	。 51.6	in.	0.0	mP
Nov. 1 2 3	Greatest Declination S.	30°071 29°965 29°871	50.1	45.7 43.6 44.4	6·4 6·5 3·4	48·2 46·0 46·2		46·2 45·0 45·5	44'0 43'9 44'7	4·2 2·1 1·5	7 [•] 2 4 [•] 2 3 [•] 8	2.7 0.2 0.7	86 93 95	66•9 70•6 50•0	44 ^{•5} 43 ^{•6} 42 ^{•0}	51.7 51.9 51.1	51.6 50.2	0.000 0.000 0.000	0.0	vP:mP vP:wN,wP:wN
45.	••	29 ·6 30 29·419 28·979	51.6 50.1	38•6 39•3 38•3	13.0 10.8 17.8	46°0 44°7 49°3	0.0 - 0.0 + 4.1	44'9 42'5 47'9		2·3 4·8 2·9	7.°4 10°1 4°8	0.0 0.6 1.2	92 84 90	58•3 94•0 77•7	35·1 34·0 31·5	51·3 50·9 50·6	51.0 50.2 50.2	0.241	3.5	mP: wN, mP mP: mP, wN wwP: vP, sN
7 8 9	••	29·394 29·533 29·509	47 ·6 50·1	33·5 37·6	14°1 12°5	40·3 42·8 47·6	- 4'4	39 ^{.6} 41 ^{.9} 45 ^{.6}	38·7 40·8	1.6 2.0 4.2	9°2 8°2 9°4	0°0 0°0 1°5	94 93 87	66•0 77•8 85•1	26·4 30·2 33·3	49 ^{.6} 49 ^{.1} 4 ^{8.7}	49 ^{.5} 48 ^{.6} 4 ^{8.} 4	0.136 0.045 0.015	0.0	mP: sP, sN mP wP: mP, vN
10 11 12	In Equator •• ••	29 ^{.506} 29 ^{.602} 29 ^{.636}	45.9	37·2 35·5 29·2	7'9 10'4 14'9	41°1 40°3 35°9	- 2.7	38·7 38·4 35·6		5·4 4·3 3·1	11.7 9.0 7.0	1°2 0°7 0°0	81 85 89	65:3 59 [.] 7 64 [.] 8	31.0 30.5 24.0	47 [.] 9 46.9 46.6	47 ^{.6} 46 ^{.8} 45 [.] 4	0.000 0.000 0.000	0.0	${}^{mP}_{mP}$ ${}^{mP: sP}$
13 14 15	Perigee : Full	29 ·8 80 29·999 29 · 826	43.1	27*8 29*9 29*7	17'8 13'2 13'4	36·8 37·2 36·2	- 4.8	35.7 35.4 34.6	32.9	2.6 4.3 4.0	8·1 10·8 8·5	0.0 0.3 0.0	91 85 86	70•5 53•5 63•4	23·7 25·6 27·2	45•4 45•6 44•4	44°0 45°0 42°0	0.000	0.0	mP mP mP
16 17 18	Greatest Declination N.	29 ^{.5} 74 29 ^{.5} 90 29 ^{.75} 2	50.0	33.8	11'3 17'1 17'1	44 ^{.8} 40 ^{.8} 41 ^{.0}	- 0.7	4 ³ ·4 39·4 39·2	37.7	3.0 3.1 4.1	6.7 7.6 9.2	0.2 `0.2 0.8	90 89 86	60.9 91.0 58.8	34.0 30.0 29.7	43•5 43•6 43•6	42°4 42°4 41°8	0.177	7 . 5	wN, wP: mP mP: vvP, vvN: m mP: sP: vP
19 20 21	Last Qr.	29.776 29.792 29.808	48.6		10'7 9'7 13'6	45 [.] 1 42 [.] 9 44 [.] 8	+ 1.6	42.8 40.2 42.0	37.0	5•0 5•9 6•1	13.9 11.1 12.6	0.8 3.7 3.1	83 80 79	78.0 80.5 67.3	36·5 34·8 32·8	43·3 43·1 42·5	42°2 42°5 41°5	0.024 0.042 0.011	5.0	wP:mP wP,mN:vP,mN:m wP:mP
22 23 24	 In Equator 	29 ·63 5 29·597 29 ·3 90	45.1	41°0 34°7 37°2	9°0 10°4 14°8	44'4 40'1 46'8	+ 3.3 - 0.9 + 5.8	42·3 38·9 45·0	. 37.3	4.6 2.8 3.8	8·4 6·4 8·2	1.0 1.9 1.8	84 90 87	68.0 59.5 77.1	38·5 32·4 32·0	42·5 42·5 42·1	41°8 42°2 41°2		2.0	mP: sP, sN vvP, vvN: sP wN, wP: vP
25 26 27	 Apogee 	28·963 29·058 29·760	50.5	47°0 40°0 37°5	8·1 10·2 12·1	51.6 45.4 43.7	+ 10.7 + 4.6 + 2.9	49 [.] 9 43 [.] 4 41 [.] 9	41.1	· 3·4 4·3 3·9	6·7 7·1 9·2	0.8 1.9 1.7	89 85 86	61·3 72·1 72·0	43°0 35°6 33°0	42 . 9 44.3 44.9	42.8 43.5 44.5	0°294 0°348 0°000	6.0	: wP: vvP, vvN vvP, vN: wP: mP mP
28 29 30	 New 	30°125 30°178 30°017	48.2	45.7 38.1 39.7	10.2 10.1 11.4	44'1	+ 9 [•] 2 + 3 [•] 1 + 5 [•] 3	48·8 43·6 45·6	43.0	2.7 1.1 1.9	6·8 5·3 5·0	0.0 0.0	91 96 94	83·8 ·73·3 64·1	41°2 34°4 33°1	43 [.] 7 44 [.] 3 44 [.] 3	43·5	0'000 0'011* 0'154	0'0	wP:mP mP wP:wP,wN
Means		29.661	49.6	37.8	11.2	43.7	+ 1.0	42.1	40.3	3· 5	8.1	0.8	88.0	69'7	33.5	46.1	45.4	^{sum} 2*844	1.9	••
umber of olumn for eference	 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20

The results apply to the civil day.

The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The average temperature (Column 7) is that determined from the reduction of the photographic records from 1849 to 1868. The temperature of the Dew Point (Column 9) and the Degree of Humidity (Column 13) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables. The mean difference between the Air and Dew Point Temperatures (Column 10) is the difference between the numbers in Columns 6 and 9, and the Greatest and Least Differences (Columns 11 and 12) are deduced from the 24 hourly photographic measures of the Dry-bulb and Wet-bulb Thermometers. The results for November 12 for Air and Evaporation Temperatures are deduced from eye-observations on account of failure of the photographic registers.

The values given in Columns 3, 4, 5, 14, 15, 16 and 17 are derived from eye-readings of self-registering thermometers. * Rainfall (Column 18). The amount given for November 29 is derived from dew.

The mean reading of the Barometer for the month was 29ⁱⁿ. 661, being 0ⁱⁿ. 110 lower than the average for the 20 years, 1854-1873.

TEMPERATURE OF THE AIR.

The mean of the daily ranges was $11^{\circ}.7$, being $1^{\circ}.3$ greater than the average for the 42 years, 1841-1882. The mean of the month was $43^{\circ}.7$, being $1^{\circ}.3$ greater than the average for the 42 years, 1841-1882. The mean of the daily ranges was $11^{\circ}.7$, being $1^{\circ}.3$ greater than the average for the 42 years, 1841-1882.

			WIND AS DEDUC	CED FROM SELF-REGIST	ERING	ANEM	OMETE	RS.	
NON	shine.			Oslee's.				ROBIN- SON'S.	CLOUDS AND WEATHEE.
MONTH and DAY,	ion of Sun	Horizon.	, General	Direction.		sure o uare F		ovement	
1883.	Daily Duration of Sunshine.	Sun above H	А.М.	Р.М.	Greatest.	Least.	Mean of 24 Hourly Measures.	Horizontal Movement of the Air.	А.М. Р.М.
Nov. 1 2 3	hours. 1.5 0.0 0.0	hourn. 9.6 9.5 9.5	Calm : ESE ESE : S Calm : W	ESE ESE NNW: WSW	1bs. 0'0 0'0 0'0	1bs. 0°0 0°0 0°0	lbs. 0°0 0°0	miles. 85 71 89	10 : 10 7, cicu : 10 : 10 10 : 10 10 : 10 : 10, ocmr 10, glm : 10, glm, ocmr : 10, sltf, fqmr : 10, sltf
4 5 6	0'0 4'9 0'0	9'4 9'4 9'3	SW: SSW WSW S: SW	SW:W:WSW WSW:SSW:SSE NNW:NW	11.5 4.5 6.2	0.0 0.0	0.6	426 398 451	10 : 10, sc 10, r, w : 0, d 0, hyd : 0 6,cicu.ci,cis.soha: 10, lishs : 10, hyr 10, r : 10, sc, r, glm 10, sc, r : 10, sltsh : 0, h, m
· 7 8 9	0'7 2'4 2'1	9 °2 9 °2 9 °1	sw sw sw: wsw	SE SW : SSW WSW	0.0 2.7 4.2	0.0 0.0	0.0 0.1 0.2	250	0, m, hyd, f : v, f 7, ci, cis : 10, r, sltf 10, sltf : 10 : 0, ci, cis : 10, r, sltf 10 : 9, cicu, cis 9,ci,cicu,cus,sltr: 0
10 [] [2	3·6 1·1 4·6	6.0 8.0	WSW:NW WSW:W NNE:N	WNW: WSW Variable N: NNW	4.0 4.3 0.0	0.0 0.0	1°1 0°5 0°0	418 274 116	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
13 14 15	5·3 0·9 4 ^{.0}	8•9 8•9 8•8	WSW: W: N WSW WSW: SW	N:NNW NNW SW:SSE	0.4 3.3 0.6	0.0 0.0	0.0 0.1	1 1 1	f, h, hofr : 0, m, hofr 1, licl : 0 : v, slt-f, h, hofr o,h.slt-f,hofr : 0, clcu, cicu, f: v, f : 1, licl, ci, h: : 10, sltsh : 9 8, cicu, hofr : 8, cicu, hofr : 8, cicu, hofr : 10, ocsltr
16 17 18	0·3 0·8 2·7	8•8 8•7 8•7	SSE: SW SSW: S WSW	SW S:WSW SW:SSW	10 ^{.5} 8.8 3.9	0.0 0.0			10, cr, w : 10, sltr 8, cus,ci-cu: pcl : 0, d 0, hofr : 8, cicu, sltsh 9, sc,hyr,w: 0 : 1, licl 0 : 8, cicu, sltf 7,thcl,cicu: 10 : 10, ocsltr
19 20 21	4°1 3°1 1°4	8·6 8·6 8·5	W:WSW SW:WSW SW:SSW	WSW: SW WSW SW: WSW	5 [.] 9 11.8 11.5	0.0 0.0 0.0	0.8 1.7 1.1	438 584 509	v : 10, sltr 2, cu, cicu, w : 1, thcl pcl : 5,cicu, ci -s,sltr,w v, ci,cicu,glm,sltr: v, cus, cicu licl : 9, cis, mr 6, sc, ci,cicu,w,sltshs: vv
22 23 24	0.6 1.4 2.1	8·5 8·4 8·4	SW: SSW SW: NNW: W S: SW	SW W: SW: SSW SW: SSW: S	4.5 3.0 10.4	0.0 0.0	0.6 0.1 1.2	396 259 497	v : 8,cicu,cis,sltsh 9,cus,glm,hysh,hl: 10 hyr : 6, thcl, h 2, licl : 0, sltf, h v o : hyr, w : 5,cicu,cus,w 8, cus, cicu : 10, sltr, w
25 26 27	0.0 2.0 3.5	8·3 8·3 8·2	SSW S: SSW SW	SSW SW: WSW SW: SSW	13·7 6·2 2·3	0.0 0.0	- /	632 421 307	10, w, r : 10, sc, w, r 10, r, sqs : v, sqs : v, shsr,sqs 10, fqhyshs,sqs: 6, ci, cis, hysh 3, cicu, n, cus : 0, d 0, hofr : 5, ci 1, thcl : 7
28 29 30	4.2 3.5 0.4	8·2 8·2 8·1	SSW S: SSE SW	SSW : S SE : SW SW: SSW: NNW	2.4 0.3 4.5	0°0 0'0		316 205 367	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Means	2.0	8.8		•••		••	0.6	322	
Number of Column for Reference.	. 21	22	. 23	24	25	26	27	28	29 30

The mean Temperature of Evaporation for the month was 42° 1, being 0° 9 higher than

The mean Temperature of the Dew Point for the month was 40°.2, being 0°.9 higher than

The mean Degree of Humidity for the month was 88.0, being 0.7 greater than

the average for the 20 years, 1849-1868.

The mean Elastic Force of Vapour for the month was oⁱⁿ · 249, being oⁱⁿ · 009 greater than The mean Weight of Vapour in a Cubic Foot of Air for the month was 2^{gr3}, 9, being o^{gr} · 1 greater than

The mean Weight of a Cubic Foot of Air for the month was 546 grains, being 3 grains less than

The mean amount of Cloud for the month (a clear sky being represented by 0 and an overcast sky by 10) was 5.9.

The mean proportion of Sunchine for the month (constant sunshine being represented by 1) was 0.23. The maximum daily amount of Sunshine was 5.3 hours on November 13.

The highest reading of the Solar Radiation Thermometer was 94° o on November 5; and the lowest reading of the Terrestrial Radiation Thermometer was 23° 7 on November 13.

The mean daily distribution of Ozone was, for the 12 hours ending 9 a.m., 1'3; for the 6 hours ending 3 p.m., 0'3; and for the 6 hours ending 9 p.m., 0'3.

The Proportions of Wind referred to the cardinal points were N. 2, E. 2, S. 13, and W. 12. One day was calm.

The Greatest Pressure of the Wind in the month was 13^{lbs} 7 on the square foot on November 25. The mean daily Horizontal Movement of the Air for the month was 322 miles; the greatest daily value was 632 miles on November 25; and the least daily value 71 miles on November 2.

Rain fell on 21 days in the month, amounting to 2ⁱⁿ 844, as measured by gauge No. 6 partly sunk below the ground; being 0ⁱⁿ 615 greater than the average fall for the 42 years, 1841-1882.

(xlvii)

(xlviii)

DAILY RESULTS OF THE METEOROLOGICAL OBSERVATIONS

. . . .

[BARO- METER.			TE	MPERATI	JRE.			Diffe	rence bety	ween			Tempel	ATURE.		whose inches		
MONTH	Phases	Values ced to			Of the Ai	ir.		Of Evapo- ration.	Of the Dew Point.	the A an T	erence betv ir Temper d Dew Poi emperatur	ature nt e.		Of Rad	liation.	Of the of the I at Dep	Thames	uge No. 6, 1 3 is 5 i	one.	
and DAY, 1883.	of the Mo:n.	Mean of 24 Hourly Values (corrected and reduced to 32° Fahrenheit).	Highest.	Lowest.	Daily Range.	Mean of 24 Hourly Values.	Excess above Average of 20 Years.	Mean of 24 Hourly Values.	De- duced Mean Daily Value.	Mean.	Greatest.	Least.	Degree of Humidity (Saturation = 100)	Highest in Sun's Rays.	Lowest on the Grass.	Highest.	Lowest.	Rain collected in Gauge No. 6, receiving surface is 5 above the Ground.	Daily Amount of Ozone.	Electricity.
Dec. 1 2 3	Greatest Declination S.	in. 30°068 30°132 29°687	44.8	∘ 36•6 36•6 38•0	° 8·6 8·2 15·2	° 42.8 41.3 46.0	° + 1·3 - 0·5 + 3·9	° 40.6 39.6 44.1	• 38•0 37•5 41•9	• 4·8 3·8 4·1	° 7.5 5.5 9.9	° 2'4 1'2 2'1	84 87 87	0 52.0 49.2 53.2	0 30°1 30°1 34°3	° 44·3 44·5 44·3	° 44°0 44°1 43°8	in. 0°042 0°004 0°004	0.0 0.0	wN, wP: mP mP: vP, vN : mP mP: wP: vP, vN
4 5 6	••	29 ·578 29·924 29·985	41.1	36·5 32·8 28·4	9·2 8·3 7·2	40 [.] 3 36 [.] 6 32 [.] 0	- 2·1 - 6·0 -10·7	36·7 34·4 30·4	32 ·1 31·2 26·7	8·2 5·4 5·3	11.2 7.6 7.8	3.8 2.3 0.9	72 81 79	59°0 53°5 62°4	31·4 28·8 24·7	44°1 43°5 42°5	43.8 42.8 41.8	0 [.] 035 0 [.] 000 0 [.] 015	4°0 0°0 0°0	sN, vP : mP mP : sP mP : vP, vN : —
7 8 9	First Qr. In Equator	30 ·3 34 30·290 30·097	35.3	31·5 31·6 32·9	6·3 3·7 5·6	33·8 33·9 35·8	- 9.0 - 8.9 - 7.0	31·7 32·0 33·3	28.0 28.7 29.5	5·8 5·2 6·3	9°1 7°6 7°9	2.7 3.7 5.0	79 81 77	68 ·2 36·8 4 2· 5	26.7 28.0 31.3	41.4 40.3 39.5	40 [.] 8 39 [.] 2 39 [.] 3	0.000 0.000 0.000	0.0 0.0 0.0	$\begin{array}{c}: sP: sP \\ vP \\ mP: \end{array}$
10 11 12	 Perigee	29.765 29.487 29.614	50.0	38·5 40·1 39·7	9.1 9.9 10.3	43·1 45·0 43·6	+ 0°4 + 2°5 + 1°4	41.8 42.7 39.9	40°2 40°0 35°5	2.9 5.0 8.1	4.8 8.2 13.4	0.0 0.6 0.3	90 83 74	60°1 56°9 50°9	35·2 34·3 33·5	39·9 39·3 39·9	38•4 38•4 39•4	0'211 0'175 0'121	0°0 1°8 2°2	— : vP, vN wN, wP : vP vN, vP : mP
13 14 15	Full : GreatestDec.N.	29 ^{.757} 29 ^{.561} 29 ^{.568}	54.3	40°0 41°1 37°5	14.0 13.1 8.4	49 [.] 3 49 [.] 7 41 [.] 5	+ 7 ^{.5} + 8 ^{.2} + 0 [.] 4	46•7 47•3 39•6	43'9 44'7 37'2	5·4 5·0 4·3	9.0 10.2 6.1	2·1 1·6 3·0	82 84 86	76·5 57:9 61:0	33·7 37·0 34·0	39 [.] 9 41 [.] 6 42 [.] 3	39.4 40.8 42.0	0.000 0.012 0.002	1.5 4.5 0.5	wP wP:mP mP
16 17 18	••	29 ·5 65 30·136 30·196	38.9	33·7 34·0 33·2	5·8 4·9 6·8	37·5 35·8 36·5	- 3·3 - 4·7 - 3·7	36·2 34·9 35·1	34·4 33·5 33·1	3·1 2·3 3·4	6.0 4.8 7.7	0.3 0.0 1.8	88 92 88	53·7 46·0 44·1	30.5 30.1 30.8	42·3 41·7 41·3	42°0 41°4 40°8	0.010	3·5 0'0 2'0	vP: vvP, vvN mP mP, wN: vP
19 20 21	In Equator Last Qr.	30°106 29°856 29°722	47.1	38·8 35·7 40 ·2	5.0 11.4 8.6	41·3 42·5 44·7	+ 1.3 + 2.7 + 5.1	39°0 41°1 42°8	36·1 39·4 40 [.] 6	5·2 3·1 4·1	7*5 4*0 9*0	1.1 1.8 1.2	82 89 86	51·8 50·8 65·1	32.8 33.0 36.2	40°9 40°4 40°6	40°5 40°2 40°5	0.000 0.000 0.000	0.0 2.0 1.0	wP:vP mP wP:mP
22 23 24	 Apogee	29 ·76 4 ·30·076 30·338	49'2	41.7 31.5 34.0	9°0 17°7 14°0	46·2 42·3 43·4	+ 6·8 + 3·0 + 4·1	43•7 39•6 42•9	40°8 36°3 42°3	5°4 6°0 1°1	8.6 10.6 4.2	3·1 2·8 0·4	83 80 96	73·1 49 ^{·3} 50·8	38·9 27·8 33·0	41°1 41°3 41°5	41°0 41°0 41'4	0.000 0.000	3.0 0.5 3.5	mP mP:sP vP:wP:mP
25 26 27	 	30·389 30·356 30 ·2 31	41.9	38·5 36·7 34·2	6.0 5.2 4.0		+ 3.2 + 0.3 - 2.1		42'4 39'4 36'9	0.0 0.0	0.9 0.2 0.2	0.0 0.0 0.0	100 100 100	45•4 46•6 40•9	38·5 36·7 34 · 2	41.9 41.6 42.1	41.5	0'003 0'022 0'024	0'7 3'3 0'0	wP wP wP:vP
28 29 30	Greatest Declination 8. New	30°142 30°078 30°175	40.3	38•2 37•4 35•9	2·4 2·9 2·3		+ 0.6 - 0.2 - 1.3	38.2	39°2 37°8 35°5	0.2	0'9 1'7 5'0	0.0 0.0 0.2	99 98 94	42 ^{.5} 46 ^{.3} 40 ^{.2}	38•0 37•4 34•9	42·5 42·5 42·6	42.0	0 [.] 018 0 [.] 027 0 [.] 019	0°0 0'8 4'2	wP: wN, wP wP: vP wP: mP
31		30.285	38.1	35.0	3.1	36.2	- 2.1	34.6	32.2	4.0	5.5	2.9	86	41.3	34.3	41.9	41.8	0.003	0.0	wP:vP
Means		2 9 . 976	44'1	36•1	7 ' 9	40.2	- o·3	38.8	36.6	3.9	6.6	1.6	86•7	52.5	32.9	41.7	41.3	o•833	1.4	••
Number of Column for Reference.	1 1	2	3	4	5	6	7	8	9	IÒ	11	12	13	14	15	16	17	18	19	20

The results apply to the civil day.

The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The average temperature (Column 7) is that determined from the reduction of the photographic records from 1849 to 1868. The temperature of the Dew Point (Column 9) and the Degree of Humidity (Column 13) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables. The mean difference between the Air and Dew Point Temperatures (Column 10) is the difference between the numbers in Columns 6 and 9, and the Greatest and Least Differences (Columns 11 and 12) are deduced from the 24 hourly photographic measures of the Dry-bulb and Wet-bulb Thermometers.

The values given in Columns 3, 4, 5, 14, 15, 16, and 17 are derived from eye-readings of self-registering thermometers.

The mean reading of the Barometer for the month was 29ⁱⁿ 976, being 0ⁱⁿ 185 higher than the average for the 20 years, 1854-1873.

TEMPERATURE OF THE AIR.

The highest in the month was 54°·2 on December 14; the lowest in the month was 28°·4 on December 6; and the range was 25°·8. The mean of all the highest daily readings in the month was 44°·1, being 0°·3 lower than the average for the 42 years, 1841-1882. The mean of all the lowest daily readings in the month was 36°·1, being 1°·1 higher than the average for the 42 years, 1841-1882. The mean of the daily ranges was 7°·9, being 1°·4 less than the average for the 42 years, 1841-1882. The mean for the month was 40°·5, being 0°·3 lower than the average for the 20 years, 1841-1882.

			WIND AS DEDUC	ED FROM SELF-REGIST	ERING	ANEM	OMETE	RS.		a su su		
	thine.			Osler's.				Robin- son's.		CLOUDS	AND WEATHER.	
MONTH and DAY, 1883.	tion of Suns	Iorizon.	General 1	Direction.	Pres Sq	sure or uare Fo	oot.	Movement				
1003.	Daily Duration of Sunshine.	Sun above Horizon.	A.M.	P.M.	Greatest.	Least.	Mean of 24 Hourly Measures.	Horizontal Movement of the Air.		<u>k</u> .M.	I	?.М.
Dec. 1 2 3	hours. 0'0 0'0 0'0	hours. 8·1 8·1 8·0	NNW WSW:W SW	NNW: WNW W:WNW:WSW WSW: NW		1bs. 0'0 0'0 0'0	1bs. 1°4 0°1 1°8	miles. 430 298 527	10, lishs, w v licl	: 10, sc, mr, w : 10, m. fqmr : 10	10, mr : 0 10, 00mr 10 : 10, W	: 2, licl, m, d : pcl, licl, sltf, d : v, hysqs
4 5 6	3·2 0·8 1·4	8•0 8•0 8•0	NNW NNW : NW NNW : N	NNW NNW N:NNE	17 ^{.5} 4 ^{.1} 10 ^{.5}	0.0 0.0 0.0	4°1 0°9 2°1	642 359 497	10, hysqs, lish 0 0	: 9, hofr, sltsn	0, w 2, cicu, thcl 3,cicu,cu,sn,w: vv	: 0 : 0, h : 10, sltsn
7 8 9	2.6 0.0 0.0	7 '9 7'9 7'9	N:NNE NW:SW SSW:SW	N:NNW:NW SW SSE:SSW	3.0 0.0 0.2	0.0 0.0	0.0 0.0 0.0	310 159 178	pcl 10 10	: 9, cus, cu : 10, sltf : 10, sltf, glm	4, cicu, cis, ci 10, sltf 10, sltf	: 10 : 10 : 10, sltr
10 11 12	0°0 0°3 0°0	7'9 7'8 7'8	SSW SW: WNW W	SSW: SW WNW: SW WNW: WSW	3·9 10·5 26·5	0.0 0.0 0.2	°.4 1.5 3.7	398 548 84 2	10 10, r, w 10, g, hysh	: 10, mr : 3, licl, cicu : 8, cicu, ci, stw	10, sc, ocmr 6, cus, cu 9, cus, w : pc	: 10, r : 10, w l : v, lueo
13 14 15	1•4 0•0 0•3	7*8 7*8 7*8	WSW: SW WSW: SW WSW: SW	WSW WSW WSW	11.7 11.5 10.2	0°0 0°0 0°0	1.7 2.0 1.4	61 6 690 530	10 10 0	: 9, sltr : 10, w, sc, ocmr : 1, licl	5, sc, ci, cicu, w 9, sc, mr, w 6,thcl,cicu,sltr: 10,0C	: 6, cicu
16 17 18	0°4 0°0 0°0	7.8 7.7 7.7	WSW: NNW NNW NNW:NW:SW	NNW NNW WSW	11.7 6.8 1.5	0.0 0.0	2.7 1.8 0.1	509 419 252	0 10, sltr 10	: 7, cicu : 9, sc, sltr : 9, thcl, f	3, ci, h, ocsn, w 9, sc 8, sltf : 10	:v,sc,licl,ocsn,sl,r,w : 10 : 10, sltr
19 20 21	0.0 0.0	7°7 7°7 7°7	NW WSW SW: WSW	WNW:WSW WSW WSW:SW	3·5 4·1 4·1	0'0 0'0	0.2 0.2 0.6	325 402 399	10, mr 10 10	: 7, licl, sltm : 10, sltf : 10	5, cicu, ci, cus 9, cus, cicu 8,cu,cicu,licl: 0, h	: 10
22 23 24	0.0 0.0	7°7 7'7 7'7	SW SW: W: NW SSW: SW	SW NNW:SSW WSW:W	8·7 6·4 1·9	0.0 0.0	1.9 0.5 0.5	525 307 291	10 pcl 10, f	: 10, thcl, soha : 2, th -cl, h : 10, sltf, ocmr	6, cicu, thcl 8, thcl 10	: v, mr : v, f : 10
25 26 27	0°0 0°0	7°7 7°8 7°8	W:WSW SE SE:SW	Calm : SE SE : ENE NE : SE	0.0 0.0	0.0 0.0	0.0 0.0 0.0	97 62 90	10, f 10, f, mr 10, f, mr	: 10, f : 10, f : 10, f, ocmr	10, f 10, f, mr 10,f,glm,fqmr: 10, fe	: 10, f, mr : 10, f, mr qmr : 10
28 29 30	0.0 0.0	7*8 7*8 7*8	Variable SE: ENE E: NE	Calm : SE E : ENE NE	0.0 0.5 1.0	0.0 0.0	0°0 0°0 0'2	85 81 236	10 10, mr 10	: 10, sltf, glm : 10, sltf, ocmr : 10, mr	10, sltf, glm, mr 10, mr, sltf 10, 0cmr	: 10, f, mr : 10, 0Cmr : 10
31	0.0	7.8	<u>NE</u>	NE: ENE	4.5	0.0	0.2	354	10	: 10	10	: 10, 0cmr
Means	0' 4	7 . 8	•••			. • •	1.0	370	· · · · · · · · · · · · · · · · · · ·			
Number of Column for Reference.	21	22	23	24	25	26	27	28		29		30

The mean Temperature of Evaporation for the month was 38°.8, being 0°.5 lower than

The mean Temperature of the Dew Point for the month was 36°.6, being 0°.8 lower than

The mean Degree of Humidity for the month was 86.7, being 1.1 less than

The mean Elastic Force of Vapour for the month was oin 217, being oin 007 less than

The mean Weight of Vapour in a Cubic Foot of Air for the month was 2515. 5, being ogr. 1 less than

The mean Weight of a Cubic Foot of Air for the month was 555 grains, being 4 grains greater than

The mean amount of Cloud for the month (a clear sky being represented by o and an overcast sky by 10) was 8.0.

The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0.05. The maximum daily amount of Sunshine was 3.2 hours on December 4. The highest reading of the Solar Radiation Thermometer was 76° 5 on December 13; and the lowest reading of the Terrestrial Radiation Thermometer was 24° 7 on December 6. The mean daily distribution of Ozone was, for the 12 hours ending 9 a.m., 0'7; for the 6 hours ending 3 p.m., 0'4; and for the 6 hours ending 9 p.m., 0'3.

The Proportions of Wind referred to the cardinal points were N. 8, E. 3, S. 7, and W. 12. One day was calm.

The Greatest Pressure of the Wind in the month was 26^{1bs} 5 on the square foot on December 12. The mean daily Horizontal Movement of the Air for the month was 370 miles; the greatest daily value was 842 miles on December 12; and the least daily value 62 miles on December 26.

the average for the 20 years, 1849-1868.

Rain fell on 15 days in the month, amounting to oin 833, as measured by gauge No. 6 partly sunk below the ground; being oin 972 less than the average fall for the 42 years, 1841-1882.

	MAXIMA.			MINIMA.	،		MAXIMA.			MINIMA.	
Mean So	te Greenwich lar Time, 83.	Reading.	Mean So	te Greenwich blar Time, 383.	Reading.	Mean &	ate Greenwich Solar Time, 1883.	Reading.	Mean S	ate Greenwich Solar Time, 1883.	Reading.
	dhm	in.		d h m	in.		d h m	in.	-	d h m	in.
January	0. 22. 25	29 · 675	January	2. 9. 0	2 9 •440	April	6. 13. 45	30 • 479	April	9. 5.30 :	30 • 1 2 1
	4. 14. 15 .	30.057			29 '990		9 . 22. 5 0	30 •241	÷	13. 5. o:	29 .655
	6.21. 0	30 •298					16. 9.45	29 ·926 ·		18. 3.30	29 .317
	11. 9. 0	29 • 472		10.12. 0	29 ·3 76		21. g. 0	30 .078			
	13. 22. 50	29 . 410		12.18.20	29 . 102		25. 18. 15	2 9 •586		24. 3.30	29.370
	18.16.0	30 "165		14. 17. 30	29 • 135	May	1.21. 0	29 •730		27. 15. 45	29 •232
	22. 21. 15	30 •486		19.13.5	29 • 979		4.11. 0	29 • 690	May	3. 2.45	29 ·628
	1			24. 15. 0	29 • 380		5. 10. 10	29 ·697		5. 3.45	29 633
	24. 22. 40	29 •4 97		25. 15. 30	28 .904					8. 16. 20	29 .312
	26. 18. 15	29 • 574		27. 3.30	29 •21 1		11. 8.45	29 793		11.17. 0	29 •652
	27. 22. 50	29 • 980		29. 2.30	29 .305		12.21.40	29 825		13. 15. 45	29 .710
	30. 8.40	29 •526		31. 4.30	29.280		16. 20. 15	30.223		19. 5. o	29 .82
ebruary	1. 0.40	2 9 ·3 84	Tahara		-		21. 10. 20	30 .030		26. 0.10	2g •393
	4. 22. 35	30 •085	February	2. 4.35	28 .772		27.12. 0	29.904	5. 1		
	9. 5.30	29 •663		7. 23. 50	29 •385		30. 13. 20	30 •073	_	29. 0.15	29 .826
	11. 7.35	2 9 •699		10. 15. 15	29 075	June	2. 15. 0	30 °010	June	1. 4.30	29 .834
	13. 11. 25	29 •866		12. 3.50	29 • 248		12.20.35	30 • 228		7. 6. o	29.587
	1			14. 3.30	29 •685			29 .811		15. 14. 30	29 .576
	14. 20. 20	29 .809		15. 2. 0	29 • 753		17.11.40		-	19. 15. 0	29 •657
	16. 0. 0	30 •341		18. 2.50	2 9 •766		21. 22. 30	29 •860	-	25. 16. 0	2 9 •565
	20.22. 0	30 285		21. 17, 50	30.192		27. 0. 5	2 9 •759		27. 14. 55	29.679
	22.23.35	30 ·664		24. 4. 0	30 •441		28.19. 0	29 • 872		29.15. 5	29 .774
	24. 23. 40	30 . 52 1		·		July	1. 9.20	29 • 94 2	July	3. 23. 0	29.635
	27. 23. 35	30 •355		27. 4. 0	30 •246		5. 10. 55	2 9 •740	July		-
March	3. 10. 20	30 .540	March	0. 15. 15	30 • 156		7.20. 5	2 9 •737	5	6. 5. 15	29.620
	8. 22. 10	29.802		7.15.50	29 • 510		9.12. 0	29 • 765		8.16. 0	29 . 582
	12.20.50	29.857		11. 5.50	29 • 464	·	16. 2.25	29 · 997		12. 6. 0	2 9 •300
	15. 9. 5	29 ·508		14. 18. 50	29 • 445		22. 8.35	29.719	•	20.17. 0	29 •390
		-		17. 4. 0	29 •332		i		n an an an Ar	23.15. 0	2 9 •53
	18. 11. 55	29 •608		20. 15. 30:	29 • 405		27. 8.35	29 991		30. 5 . 0	29 43
	22.10.5	30 •045		24. 7. o	29.615	August	4. 0. 5	30 •064	August	6. 14. 25	2 9 •670
	24. 11. 30	29 ' 690		25. 15. 45	29.034		7. 10. 15	29 •886	-	8.15. o	29 .410
	28.12. 0	30 .043		30. 1.25			8. 22. 30	2 9 •483	5	10. 0. 25	
April	0. 22. 40	30 • 148	1	00. 1.20	29 210	11	11. 22. 55	30.008		10. 0. 20	29 .425

(1)

ur d<u>e t</u>

f

(.	Ні дне ят а	nd Lowest	READINGS of the BARON		ed to 32° Fahrenheit, as -continued.	extracted fr	om the PHOTOGRAPHIC	•
	MAXIMA.		MINIMA.	,	MAXIMA.		MINIMA.	
Mean Se	te Greenwich blar Time, 383.	Reading.	Approximate Greenwich Mean Solar Time, 1883.	Reading.	Approximate Greenwich Mean Solar Time, 1883.	Reading.	Approximate Greenwich Mean Solar Time, 1883.	Reading.
	d h m	in.	d h m	in.	d h m	in.	d h m	in.
August	16. 10. 30 18. 20. 0	29 •942 30 •115	August 17. 6.40	2 9 •866	October 25.23. 0 27.22.20	29 ·870 30 ·066	October 26.15. 0	29 • 785
	23. 12. 5	30 121	20. 3.40	29.914	30. 0. 0	30.269	28. 14. 35	29 .975
•	27. 19. 50	29 .858	27. 15. 55	29.790	November 1. 8. o	30.101	November 0. 15. 15	30 035
	29. 9.50	29 754	28. 16. 35	29 •624	3. 8.45	29.930	2. 16. 15	29 .834
September	_	29 •648	September 2. 3.55	28 • 623	4.21.35	29.495	4. 4.35	29 .371
-	5. 12. 50	29 •890	4.17. 0	2 9 •577	8. 6. 0	29.601	5. 21. 40	28 .799
	7. 11. 20	2 9 •765	6.18. 0	29 . 700	10. 22. 20	29.655	9.18. 0	29 •437
•	8.21.25	2 9 • 997	7. 21. 35	29.676	13. 21. 20	30 .040	11. 14. 35	29 . 524
	12.21. 0	30 - 096	10.15. 0	29.746	16.13. 0	29.704	1 5. 18. 50	29 •460
	16.22. 0	30 •051	14. 16. 15	29 • 781	17. 22. 25	29 • 834	17. 2.10	29 .376
	22. 22. 30	29 914	21. 17. 20	29 • 463	19. 6.25	29 .836	18. 10. 50	29.700
	25. 8.30	2 9 ' 744	24. 0. 0	29 .445	20.14. 5	29 .948	19. 18. 50	29.727
	26. 7.30	29 .572	25. 20. 35	29 .497	21.10. 5	29 .809	21. 0.40	29.680
•	27. 20. 5	29 • 525	27. 4. 0	29 • 453	23. 6.30:	29.704	22. 15. 35	29 .456
	29. 21. 10	29 • 139	29. 14. 30	29 '013	28.11. 5	30 .237	25. 2. 5	28.877
October	2. 7. 0	29 .820	30. 0. 25	29:078	December 1. 9. 25	30 * 214	30. 9. 10	29.825
	4. 23. 15	29 .951	October 3. 16. 10 5. 6. 15	29.192	4. 22. 20	29 959	December 3. 11. 35	29.415
	7. 21. 40	30.357	5. 0. 13 10. 17. 30	29 •894 29 •681	7. 9.40	30 * 395	5. 19. 20	29.866
	12. 11. 10	29 913	14. 12. 3	29.513	11. 5.50	29.669	10. 15. 10 11. 13. 5	29.248
	14. 23. 50	29.614	14. 12. 3	29 .236	12. 13. 10	29 .921	11.13. 3	29 . 263
	·16. g. o	29 .324	16. 17. 35	29 230	14. 17. 30	29.692	14. 0.10	29 ·425 29 ·305
	17. 1.15	29 410	17. 6.55	29.236	17.12. 0	30 • 265	18. 10. 25	30 •072
	18. 8.50	29 •956	17. 0.00	29.350	18. 22. 10	30 . 176	20. 18. 0	29.684
	19.11.50	29 .600	20. 3. 57	29 . 496	24.22. 0	30 .410	29. 3. 20	30 .045
	22. 7. 0	29 •875	23. 2.25	29 • 543	30. 21. 30	30 • 346		
	23. 23. 45	29 •667	24. 7. 0	29 •567				

The readings in the above table are accurate, but the times are occasionally liable to uncertainty, as the barometer will sometimes remain at its extreme reading without sensible change for a considerable interval of time. In such cases the time given is the middle of the stationary period, the symbol : denoting that the reading has been sensibly the same through a period of more than one hour.

.

ς.

(li)

ABSOLUTE MAXIMA AND MINIMA BAROMETER READINGS, AND MONTHLY METEOROLOGICAL MEANS,

	1883,	Readings of	the Barometer.			
	MONTH.	IIighest.	Lowest.	Range.		
		in.	in.	in.	-	
	January	30 • 486	28 •904	1 .282		
	February	30 •664	28 .772	1 .892		
	March	30 •540	29 •034	1.506		
	April	30 • 479	29 • 232	1 *247		,
	May	30 • 223	29 • 31 2	0.911		
•	June	30 228	29 • 565	o .663		
	July	2 9 • 997	29 .306	0.691		· .
	August	30 • 1 2 1	29 • 410	0.211		
	September	30 •096	28 623	1 •473		
	October	30 •357	29 114	1 •243		
	November	30 • 237	28 .799	I •438		
	December	20000	a a 4 a 4 B	1	1 .	
The highest reading in th	ne year was 30 ^{in.} 664 on February 23.	30 '410 f reading in the yea	29 ·248 The lowest read ar was 2 ^{in ·} 041.	1 ·162 ding in the year was	28 ⁱⁿ ·623 on Sep	otember 2.
The highest reading in th	ne year was 30 ^{in.} 664 on February 23.		The lowest read		28 ^{in •} 623 on Sep	otember 2.
The highest reading in th	ne year was 30 ^{in.} 664 on February 23.		The lowest read		28 ^{in •} 623 on Sep	otember 2.
The highest reading in th	ne year was 30 ^{in.} 664 on February 23.		The lowest read		28 ^{in •} 623 on Sep	otember 2.
The highest reading in th	ne year was 30 ^{in.} 664 on February 23.		The lowest read		28 ^{in •} 623 on Sep	otember 2.
The highest reading in th	ne year was 30 ^{in.} 664 on February 23.		The lowest read		28 ⁱⁿ •623 on Sep	otember 2.
The highest reading in th	ne year was 30 ^{in.} 664 on February 23.		The lowest read		28 ⁱⁿ •623 on Sep	otember 2.
The highest reading in th	he year was 30 ⁱⁿ 664 on February 23. The range of		The lowest read		28 ⁱⁿ •623 on Sep	otember 2.
The highest reading in th	ne year was 30 ^{in.} 664 on February 23.		The lowest read		28 ⁱⁿ •623 on Sep	otember 2.
The highest reading in th	he year was 30 ⁱⁿ 664 on February 23. The range of		The lowest read		28 ⁱⁿ •623 on Sep	ptember 2.
The highest reading in th	he year was 30 ⁱⁿ 664 on February 23. The range of		The lowest read		28 ⁱⁿ •623 on Sep	otember 2.
The highest reading in th	he year was 30 ⁱⁿ 664 on February 23. The range of	f reading in the yea	The lowest read		28 ⁱⁿ •623 on Sep	otember 2.
The highest reading in th	he year was 30 ⁱⁿ 664 on February 23. The range of	f reading in the yea	The lowest read ar was 2 ⁱⁿ 041.		28 ⁱⁿ •623 on Sep	otember 2.
The highest reading in th	he year was 30 ⁱⁿ 664 on February 23. The range of	f reading in the yea	The lowest read ar was 2 ⁱⁿ 041.		28 ⁱⁿ · 623 on Sep	otember 2.

(lii)

	Mean Reading				FEMPERATU	RE OF THE	AIR.			Mean	Mean	Mean Degree o
1883, Монтн.	of the Barometer.	Highest.	Lowest.	Range in the Month.	Mean of all the Highest.	Mean of all the Lowest.	Mean of the Daily Ranges.	Monthly Mean.	Excess of Mean above Average of 20 Years.	Temperature of Evaporation.	Tempera- ture of the Dew Point.	Humidity (Saturatio = 100.)
	in.	0		0	°	0	0	0	0	0	°	
January	29.732	55.0	28.8	26.2	45.4	36.3	9.1	41.4	+ 2.7	40.0	38 • 1	88.4
February	29.901	55.2	30.9	24.3	48.5	37.2	11.3	42 °9	+ 3.3	41.1	38.8	86.0
March	29.749	56·7	20.6	36.1	44 . 1	29.3	14.8	36.3	- 5.2	33.8	29 .7	7 6` 9
April	29.829	69.1	28.2	40.9	57.6	37.4	20.3	47°0	— oʻ5	43.4	39.5	75·7
Мау	29.782	81.0	30•3	50°7	63.7	43.5	20' I	53 · 1	- 0.1	49.2	45.4	7 6 .0
June	2 9`794	84.8	40.4	44.4	70.8	48.9	21.9	58.9	- o.8	54.6	50.8	75.5
July	29°689	83.3	43.6	39.7	70.2	51.3	19.3	59.8	- 2.9	55.6	51.9	75.6
August	29.840	85 • 1	44.8	40.3	74.0	52.8	21 2	62.2	+ 0.3	57.6	53.7	74.3
September.	29.652	77.1	41.5	35.6	66.4	49'7	16.8	56•9	- 0.6	54.4	52 • 1	84.6
October	29°794	64.6	36.7	27.9	57 • 1	44.5	12.6	50 ° 7'	- 0.4	48.7	46.2	86.1
November.	29.661	56 . 2	27.8	28.4	49.6	37.8	11.2	43.7	+ , 1 . 0 ′	42.1	40.2	88.0
December .	29.976	54.2	28.4	25.8	44.1	36 • 1	7'9	40.2	- o·3	38.8	36.6	86.7
Means	29.783	Highest. 85 ° I	Lowest. 20°6	Annual Range. 64 ° 5	57.7	42'1	15.6	49.4	— o·3	46.6	43.6	81.1

MONTHLY RESULTS OF METEOROLOGICAL ELEMENTS for the YEAR 1883.

					-	R	AIN.							WIND.				
	Mean	Mean Weight of	Mean Weight	Mean	Mean	Number	Amount				Fro	m Osl	er's An	emomet	er.		4	From Robin-
1883, Монтн.	Elastic Force of Vapour.	Vapour in a Cubic Foot of Air.	of a Cubic Foot of Air.	Amount of Ozone.	of Cloud. (0- 10.)	of Rainy	in Gauge No. 6 whose receiving Surface is 5 Inches	Nu			refer	red to	nce of e Azimuth		ind,	er of Calm or lyCalm Hours.	Mean Daily Pressure on	Son's Daily Meent Aire Vir.
							above the Ground.	N.	N.E.	Е.	8.E.	S.	s.w.	w.	N.W.	Number nearly(the Square Foot.	Mean Daily Horizontal Movement of the Air.
January	in. 0°230	grs. 2°7	grs. 550	3.3	7.2	19	in. 1 ° 693	h 17	ћ 67	h 138	h 99	h 102	h 224	h 60	h 23	h I4	lbs. 1 * 1 8	miles. 339
February	0.236	2.7	551	5.1	6.7	15	2.888	29	4	14	91	143	265	89	36	I	1.18	349
March	0.162	1.9	556	2.4	5.6	14	0.783	163	180	97	11	41	99	63	90	ò	1.05	340
April	0.242	2.8	545	1.2	6.4	10	1. 702	116	139	75	78	53	111	54	64	30	0.34	227
May	o•3 04	3.4	538	3.9	6.3	9	1.402	117	137	40	52	89	193	53	51	12	0.37	233
June	0.371	4.5	531	4.6	6.2	13	1.343	91	142	74	69	85	176	35	37	11	0.34	220
July	o * 386	4.3	528	6.2	7.5	16	1.998	48	15	13	50	120	306	125	60	·7	0.63	273
August	0.413	4.6	528	3.4	6.3	10	0.400	50	41	38	34	40	319	141	50	31	0.68	256
September.	0*389	4.3	531	2.8	6.1	17	3.812	103	72	25	94	84	239	49	26	28	0.80	266
October	0.312	3.6	540	2.5	7.2	14	1.204	88	40	60	56	82	262	76	48	32	0.94	2 94
November.	0.249	2.9	546	1.9	5.9	21	2.844	47	9	22	45	116	338	104.	27	12	o•58	322
December .	0.312	2.5	555	1.4	8.0	15	0.833	104	50	33	39	37	220	120	122	ig	1.05	370
Sums			••		•••	173	21.303	973	896	629	718	99 2	2752	9 6 9	634	197	••	• •
Means	0.293	3.3	542	3.3	6.7				••					•••		•••	0.72	291

The greatest recorded pressure of the wind on the square foot in the year was 28 5 lbs. on February 2. The greatest recorded daily horizontal movement of the air "," 842 miles on December 12. The least recorded daily horizontal movement of the air "," G2 miles on December 26.

Hour, Greenwich Mean Solar						1883	3						Yearly
Time (Civil reckoning).	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.	Means.
Midnight	in. 29 °72 I	in. 29 · 895	^{in.} 29 ° 759	^{in.} 29 [.] 843	in. 29 . 784	in. 29*809	in. 29°703	in. 29*847	^{in.} 29 [.] 663	in. 29 · 787	in. 29°674	in. 29°964	^{in.} 29 ' 78;
1 ^h . a.m.	29 719	29.891	29,757	29.840	29.780	29.805	29.696	29.843	29.658	29.786	29.669	29 904	2978
2 ,,	29.723	29.886	29.751	29.835	29.776	29.801	29.691	20.838	29.652	29.779	29.667	29.958	29.78
3 "	29.725	20.880	29.743	29.831	29*772	29.797	29.686	29.835	29.647	29.774	29.661	29.957	29.77
4 ,,	29.726	29.879	29.740	29.829	29.772	29.797	29.686	29.834	29.645	29.772	29.656	29.955	29.77
4 » 5 "	29.72-	29.882	29.743	29.830	29.776	29.800	29.687	29.839	29.643	29.773	29.652	29.955	29.77
6 "	29.732	29.885	29.744	29.836	29.781	29.803	29.691	29.845	29.647	29.777	29.649	29.961	29.77
7 "	29.737	29.890	29.750	29.841	29.787	29.808	29.695	29.851	29.649	29.788	29.650	29.969	29.78
8 "	29'74 7	29.899	29•756	29.844	29.790	29.810	29.696	29.855	29.654	29.799	29.654	29.980	29.79
9 "	29.755	29.904	2 9.759	29.844	29.789	29.810	29.697	29.857	29.656	29.808	29.657	29.988	29.79
io "	29.760	29.912	29.762	29 •844	29.788	29.809	29.695	29.855	29.654	29.811	29.662	29.994	° 29'79
I ,,	29.760	29.914	29.761	29.840	29.787	29.809	29.692	29.853	29.650	29.814	29.660	29.990	29.79
Noon	29 748	29.911	29.757	29.834	2 9 . 784	29.806	29.689	29.849	29.647	29.807	29.655	29.983	29.78
1 ^h . p.m.	29•739	29.902	29 •748	29.827	29.780	29.801	29.686	29.843	29.646	29 °799	29.647	29'974	29.78
2 ,,	29 •729	29.897	29.740	29.819	29 777	2 9 . 796	29.683	29.837	29.643	29.792	29.644	29.974	29.77
3 "	29.727	29.895	29.735	29.811	29 77 2	29.790	29.678	29.830	29.641	29.784	29.647	29.978	29.77
4 "	29.727	29.895	29.732	29.808	29.770	29.786	29.676	29.827	.29.641	29.783	29.656	29.983	29.77
5 "	29.729	29.899	29.736	29.807	29.766	29.784	29.674	29.824	29.644	29.788	29.663	29.986	29.77
6 "	29.729	29.909	29.743	29.810	29.771	2 9 . 784	29.675	29.823	29.650	29 799	29.672	29.988	29.77
7 "	29.727	29.915	29.748	29.816	29.777	29.790	29.679	29·827 29·835	29.659 29.664	29 . 801 29.807	29.675 29.676	29.990	29.78
- "	29.724	29.918	29.753	29·825 29·828	29.786	29.797 29.807	29•686 29•692	29.833	29.004	29.811	29.070	29 . 991 29.989	29.78
9 "	29 . 721 29 . 715	29 [.] 922 29 [.] 925	29 [.] 755 29 [.] 755	29.829	29.797 29.798	29.810	29.692	29.839	29.667	29.811	29.674	29 989	29.79 29.79
· · · · · · · · · · · · · · · · · · ·	29713	29.926	29755	29.830	29'801	29.809	29.697	29.839	29.667	29.810	29.671	29 980	2979
Means	29.732	29.901	29.749	29.829	29.782	29.801	29.689	29.840	29 .6 52	29.794	29 ·6 61	29.976	29.78
Number }	31	28	31	30	31	29	31	31	30	. 31	30	31	••

MONTHLY MEAN TEMPERATURE of the AIR at every HOUR of the DAY, as deduced from the Photographic Records.

Hour, Greenwich						18	83.						Yearly
Mean Solar Time (Civil reckoning).	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.	Means.
Midnight	41 ' 0	41·5	33.8	42.5	47°7	53.2	5ŝ·1	57.3	53.7	48.4	42.6	39.9	46.4
1 ^h . a.m.	40.8	41.4	33.4	42'1	47'2	52.7	54.5	57.0	53.3	48.2	42.4	39.7	46° i
2 ,,	40.7	41.1	33.1	41.4	46.9	52.0	54.1	56.4	52.8	48.0	42.3	39.5	45.7
3 "	40'4	41.0	33.0	41.0	46.5	51.6	53.7	56.1	52.5	48'1	42.1	39.6	45.5
	40.3	41.0	32.5	40.8	46'1	51.2	53.7	55.8	52.5	48.1	41.7	39.6	45.3
4 » 5 "	40.2	40.5	32.3	40'4	46.2	52.3	54.1	55.6	- 52.3	48.1	41.7	39.5	45.3
6 "	40.0	40.5	32.3	40.8	47.7	54.1	55.3	56.3	52.4	48.2	41.7	39.4	45.7
7 "	39.9	40'7	32.6	42.2	50.0	56.3	57.2	58.2	53.3	48.7	41.7	39.5	46.7
8 "	39.8	40'9	33.9	44'9	52.6	59 °1 .	59.6	60.8	54.8	49.5	42.0	39.5	48.1
9 "	40.2	41.8	36.0	47.6	55.1	61.4	61.0	63.0	57.0	51.1	43.2	40'1	49.8
10 "	41.2	43.2	38.1	49'9	56.9	63·5	63 · ď	65.6	59.4	52.6	44.7	40.8	51.6
11 ,,	42.6	44.6	39.6	51.4	58·Š	64'9	64.6	67.2	61.3	53.9	46.2	41.5	53 · 0
Noon	43.6	45.3	40.8	52.7	5g · 8	66.2	65.6	68.7	62.7	54.7	47.4	42.1	54.1
1 ^h . p.m.	43.9	46.1	41.5	54.0	60.2	66.0	66 . 0	69.9	63.5	55.1	48.0	42.3	54.8
2 ,,	44.0	46.7	41.3	54•3	60 . 4	66.9	66•8	70.3	63.7	55.5	47.8	42.2	55°0
3 ,,	43.8	46.6	41.2	54.4	60.4	67.2	66.5	69.9	63.2	5 4 · 9	47.2	42.0	54.8
4 "	43.0	46.1	40.8	53.8	59.6	66.1	65.5	68.9	62.3	53.7	45.8	41.6	53.9
5 "	42.4	44.9	39.6	52.3	58.6	64.8	64.1	67.6	60.6	52.5	44.8	41'1	52.8
6 "	41.9	44.0	38.3	50.6	56.8	63.2	62.7	65.7	58.6	51.3	44.3	40.7	51.2
7 "	41.2	43.1	37.1	48.4	54.9	61.3	61.5	63.6	57.0	50'4	43.8	40.4	5 0'2
8 "	41.2	42.7	36.1	46.6	52.4	58.7	59.1	61.7	55.7	497	43.6	40.3	49'0
9 "	41.0	42.4	35.3	45.3	50.9	56.6	57.4	60'1	54.8	49'1	43.5	40.2	48.1
10 ,,	40.8	42.2	34.7	44.3	49 '7	55 · 5	56.5	59.1	54.2	48.7	43.3	39.9	47.4
11 "	40.2	42.0	34.3	43.6	48.7	54.4	55.7	58.2	-53.7	48.4	43.3	39.8	46.9
Means	41. 4	42*9	36.3	46.9	53 · 1	59.2	59.8	62.2	56.9	50.7	44.0	40.2	49•5
Number of Days employed.}	31	28	31	29	31	29	31	31	30	-30	29	31	••

Hour, Greenwich		· .				18	83.		`				Yearl
Mean Solar Fime (Civil reckoning).	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.	Means
Aidnight	39º7	° 40°1	32.6	° 41'1	4 ⁶ .0	5î.5	53.2	55.5	52.9	47°3	41.6	38.5	4 [°] 5.0
1 ^h .a.m.	39.5	40.0	32.2	40.6	45.5	51.5	52.8	55.2	52.6	47.1	41.3	38.4	44.7
2 ,,	39•4	39.9	31.0	40'1	45.2	50.7	52.5	54.8	52'1	47'0	41'2	38.4	44'4
3 "	39.3	39.8	31.7	39.9	45.0	50.2	52.3	54.5	51.0	46.8	41.2	38.4	44.3
4 ,,	39.3	39.6	31.4	39.8	44.9	50.3	52.3	54.2	51.8	46.9	40.9	38.4	44.2
5 ,,	39.2	39.3	31.1	39.3	45.0	50.0	52.6	54.1	51.5	47.0	40'9	38.3	44.1
6 "	39.1	39.3	31.1	39.6	46.2	52.1	53.4	54.6	51.7	47'1	40.8	38.1	44.4
7 "	39.0	39.4	31.5	40.6	47.6	53 [.] 7	54.4	55.8	52.2	47 ' 4	41.0	38.2	45.1
8 "	38.7	39.6	32.3	42.4	49.0	55.1	55.7	57.1	53.2	48.0	41.3	38.3	4 5 • c
9 ,,	39.0	40.3	33.8	43.9	50.6	56.3	56.7	58.2	54.7	49.0	42.1	38.6	46.0
io ,,	39.7	41.3	34.8	45.1	51.8	57'1	57.4	59.2	56.0	49'9	43.2	39.3	47'9
I,,	40.6	42.3	35.7	45.7	52.4	57.8	58.0	59.7	57.0	50.6	44.1	39.7	48.6
Noon	41.4	42.8	36.3	46.5	53 · i	58.3	58.4	60.1	57.2	5 0 .9	44.6	40'0	49.1
1 ^h . p.m.	41.7	43.3	36.8	47.2	5313	58.6	58.5	60.7	57.5	51.1	44'9	40'1	49*5
2 ,,	41.8	43.5	36.9	47.4	53•4	58.7	59 °2	61.1	57.7	51.1	44.7	39.9	49.6
3 "	41.6	43.4	36.9	47.5	53·5	58·5	58.9	61.0	57.4	50' 9	44.3	39.7	49*5
4 "	41.1	43·1	36.5	47.4	53 · o	58.3	58.4	· 60.5	57.1	50.6	43.4	39.3	49'1
5 "	40.6	42.4	35.9	46.6	52·5	57.8	57.9	60.0	56.5	49' 9	42.7	39.0	48.5
6 ,,	40.2	41.8	35.2	45.7	51.2	56•9	57.1	59.4	55.7	49'4	42.5	38.8	47.8
7 "	40'0	41.4	34.5	44.6	50° I	55.9	56.5	58.6	54.9	48.8	42.2	38.7	47'2
8 "	39.7	41.0	33.9	43.7	4^{8•} 7	54.8	55•6	57.8	54.4	48.1	41.9	38.6	46
9 "	39.5	40.8	33.4	42.8	47*8	53.9	54.8	57.3	53.7	47 *7	42.0	38.6	46.0
ο,,	39.5	40.2	33.0	42.2	47 ' 1	53.2	54.3	56.6	53.2	47'3	41.9	38.4	45.0
I "	39.3	40.6	32.7	41.2	46.6	52.5	53.7	56.1	52.8	47 ' 2	41.9	38.3	45.3
Means	40.0	41.1	33.8	4 ³ '4	49'2	54.8	55.6	57.6	54•4	48.6	42.4	38.8	46.6

MONTHLY MEAN TEMPERATURE of the DEW POINT at every HOUR of the DAY, as deduced by GLAISHER'S TABLES from the corresponding AIR and EVAPORATION TEMPERATURES.

۰.

Hour, Greenwich						188	13.	· · · ·					Yearly
Mean Solar Time (Civil reckoning).	January.	February.	March.	April.	May.	Juné.	July.	August.	September.	October.	November.	December.	Means
Midnight	38.0	38.3	3°•4	39.4	° 44 · 1	49 . 8	51.4	53.9	52.1	46.1	° 40'4	36.7	4 ³ .4
1 ^h . á.m.	37:9	38.2	30.0	38.8	43.6	49'7	51.5	53.6	51.9	45.9	40.0	36.7	43·1
2 ,,	37.8	38.4	29.6	38.5	43.3	49'4	50 .9	53.3	51.4	45.9	39.9	37.0	42.9
3 "	37.9	38.3	29.1	38.5	43.4	49.4	50.9	53.0	51.3	45.4	40.1	36.8	42.8
	38.0	37.8	29.1	38.6	43.6	49'1	50°9	52.7	51.1	45.6	39.9	36.8	42.8
4 " 5 "	37.9	37.8	28.5	37.9	43.7	49.5	51.1	52.7	50.7	45.8	39.9	36.7	42.7
6 "	37.9	37.8	28.5	38.1	44.5	50.1	51.6	53.0	51.0	45.9	39.7	36.4	42.9
7 "	37.8	37.8	29.3	38.7	45°1	51.3	51.8	53.6	51.1	46.0	40'2	36.5	43.3
8 ,,	37.3	38.0	29.5	39.5	45.4	51.5	52.2	53.9	51.6	46.4	40.5	36.7	43.5
9 ,,	37.5	38.4	30.5	39.8	46.3	51.9	52.2	54.2	52.6	46.8	40.8	36.7	,44'0
io "	37.8	39.0	30.3	40.0	47.1	51.7	52.2	54.0	53.0	47.2	41.5	37.4	44.3
11 ,,	38.2	39.6	30.6	39.8	47'0	51.9	52.5	53.7	53.3	47'4	41.7	37.4	44.4
Noon	,38.8	39.9	30.6	40.3	47.2	51.9	52.5	53.4	52.5	47.3	41.5	37.4	44'4
1 ^h . p.m.	3g•1	40'1	31.0	40.5	47.2	52.0	52.4	53.6	52.5	47.3	41.5	37.4	44.2
2 ,,	39.2	39•9	31.4	40.2	47.2	52.1	53·1	54.0	52.7	47 2	41.3	37'1	44.7
3 "	39.0	39.8	31.5	40.8	47.4	51.6	52.8	54.2	52.5	47.1	40.8	36.8	44.5
	38.8	39.7	31.1	41.1	47'2	52.0	52.6	54.0	52.7	47.6	40.7	36.4	44.5
4 ,, 5 ,,	38.4	29.5	31.0	40.8	47'1	52.0	52.7	54.0	53.0	47.3	40.3	36.4	44'4
6 "	38.1	39.2	31.0	40.6	46•6	51.6	52.3	54.2	53.1	47.5	40.4	36.4	44.3
7 "	38.1	39.4	30.8	40.5	45.5	51.3	52.4	54.4	53.0	47'1	40.3	36.5	44.1
8 "	37.8	39.0	30.6	40.4	44'9	51.3	52.5	54.5	53.2	46.4	39.9	36.4	43.9
9 "	37.6	38.9	30.4	39.9	44.6	51.4	52.5	54.9	52.6	46.2	40.2	36.5	43.8
⁹ , "	37.9	38.9	30.2	39.7	44.3	51.0	52.0	54.4	52.2-	45.8	40.2	36.4	43.6
u "	37.8	38.9	30.0	39.5	44'4	50.6	51.8	54.2	51.9	45.9	40.5	36.3	4 ^{3·5}
Means	38.1	38·9	30.2	39.7	45 · 4	51.0	52.0	53.8	52.2	46.5	40.2	36.7	43.8

(**]v**)

Hour										1883.	•						· .		
Hour, Greenwich Mean Solar Time (Civil reckoning).	Jo	nuary.	Februa	ry. I	March.	Ap	ril.	May.	Jun	ie.	July.	Au	gust.	Septemb	er. O	ctober.	November.	December.	Yearly Means
Midnight		90	89		87	8	9	88	88	3	88	8	38	94		92	92	89	go
^{1h} . a.m.		90	89		87	8		88	90		89		38	95		92	91	90	90
² ,,		90	91		87 85	9		88	91		89		39	95 96		9 3	91	91	90
3 "		91 92	90 89		87	9		90 9 2	92	1	90 90		39 90	90 96		91 92	93 94	90 90	91 91
4 » 5 "		92 92	90		86	9		92 92	90		90		,0 ,0	95		92	94	90	91 91
6 "		<u>9</u> 3	90		86	.9	0	89	86		88		89	95		92	93	90	90
7 "		93	90		87	8		84	83		82		85	92		91 91	94	90	88
8 " 9 "	1	91 90	90 89		84 80	8		77 73	76		77 71		79 73	89 85		90 85	94 91	90 88	85 81
9 " 10 "		88	85		7 3	6		70 70	66		67		57	80		82	89	88	-77
и,		85	83		71	6		66	63		65	6	52	75		78	85	87	74
Noon		83	82		67	6.		63	61	-	63 62		58	6 9		76	81	84	71
1 ^h . p.m.		83 8 3	80 78		67 68	6		62 62	60		02 62		56 56	67 68		75 75	78	84 83	79 69
² ,, 3 ,,		83	78		69	6	· .	62	57		62		56	68		75	79 79	83	69
4 "		83	79		6ğ	6		64	61	t	63		58	71		79	83	83	71
5 "		86	82		7 <u>2</u>	6		66	63		66		52	76		83	85	83	74
6 "		87. 88	83 86		75 78	6	- 1	68 70	66		69		57 73	82 86		87 89	86 87	85 87	77
/ "		88 [°]	- 86		81	80		76	71		74 79		78	9 2		89 89	87	87	80 83
9 "		88	88		82	8:	2	79	83		84	8	33	9 2		90	88	87	85
io "		90	89		83	84	4	82	86	1	85		35	93		90	89	88	87
	1													- 94		92			
	_	90	89		84	8:		85	87		88		36		-	94	89	88	88
11 " Ieans	•	88	86	INE r	79	77 ed in	7 each 1	76 Hour (of the	DAY i	77 in eacl	7 1 Mon	75 17H, 8	85 s deriv	ed fro	86	88	87 оf Самрви	88 82 21
11 " Ieans	•	88	86	INE r	79 egister	ed in SELF	7 each]	76 Hour (76	DAY IN	77 in eacl r, for	7 Mon the Yi	75 17H, 8	85 s deriv	ed fro	86	88 Records Total	87 of Campbe	82
11 " Ieans	•	88	86	INE re	79 egister	ed in SELF	7 each]	76 Hour (of the Instr	DAY IN	77 in eacl r, for	7 Mon the Yi	75 17H, 8	85 s deriv	ed fro	86	88 Records registered Duration of Sun-	87 of CAMPBE	82 CLL'S
II " Ieans TOTAL	•	88	86	ine re 	79 egister	ed in SELF	7 each]	76 Hour (of the Instr	DAY in	77 in eacl r, for	7 Mon the Yi	75 17H, 8	85 s deriv	ed fro	86	88 Records Total registered Duration	87 of CAMPBE	82 ELL'S Me Altit of t Su
eans Total 1883, Month.	Amou Ei	88 NT of	86 Sunsh	a.m.	79 egister Re	ed in SELF gistered	7 each J -REGIS I Durati	76 HOUR G ITERING	of the Instra Instra Inshine i	DAY in UMENT In the H	77 in each r, for Hour en i i i i i i i i i i i i i i i i i i i	ding	75 TTH, 8 EAR 1	85 s deriva 883.		86 om the	88 Records registered Duration of Sun- shine in each Month.	87 of CAMPBE Correspond- ing aggre- gate Period during which the Sun was above Horizon.	82 ELL'S Me Altit of t Su at No
eans ToTAL 1883, Month.	Amou E	88 NT of	86 Sunsh	. ч 8 ^ћ .а.т.	79 egister Re	ed in SELF gistered gistered h 4.5	7 each J -REGIS I Durati	76 HOUR O TERING	of the Instruction Instruction Inshine i Inshine i	DAY in CUMENT In the H	77 in each r, for Iour en 	7 n Mon the Yi ding ing ing ing ing ing ing ing	75 ITH, a EAR I H d i v S h 	85 s deriva 883.	7 ^h . p.m	86 om the	88 Records registered Duration of Sun- shine in each Month. h 34 · 4	87 of CAMPBE Correspond- ing aggre- gate Period during which the Sun was above Horizon.	82 ELL'S Me Altit of t Su at No
eans Total 1883, Month.	AMOU Eist v	88 NT of	86 Sunsh E e e i i i i i i i i i i i i i i i i i	м. а. м. а. м. в. м. а. м.	79 egister Re 6	ed in SELF gistered i i c i c i h 4.5 5.5	each] -REGIS I Durati	76 HOUR of TERING ion of Su ion of Su ion of Su ion of Su ion of Su ion of Su ion of Su	of the inshine i	DAY in CUMENT In the H	77 in each r, for Hour en <u><u><u></u></u> <u><u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u></u> <u></u> <u></u> <u></u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> 	ding H ding H ding H ding N 2.4	75 TH, a EAR I Hd. '4'S h o'I	85 s derive 883.	H 7 ^h . p.m	86 om the	88 Records Total registered Duration of Sun- shine in each Month. h 34 [•] 4 48 [•] 6	87 of CAMPBE Correspond- ing aggre- gate Period during which the Sun was above Horizon. h 259°I 277°9	82 CLL'S Me Altiti Su at No C I 2
II " Teans TOTAL 1883, Month. ebruary . arch	Амо н н н 	88 NT of	86 Sunsh E # 4 / h o`2	й м. о. 2 З. 1	79 egister Re 6 • • • • • • • • • • •	ed in SELF gistered b 4.5 5.5 14.8	7 -REGIS I Durati 4 	76 HOUR G TERING ion of St 2 h 7.8 7.2 17.5	76 of the . INSTR onshine i	DAY in CUMENT In the H E C C C C C C C C C C C C C C C C C C	77 in each r, for four en i d i d i f i h 2 · 8 7 · 0 12 · 0	7 h Mon the Yr ding H dd + h 2.4 9.9	75 ITH, a EAR I أ أ أ أ أ أ أ أ أ أ أ أ أ أ أ أ أ أ أ	85 s derive 883.	: : ч 7 ^h . р.т.	86 om the	88 Records Total registered Duration of Sun- shine in each Month. h 34·4 48·6 118·4	87 of CAMPBE Correspond- ing aggre- gate Period during which the Sun was above Horizon. h 259'1 277'9 366'9	82 CLL'S Me Altit of t Su at No 1 2 3
eans Total 1883, Month. ebruary ebruary pril	Амои нівет чу h 	88 INT of	86 Sunsh E e	ше 48 h 3.1 7.4	79 egister Re b 0.7 2.8 9.1 10.8	ed in SELF gistered h 4.5 5.5 14.8. 13.2	each] -REGIS I Durati H 7 9 5 5 15 7 12 5	76 HOUR O TERING ion of St 7.8 7.2 17.5 11.8	76 of the INSTR unshine i <	DAY in CUMENT In the H	77 in each r, for Iour end to to h 2 · 8 7 · 0 12 · 0 12 · 7	7 n Mon the Yi ding i i i i i i i i i i i i i i i i i i	25 ITH, a EAR I أف أ أ أ أ أ أ أ أ أ أ أ أ أ أ أ أ أ أ	85 s deriv. 883.	ш.d.,4/ н	86 om the	88 Records Total registered Duration of Sun- shine in each Month. h 34 '4 48 '6 118 '4 133 '0	87 of CAMPBE Correspond- ing aggre- gate Period during which the Sun was above Horizon. h 259'I 277'9 366'9 414'9	S2 CLL'S Me Altit of t Su at No 0 1 2 3 4
I " eans TOTAL 1883, Month. bruary . bruary . arch oril ay	Амо Е е е е е е е е е е е е е е	88 NT of H to to to NT of	86 SUNSH H H H S V NSH	н т т 8 h 3.1 7.4 12.9	79 egister Re 6	ed in SELF gistered h 4.5 5.5 14.8. 13.2 17.2	each J -REGIS L Durati H 7 9 5 5 15 7 12 5 17 9	76 HOUR G TERING ion of Su 2 h 7.2 17.5 11.8 18.3	76 of the instruction INSTR Inshine i i <t< td=""><td>DAY in CUMENT in the H E 5 · 2 9 · 6 12 · 3 14 · 4 13 · 2</td><td>77 in each r, for Hour en $\frac{1}{2.8}$ 7.0 12.0 12.7 13.8</td><td>7 h Mon the Y1 ding</td><td>25 TTH, 8 EAR 1 EAR 1 H 0.1 6.7 12.4 11.8</td><td>85 s derive 883.</td><td>ш.d. ų l h</td><td>86 om the</td><td>88 Records Total registered Duration of Sun- shine in each Month. h 34 · 4 48 · 6 118 · 4 133 · 0 178 · 1</td><td>87 of CAMPBE Correspond- ing aggre- gate Period during which the Sun was above Horizon. h 259'I 277'9 366'9 414'9 482'I</td><td>82 ELL'S Me Altiti of t Su at No 1 2 3 4 5</td></t<>	DAY in CUMENT in the H E 5 · 2 9 · 6 12 · 3 14 · 4 13 · 2	77 in each r, for Hour en $\frac{1}{2.8}$ 7.0 12.0 12.7 13.8	7 h Mon the Y1 ding	25 TTH, 8 EAR 1 EAR 1 H 0.1 6.7 12.4 11.8	85 s derive 883.	ш.d. ų l h	86 om the	88 Records Total registered Duration of Sun- shine in each Month. h 34 · 4 48 · 6 118 · 4 133 · 0 178 · 1	87 of CAMPBE Correspond- ing aggre- gate Period during which the Sun was above Horizon. h 259'I 277'9 366'9 414'9 482'I	82 ELL'S Me Altiti of t Su at No 1 2 3 4 5
arch ay	Амои нівет чу h 	88 INT of	86 SUNSH E e e e e e e e e e e e e e e e e e e	₩ ₩ ₩ ₩ 10°2 3°1 7°4 12°9 11°9	79 egister Re b 0.7 2.8 9.1 10.8 15.0 12.7	ed in SELF gistered h 4.5 5.5 14.8. 13.2 17.2 13.2	each J -REGIS I Durati H 7 9 5 5 15 7 12 5 17 9 15 1	76 HOUR O TERING ion of St 7.8 7.2 17.5 11.8 18.3 13.4	76 of the INSTR onshine i ± </td <td>DAY in CUMENT In the H E C C C C C C C C C C C C C C C C C C</td> <td>77 in each r, for four en in in in in in in in in in in in in in</td> <td>7 h Mon the Yr ding H ding Y h 2.4 9.9 13.9 12.8 12.4</td> <td>25 TH, a EAR I EAR I أ أ أ أ أ أ أ أ أ أ أ أ أ أ أ أ أ أ أ</td> <td>85 s deriv. 883.</td> <td>Hd. 1/2 h 5.3 5.1</td> <td>86</td> <td>88 Records Total registered Duration of Sun- shine in each Month. h 34 · 4 48 · 6 118 · 4 133 · 0 178 · 1 163 · 5</td> <td>87 of CAMPBE Correspond- ing aggre- gate Period during which the Sun was above Horizon. h 259'I 277'9 366'9 414'9 482'I 494'5</td> <td>82 ELL'S Me Altiti of t Su at No 1 2 3 3 4 5 6</td>	DAY in CUMENT In the H E C C C C C C C C C C C C C C C C C C	77 in each r, for four en in in in in in in in in in in in in in	7 h Mon the Yr ding H ding Y h 2.4 9.9 13.9 12.8 12.4	25 TH, a EAR I EAR I أ أ أ أ أ أ أ أ أ أ أ أ أ أ أ أ أ أ أ	85 s deriv. 883.	Hd. 1/2 h 5.3 5.1	86	88 Records Total registered Duration of Sun- shine in each Month. h 34 · 4 48 · 6 118 · 4 133 · 0 178 · 1 163 · 5	87 of CAMPBE Correspond- ing aggre- gate Period during which the Sun was above Horizon. h 259'I 277'9 366'9 414'9 482'I 494'5	82 ELL'S Me Altiti of t Su at No 1 2 3 3 4 5 6
I " eans TOTAL 1883, Month. nuary bruary . bruary . oril ay ne ly	Амор н ч ч ч с	88 NT of E E E E C A A A 7 3 1	86 SUNSH H H H S V NSH	in in in in in in in in	79 egister Re 6 9.1 10.8 15.0 12.7 11.5	ed in SELF gistered h 4.5 5.5 14.8. 13.2 17.2 13.2 14.1	each] -REGIS I Durati H 7 '9 5 · 5 15 · 7 12 · 5 17 · 9 15 · 1 13 · 8	76 HOUR O TERING ion of Su ion of Su	76 of the instruction Instruction inshine i i <td< td=""><td>DAY in CUMENT In the H E S C C DAY in C C C C C C C C C C C C C</td><td>77 in each r, for four end in in in in in in in in in in in in in</td><td>7 h Mon the Yi ding</td><td>25 TTH, 8 EAR 1 EAR 1 H 0.1 6.7 12.4 11.8</td><td>85 s derive 883.</td><td>ш.d. ų l h</td><td>86 om the</td><td>88 Records Total registered Duration of Sun- shine in each Month. h 34 · 4 48 · 6 118 · 4 133 · 0 178 · 1</td><td>87 of CAMPBE Correspond- ing aggre- gate Period during which the Sun was above Horizon.</td><td>82 CLL'S Met Altiti of t Su at No 1 2 3 4 5</td></td<>	DAY in CUMENT In the H E S C C DAY in C C C C C C C C C C C C C	77 in each r, for four end in in in in in in in in in in in in in	7 h Mon the Yi ding	25 TTH, 8 EAR 1 EAR 1 H 0.1 6.7 12.4 11.8	85 s derive 883.	ш.d. ų l h	86 om the	88 Records Total registered Duration of Sun- shine in each Month. h 34 · 4 48 · 6 118 · 4 133 · 0 178 · 1	87 of CAMPBE Correspond- ing aggre- gate Period during which the Sun was above Horizon.	82 CLL'S Met Altiti of t Su at No 1 2 3 4 5
I " eans TOTAL I883, Month. nuary bruary arch oril ay ly ugust	A MOU	88 NT of E C C NT of NT of C C C C C C C C C C C C C	86 SUNSH H H H ··· 3.5 9.1 8.7 9.3	₩ ₩ ₩ ₩ 10°2 3°1 7°4 12°9 11°9	79 egister Re 6 h 0.7 2.8 9.1 10.8 15.0 12.7 11.5 9.7	ed in SELF gistered h 4.5 5.5 14.8. 13.2 17.2 13.2 14.1 14.1	each J -REGIS I Durati 4 4 7 9 5.5 15.7 12.5 17.9 15.1 13.8 15.0	76 HOUR G TERING ion of Su 2 h 7.8 7.2 17.5 11.8 18.3 13.4 11.4 16.6	76 of the INSTR onshine i ± </td <td>DAY in CUMENT In the H E Q A B C A C A C A C A A A A A A A A A A A A A</td> <td>77 in each r, for four end in in in in in in in in in in in in in</td> <td>7 h Mon the Yi ding H a 4 h 2.4 9.9 13.9 12.8 12.4 11.8 13.6</td> <td>25 ITH, 8 EAR I EAR I I I I I I I I I I I I I I I I I I I</td> <td>85 s derive 883.</td> <td>Hd. 4 h 5.3 5.1 4.3</td> <td>86 om the if d. is i </td> <td>88 Records Total registered Duration of Sun- shine in each Month. h 34 · 4 48 · 6 118 · 4 133 · 0 178 · 1 163 · 5 148 · 7</td> <td>87 of CAMPBE Correspond- ing aggre- gate Period during which the Sun was above Horizon. h 259'I 277'9 366'9 414'9 482'I 494'5</td> <td>82 SLL'S Met Altit of t Su at No c 1 2 3 4 5 6 6 6 5 5</td>	DAY in CUMENT In the H E Q A B C A C A C A C A A A A A A A A A A A A A	77 in each r, for four end in in in in in in in in in in in in in	7 h Mon the Yi ding H a 4 h 2.4 9.9 13.9 12.8 12.4 11.8 13.6	25 ITH, 8 EAR I EAR I I I I I I I I I I I I I I I I I I I	85 s derive 883.	Hd. 4 h 5.3 5.1 4.3	86 om the if d. is i 	88 Records Total registered Duration of Sun- shine in each Month. h 34 · 4 48 · 6 118 · 4 133 · 0 178 · 1 163 · 5 148 · 7	87 of CAMPBE Correspond- ing aggre- gate Period during which the Sun was above Horizon. h 259'I 277'9 366'9 414'9 482'I 494'5	82 SLL'S Met Altit of t Su at No c 1 2 3 4 5 6 6 6 5 5
I " eans TOTAL 1883, Month. bruary bruary bruary arch ay ay ly lgust ptember	Amou E e e e e e e e e e e e e e	88 INT of E E E C C C C C C C C C C C C C	86 SUNSH F e e f	in in in in in in in in in in	79 egister Re 6 h 0.7 2.8 9.1 10.8 15.0 12.7 11.5 9.7	ed in SELF gistered h 4.5 5.5 14.8. 13.2 17.2 13.2 14.1 14.1 14.1 10.7	each J -REGIS I Durati 4 4 7 9 5.5 15.7 12.5 17.9 15.1 13.8 15.0	76 HOUR O TERING ion of St 7 2 17 5 11 8 18 3 13 4 11 4 16 6 16 9	76 of the instruction inshine i inshine i i	DAY in CUMENT In the H E S S CUMENT In the H E S S S S S S S S S S S S S	77 in each r, for four en tin tin tin tin tin tin tin tin tin ti	7 h Mon the Yi ding H a 4 h 2.4 9.9 13.9 12.8 12.4 11.8 13.6	25 TH, 8 EAR 1 EAR 1	85 s derive 883.	Hd L h 5·3 5·1 4·3 2·1	86	88 Records Total registered Duration of Sun- shine in each Month. h 34 · 4 48 · 6 118 · 4 133 · 0 178 · 1 163 · 5 148 · 7 156 · 8	87 of CAMPBE Correspond- ing aggre- gate Period during which the Sun was above Horizon. h 259'I 277'9 366'9 414'9 482'I 494'5 496'8 449'I	82 ELL'S Met Altiti of t Su at No c 1 2 3 4 5 6 6 6 5 4
eans Total 1883, Month. chuary ebruary . arch	A MOU	88 NT of E C C C C C C C C C C C C C	86 SUNSH H H ·· ·· 3·5 9·1 8·7 9·3 5·1 ··	E = = = = = = = = = = = = = = = = = = =	79 egister Re 6 10.7 2.8 9.1 10.8 15.0 12.7 11.5 9.7 8.0	ed in SELF gistered h 4.5 5.5 14.8. 13.2 17.2 13.2 14.1 14.1 14.1 10.7	each J -REGIS Durati 4 4 7 9 5.5 15.7 12.5 17.9 15.1 13.8 15.0 12.7 10.4	76 HOUR of TERING ion of St 7 2 17 5 11 8 18 3 13 4 11 4 16 6 16 9 10 5	76 of the INSTR	DAY in UMENT in the H E 5 2 9 6 12 3 14 4 13 2 14 9 13 5 14 9 14 9 13 5 14 6 16 5 19 1	77 in each r, for lour end t t t 2 · 8 7 · 0 12 · 0 12 · 0 12 · 7 13 · 8 14 · 9 13 · 2 15 · 3 13 · 6	7 h Mon the Yi ding h 2.4 9.9 13.9 12.8 12.4 11.8 13.6 11.1	25 TH, 8 EAR 1 EAR 1	85 s derive 883.	Hd. h h 0.5 .3 5.1 4.3 2.1	86 om the	88 Records Total registered Duration of Sun- shine in each Month. h 34 · 4 48 · 6 118 · 4 133 · 0 178 · 1 163 · 5 148 · 7 156 · 8 116 · 1	87 of CAMPBE Correspond- ing aggre- gate Period during which the Sun was above Horizon. h 259'I 277'9 366'9 414'9 482'I 494'5 496'8 449'I 376'9	82 SLL'S Me Altiti of t Su at No 1 2 3 3 4 5 6 6 6

The total registered duration of sunshine during the year was 1240.8 hours; the corresponding aggregate period during which the Sun was above the horizon was 4454.0 hours; the mean proportion for the year (constant sunshine =1) was therefore 0.279.

Ń

· · ·		, 	·			1883.						
Days of the Month.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
d	0	0	0	ò	0	0	0	0	0	0	0	0
I	52 . 21	51.37	50.65	49 '97	49 .34	49 .02	. 49 . 20	49 .88	50.82	51 .63	52.26	52 .47
2	52 .17	51.37	50 ·63	49 .95	49.31	49.00	49.21	49 .93	50.83	51 .62	52.27	52 .47
3	52 .14	51.35	50 . 62	49 '9 2	49.30	49.03	49.23	49 .95	50.85	51 .67	52 . 28	52 .47
4 5	52 . 13	51.33	50 •59	49.93	49.27	49 02	49 .25	49 99	50.89	51 .69	52 29	52 .44
5	52.10	51 •31	50 •55	49 .88	49 . 25	49 .01	49 .26	50 02	50.90	51.73	52 .31	52 .43
6	52 .06	51 • 26	50 ·53	49 .86	49 .27	49 .02	49.28	50.05	50.94	51 .75	52 .34	52 .43
7	52 .05	51.23	50 ·50	49 .84	49 . 25	49 .00	49 .30	50.02	50.97	51 .76	52.31	52 .44
8	52 .01	51 . 22	50 .42	49 .81	49 . 2 1	49 .00	49 .32	50.09	51.00	51.81	52 .34	52 .42
9	51 .02	51.19	50.40	49 .80	49 . 20	49 '03	49 .34	50.13	51 .03	51.83	52.37	52 43
10	51 .96	51 • 15	50 .42	49 *7 6	49.12	49.00	49.36	50 • 15	51.07	51 .84	52.36	52 • 45
11	51 .93	51.14	50 .40	49 .75	49 • 18	49 .00	49 • 37	50.18	51.07	51.87	52.36	52 .43
12	51.92	51.11	50.38	49.73	49.16	49.03	49.40	50 . 23,	51.12	51 .88	52.35	52 .42
13	51 .88	51.08	50.35	49 72	49.16	49.03	49.41	50.27	51.13	51 .93	52.37	52 .44
	51.85	51.05	50.33	49 67	49.15	49 .03	49.43	50 29	51.18	51.96	52.37	52 .43
14 15	51 .83	51 .04	50 .32	49 .67	49.15	49 .03	49 • 46	50.30	51 .50	51 .98	52.38	52 .42
16	51.81	51.00	50 . 27	49 .64	49 14	49 .01	49 .48	50.34	51 .54	51 · 99	52 .42	52.37
17	51.81	50.97	50 . 27	49.63	49.13	49 03	49.52	50.38	51.29	52 .02	52 .41	52.33
18	51 .78	50.95	50 • 25	49.61	49.10	49 .03	49 •52 49 •53	50.40	51.31	52 · 03	52 .41	52.34
19	51 .74	50.90	50 .23	49 .57	49 .10	49 04	49.55	50.44	51.33	52 °04	52 .43	52 .35
20	51 .73	50 •88	50 . 20	49 •57	49 .08	49 05	49 . 58	50.46	51.33	52 .05	52.43	52.35
21	51 .68	50.87	50 . 18	49 •54	49 .08	49 .06	49 .59	50.50	51 ·37	52 .07	52 .45	52.35
22	51.66	50.84	50 . 12	49 .53	49 .09	49 •07	49.60	50.53	51.39	52.10	52 .45	52.32
23	51.62	50.81	50 12	49 .48	49 .08	49 .09	49 .65	50.55	51 .43	52.11	52.43	52.31
24 25	51.57	50.77	50.11	49 46	49 .06	49 '10	49 .67	50.59	51.46	52.14	52 .40	52.32
25	51.56	50 .75	50 .07	49 • 45	49 .02	49 .11	49 .20	50.62	51 .20	52 .17	52.47	52.30
26	51 .54	50.74	50.06	49 ° 44	49 .04	49 .12	49 .73	50.65	51 .53	52.18	52.45	52 . 27
27	51.53	50.71	50.04	49 42	49 .04	49.13	49 .75	50.67	51 .24	52 . 21	52.46	52 25
28	51.50	50.70	50.03	49 .39	49 .04	49 . 12	49 79	50.70	51.57	52 . 23	52 .48	52.24
29	51 .49		50.02	49 37	49 • 04	49 17	49 81	50.72	51 .28	52.22	52 .47	52.26
30	51 .44		50.00	49 .35	49 .01	49.18	49.83	50.75	51.57	52.25	52 .48	52 .20
31	51 .41		49 • 98		49 .01		49 .87	50 .77		52 . 25		52.18
Means.	51.81	51 •04	50 °2 9	49 •66	49 * 14	49 *05	49 .20	50 ·34	51.51	51 •97	52.39	. 52 .37
(· · ·	!	The mean	of the tr		}	:			<u> </u>	

(I.)-Reading of a Thermometer whose bulb is sunk to the depth of 25.6 feet (24 French feet) below the surface of the soil, at Noon on every Day of the Year.

(II.)-Reading of a Thermometer whose bulb is sunk	to the depth of 12.8 feet	(12 French feet) below the surface of the soil, at Noon
()	on every Day of the Year	•	•

						1883.	х.					
Days of the Month.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
d	0	0	0	0	0	0	0	0	0	0	0	0
1	49 ·82	48 .62	47 °4 7	46 .53	46.83	48.51	51.20	53 •93	55.33	55 •90	54 •93	52 .90
2	49.73	48.61	47 °47	46.20	46.85	48.60	51 .60	54 .00	55.33	55 .88	54.87	52.80
3	49 ·62	48.52	47 45	46.44	46 .90	48 .73	51 .67	54 °01	55 .41	55 .87	54 .80	52 .71
4	49 •60	48.50	47 .43	46.43	46.90	48 .84	51 .20	54 •07	55 .48	55.87	54 .79	52 61
4 5	49 . 57	48 .47	47 .40	46 • 39	4 6 • 97	48 .92	51.80	54 *10	55 •50	55 .89	54 .75	52 .48
6.	49 49	4 8 ·3 9	47 .39	46 .33	47 .03	49.03	51 .00	54 .18	55.53	5 5 •90	54 .72	52 ·42
7	49 .46	48.31	47 •36	46.31	47 .04	49.10	51 .96	54 .20	55.60	55.88	54.60	52 • 36
. 8	49 44	48.29	47 .32	46.29	47 .09	49 21	52.07	54 .20	55.64	55 · 90	54.60	52 . 26

GREENWICH MAGNETICAL AND METEOROLOGICAL OBSERVATIONS, 1883.

.

(lvii)

.

EARTH TEMPERATURE,

		1	.			1883.	,	1	1		 1	···. ··
Days of he Month.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December
d	0	0	0	0	•	0	0	°	0	• •	0	•
9	49 •41	48 °22	47 •32	46 • 28	47 °10	49 •34	52 ·16	54 •26	55 •70	55 •88	54 •60	52 •20
10	49 •40	48 °12	47 •33	46 • 27	47 °13	49 •44	52 ·26	54 •30	55 •76	55 •86	54 •52	52 •18
11	49 •38	48 ·10	47 [•] 32	46 •21	47 [•] 20	49 ·50	52.•32	54 •36	55 ·76	55 •80	54 •46	52 •08
12	49 •38	48 ·01	47 [•] 29	46 •23	47 [•] 28	49 ·66	52.•43	54 •42	55 ·81	55 •77	54 •40	51 •99
13	49 •33	47 ·92	47 [•] 28	46 •27	47 [•] 33	49 ·76	52.•55	54 •53	55 ·82	55 •79	54 •35	51 •96
14	49 •30	47 •90	47 ·27	46 •25	47 ·38	49 •87	52 •63	54 •56	55 •89	55 •77	54 •28	51 ·87
15	49 •30	47 •88	47 ·24	46 •30	47 ·41	49 •98	52 •73	54 •53	55 •87	55 •70	54 •22	51 ·72
16	49 •25	47 ^{•80}	47 [•] 20	46 •31	47 ·48	50 °02	52 •83	54 •58	55 •90	55 •67	54 •23	51 ·61
17	49 •26	47 ^{•79}	47 [•] 18	46 •32	47 ·49	50 °16	52 •97	54 •63	55 •92	55 •61	54 •16	51 ·52
18	49 •22	47 •76	47 [•] 14	46 •39	47 ·52	50 °27	53 •03	54 •70	55 •95	55 •56	54 •05	51 ·41
19	49 •17	47 •69	47 [•] 11	46 •40	47 ·58	50 °36	53 •18	54 •76	55 •92	55 •49	54 •01	51 ·36
20	49 •09	47 •68	47 [•] 03	46 •41	47 ·60	50 °45	53 •23	54 •80	55 •88	55 •47	53 •93	51 ·28
21	49 °10	47 •64	47 ^{.01}	46 •47	47 •69	50 •58	53 •28	54 •89	55 •84	55 •42	53 •90	51 •20
22	49 °05	47 •62	46 . 95	46 •50	47 •75	50 •68	53 •35	54 •88	55 •88	55 •38	53 •79	51 •09
23	48 °99	47 •60	46 .90	46 •50	47 •82	50 •80	53 •46	54 •92	55 •91	55 •33	53 •67	51 •01
24	48 °92	47 •58	46 .88	46 •55	47 •88	50 •90	53 •54	54 •99	55 •90	55 •31	53 •59	50 •92
25	48 °90	47 •55	46 .88	46 •60	47 •92	51 •00	53 •59	55 •02	55 •95	55 •31	53 •53	50 •86
26 27 28 29 30 31	48 •89 48 •86 48 •80 48 •80 48 •73 48 •68	47 •55 47 •52 47 •50	46 •78 46 •71 46 •69 46 •64 46 •61 46 •56	46 •67 46 •70 46 •72 46 •74 46 •80	47 [•] 99 48 •06 48 •14 48 •24 48 •30 48 •41	51 °05 51 °11 51 °21 51 °34 51 °43	53 ·66 53 ·73 53 ·79 53 ·83 53 ·86 53 ·92	55 •09 55 •11 55 •17 55 •19 55 •24 55 •27	55 •96 55 •92 55 •94 55 •92 55 •85	55 •27 55 •22 55 •10 55 •10 55 •06 55 •00	53 •40 53 •28 53 •22 53 •10 53 •00	50 •79 50 •69 50 •61 50 •54 50 •48 50 •39
leans .	49 . 22	47 °97	47 '11	46 •44	47 • 49	49 '99	52.79	54 .61	55 .77	55 •58	54 .12	51 .62

(II.)--Reading of a Thermometer whose bulb is sunk to the depth of 12.8 feet (12 French feet) below the surface of the soil, at Noon on every Day of the Year--concluded.

(III.)—Reading of a Thermometer whose bulb is sunk to the depth of 6.4 feet (6 French feet) below the surface of the soil, at Noon on every Day of the Year.

	1883.													
Days of the Month.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December		
d	°	0	0	0	0	0	0	0	•	0	0	0		
I	47 ' 41	46 .46	46 .08	44 • 33	47 '79	52.67	56 .47	58 .23	60.10	58 .66	55 .18	50 .61		
2	47 .58	46 .44	46.10	44 .37	47 .90	52 .80	56 .62	58.32	60.09	58.58	55 • 1 1	50 .57		
3	47 .71	46.30	46.17	44 42	48.03	52 .97	56.82	58.39	60.18	58 •43	55.09	50.56		
4 5	47 '90	46.19	46.21	44 .21	48 . 18	53.12	56 .99	58.42	60.13	58.28	55 .03	50.49		
5	48 .03	46.13	46 21	44 .61	48.29	53 . 27	57 .26	58 50	60 •05	58 • 13	54 .98	50.39		
6	48 •09	46 •09	46 • 26	44 • 78	48.38	53 .43	57 .53	58 •59	5g •96	57 •93	54 .90	50.29		
7	48 .10	46.03	46 24	44 97	48.40	53.58	57 .71	58 ·63	59.90	57 •Ğg	54.69	50.17		
7 8	48.10	46.00	46.20	45 20	48.43	53.84	57 91	58 .65	59.79	57.51	54.58	50 00		
9	48 .06	45 .01	46 • 18	45 ·41	48.53	54.10	58.09	58 .72	59.69	57 33	54 .46	49 ' 79		
10	47 .98	45 . 72	46 .08	45 · 66	48.61	54 .29	58 .21	58 .79	59.54	57 .20	54 .25	49 59		
II	47 .87	45.67	45 · 96	45 • 81	48 .72	54 ·35	58 • 31	58 .84	59.40	57 .04	54 .09	49 ·3 0		
I 2	47 .76	45.72	45.79	46 •00	48.80	54 58	58 .44	58.89	59.35	56.94	53.89	49.10		
13	47 · 61	45.79	45 61	46 . 17	48.83	54.79	58.59	58 .94	59.22	56 . 90	53.70	48.97		
14	47 .21	45 .90	45.48	46 .25	48 84	54 90	58.66	58 • 93	59.19	56 85	53 49	48 84		
14 15	47 .43	45 ' 97	45.30	46 .41	48.90	54 • 98 ·	58`•70	58 • 89	59.10	56 .71	53 21	48.74		

(lviii)

èet)	below	the	surface	of	the	soil,	at :	Noor	1
					•				

Days of the Month.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December
' d	0	0	0	<u>ی</u>	0	0	0	0	0	0	0	0
16	47 .36	45 • 99 ·	45 • 16	46 • 52	49 .03	55 .09	58.73	58 .92	59.11	56 · 65	53 •02	48.70
17	47 28	46.01	45 .03	46.61	49 . 20	55.26	58.76	59.07	59.14	56.57	52.70	48 .70
18	47 • 20	46.09	44 .93	46 .72	49 .40	55.40	58.70	59 . 20	59.17	56 .4.7	52 .41	48.67
19	47 11	45 ·98	44 .83	46.80	49 .67	55.40	58 •68 58 •58	59 · 26	59.13	56 •40 56 •31	52 . 21	48.59
.20	47 • 14	45 •97	44 •75	46 .92	49 '90	55 • 43	56.58	59 •29	59.06	50-51	52 .00	48.51
21	47 '10	45 •91	44 .72	47 •08	50 . 20	55 ·50	58.47	59 •40	59.03	56 .22	51.81	48 •40
22	47 '10	45.87	44 .69	47 .18	50 .42	55 ·5o	58.39	59.39	59.09	56.09	51.62	48.28
23	47 12	45 .82	44 .64	47 * 28	50.64	55.59	58.37	59 .47	59.10	55 •gČ	51.42	48 .19
24 25	47 '14	45.89	44 • 66	47 .38	50.80	55.61	58.30	59 .60	59.06	55 .80	51.30	48 . 12
25	47 • 16	45 .92	44 .60	47 •46	51.00	55 •69	58 20	59.69	59 .04	55 •66	51 .10	48 • 10
26	47 .10	46.00	44 •55	47 • 48	51 .23	55.76	58 • 19	59 .79	58 ·95	55 •49	50.80	48 . 10
27	47 .00	46 .00	44 49	47 51	51.53	55 .90	58 17	59.86	58.88	55 •38	50 .72	48 °06
28	46.85	46 .04	44 43	47 .21	51 .82	56 .09	58.18	5 9 · 91	58.82	55 • 31	50.75	48 .03
29	46.75		44 40	47 .56	52 .07	56.28	58.19	59 92	58 .78	55 .22	50.70	48 .01
30 31	46.58		44 .36	47 .68	52 22	56 • 38	58 • 17 58 • 23	60 °01 60 °02	58.67	55 •21 55 •10	50 · 67	48.00
31	46.49		44 •31		52 .48		30.23					47 .93
Means.	47 • 41	45.99	45.30	46 .22	49 ·62	54.75	58 .08	59 .11	5g •36	56 •7 I	53.00	49.03

(III.)-Reading of a Thermometer whose bulb is sunk to the depth of 6.4 feet (6 French fe	eet) below the surface of the soil, at Noon
on every Day of the Year-concluded.	

(IV.)-Reading of a Thermometer whose bulb is sunk to the depth of 3.2 feet (3	French feet) below the surface of the soil, at Noon
on every Day of the Year.	

						1883.		•	· .			
Days of ae Month.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December
d	0	0	0	0	0	0	0	0	0	0	0	•
I	46 .22	42 .81	43.91	41.67	48.13	55.80	60 ·53	60 . 50	62.88	58 ·39	53.78	47 •30
2	46 .62	42.57	44.11	41 .93	48 .40	55.90	61.11	60.79	62 .44	57 .88	53.60	4.7 * 27
3	46 .71	42.40	44 .22	42.26	48.59	56.14	61.69	60.80	62.11	57 28	53.40	47 .05
4	46.59	42.23	44 .12	42 .83	48.40	56.43	62.20	60 • 90	61.71	56.70	53 .21	46.83
4 5	46 .32	42.50	43 .91	43 .49	48 .12	57 .00	62 •50.	60 • 93	61 .31	56 • 13	52 *88	46 60
6	46 .00	42.54	43.81	44 • 17	48 . 14	57.51	62 . 59	61 • 11	60 · 90	55 78	52 .41	46 .08
7	45.70	42.50	43.66	44 '90	48.52	57.80	62.50	61 •20	60 .41	55 .49	52 07	45.38
8	45 41	42.39	43.19	45 .31	48 . 90	57 .98	62 . 58	61 • 18	60.00	55 .30	51.67	44 69
9	44 .92	42 . 45	42 .70	45.61	48.89	57 . 91	62.64	61 .10	59.81	55 .36	51 .30	44 21
10	44 '42	42.80	42 . 19	45 .73	48 .20	58 . 10	62 .80	60 .91	59 ·6 0	55 •66	51 .08	43 .98
11	44 .03	43.16	41 . 72	45 .80	48.40	58.30	62 .63	60.80	59 . 50	55 · 60	50 .70	43 · 98
12	43 95	43.37	41 •37	45.76	48.11	58.49	62 70	60 .81	59.52	55 • 59	50 •10	44 .19
13	43 .90	43.48	41 09	45.89	48 .32	58.31	62.61	60 .97	59.52	55 •5 ī	49 • 52	44 .40
14 15	43 .84	43.49	40.88	46 .09	48.90	58.61	62 . 29	61 • 23	59.79	55 .38	48 • 81	44 .60
15	43 .71	43.:50	40 .82	46.11	49.80	58 •93	62 00	61 •66	59 •93	55 ·2 5	48 .22	45 •08
16	43 .71	43.63	40 .80	46 • 15	50 .52	58 • 90	61.48	61 •81	60.11	55 ·34	47 .80	45 .12
17	43 70	43.49	40 .61	46.40	51 .19	58.51	60 92	61 .77	60.16	55 29	47.61	44 '90
18	43.60	43.10	40 .67	46 • 58	51.81	58 • 1 1	60 · 59	61 .62	60.25	55 22	47 .41	44 41
19	43 .90	42.89	40.82	46 .80	52.33	57.•84	60 42	61 .71	60.36	54 .89	47 20	44 09
2C	44 .13	42.66	40 •96	47 10	52.54	57.72	60.20	6r •88	60.35	54.55	47 .20	43.97

						1883.						
Days of the Month.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
d d	•	0			0	0	0	0	0	0	0	0
21 22 23 24 25 26 27 28 29 30 30 31	44 '40 44 '57 44 '60 44 '20 43 '55 43 '15 42 '95 42 '70 42 '67 43 '09 43 '15	42 *59 43 *08 43 *50 43 *60 43 *50 43 *50 43 *60 43 *72 43 *78	41 '12 41 '20 41 '10 40 '93 40 '74 40 '69 40 '75 40 '80 40 '72 40 '88 41 '30	47 *11 47 *22 47 *11 46 *95 46 *57 46 *53 46 *62 47 *08 47 *52 47 *90	$\begin{array}{c} 52 \cdot 70 \\ 52 \cdot 80 \\ 53 \cdot 22 \\ 53 \cdot 90 \\ 54 \cdot 60 \\ 55 \cdot 13 \\ 55 \cdot 40 \\ 55 \cdot 39 \\ 55 \cdot 57 \\ 55 \cdot 79 \\ 55 \cdot 79 \\ 55 \cdot 90 \end{array}$	57 •70 57 •72 57 •90 58 •23 58 •91 59 •37 59 •40 59 •24 59 •24 59 •39 59 •83	59 98 59 80 59 60 59 44 59 50 59 61 59 73 59 80 60 00 60 19 60 40	62 ·10 62 ·42 62 ·73 62 ·80 62 ·79 62 ·90 62 ·94 62 ·91 63 ·01 62 ·90	60 • 26 59 • 94 59 • 68 59 • 30 59 • 34 59 • 42 59 • 48 59 • 48 59 • 40 59 • 12 58 • 80	54 28 53 72 53 35 53 00 52 93 53 61 53 86 53 86 53 91 53 85	47 *19 47 *03 46 *90 46 *71 46 *67 47 *00 47 *26 47 *16 47 *26 47 *30	43 ·92 44 ·16 44 ·34 44 ·02 44 ·49 44 ·63 44 ·62 44 ·60 44 ·52 44 ·40 44 ·22
Means.	44 '40	43 .05	41 .80	45 .71	51 .20	58 •07	61 .13	61 .75	60 • 18	55 •04	49 •35	44 '90

(1V.)-Reading of a Thermometer whose bulb is sunk to the depth of 3 2 feet (3 French feet) below the surface of the soil, at Noon on every Day of the Year-concluded.

(V.)-Reading of a Thermometer whose bulb is sunk to the depth of 1 inch below the surface of the soil, at Noon on every Day of the Year.

						1883.						
Days of he Month.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December
d	0	0	0	0	0	0	0	0	0	0	0	0
г	50 .2	37.3	45.6	41 .0	50.7	59 .1	66.6	61 .0	62.0	53 • 4	51 .1	44 ' 5
2	47 '9	4.2.2	43.0	43.1	49 .0	60 .1	68.0	63 ·õ	60.7	51 2	50 0	43.4
3	46.0	40.4	41 .4	45.0	48.1	61.3	70.0	62 • 5	60.0	51 .4	49.0	44 .2
	44 .5	40.8	40.7	48 0	45.3	62.3	66.4	· 62 ·0	58 .2	50 · i	48.6	42 9
4 5	44 • 3	41 .3	40 .1	49 .0	45.7	63 • 2	65 ·4	62 .8	57 .0	51 . 0	47 °	39.8
6	42 .1	39.7	41.1	48 .7	52.0	61 .3	66 ·o	64 · 3	56 0	∞ 5 1 ° 0 Î	51 •1	38 ·o
	41.9	39.3	38.3	46 6	51 .0	58.9	66 • 1	62.5	56 • 9	50 • 5	44 °O	37 .0
7 8	39 ·Č	41.0	35 .8	47 0	49.6	60.3	66 • 8	61 .3	58.0	54 .7	45.2	36 · o
9	38.3	43.6	35 • 1	45 °2	48.1	62 .3	66 • 2	60.0	56 •9	.55 •1	48.6	37 .2
10	40 .0	44 *2	35 • 1	46 0	45 .1	63 • 1	65•5	60 • 1	59 <u>;</u> 0	54 .5	44 [•] 2	41 2
11	40.4	43.0	35 .7	44 .2	46 .0	59 .0	64 • 3	61 .6	59 °o	54 •1	43.8	43.5
12	40.9	44 .6	35.8	47 °	49 '0	59 0	64.6	61 .3	59.9	53 .2	41.8	43 .0
13	41 . 1	42.6	35.6	47 9	52 .4	64.6	63 0	65 • 8	59.0	53 °C	40 .2	44 .2
14 15	40.0	43 '0	37.0	45.6	55.8	65.0	62 .4	67.3	60.8	54 .7	40.0	48 . 1
15	4 2 ° 0	45 •1	36.8	47 '9	56 · o	62 •3	58.3	63 • 2	60 .7	54 2	39 0	42 .0
16	41 .0	40 • 3	35 • 3	48 •2	56.9	55 •8	57 .3	60 .0	60.0	54.4	44 '1	· 40·3
17	41.4	39.5	38.0	47 .3	56 · 3	56 •8	60 ·3	62.3	60.8	54 .0	43 0	39 •0
18	45 • 1	41 .1	37 .2	50 .9	56 • 3	58.3	59 7	64 .0	62.8	51 0	40 *2	37 .0
19	4 ² '7	39 0	39.3	49 .0	55 .7	58 •0	60.2	64 .2	62.0	51 °0 50 °2	45 .0	40 •2
20	45 . 1	40 . 1	38.7	48 9	55 • 0	57 .0	60 0	64 •0	60 • 3	3 0 *2	44 °	41 .0
21	44 .9	. 44 •1	39.7	48 .1	54.7	60 .1	59 .0	67 .5	58 .0	49.0	45 1	44 .0
22	43.1	4 ⁵ • 4	36.9	47 °°	56 .9	59 •1	57 • 1	67 • 1	57.3	48.0	44 •8	44 '0
23	38.9	42 .6	36.0	45 1	60 0	61.3	59 •0	64.2	56 •3 58 •8	49 .0	42 .0	42 .7
24 25	37 .2	41 0	35 • 1	43.3	61 .0	64 .0	59.7	63 •2 65 •0	58°8 60°7	49 •4 55 •0	44 '9	44 .3
23	38 • 2	43 ·8	35 • 3	45 • 1	62 •0	65-3	59 •3	03.0	00 /	33 0	49.0	4 3 •5

. ¹	· · · ·					1883.						
Days of the Month.	January.	February.	March.	Ápril.	May.	June.	July.	August.	September.	October.	November.	December
d 26 27 28 29 30 31	° 39 •4 39 •3 39 •5 45 •6 40 •9 37 •4	° 42 *9 42 *2 44 *6	° 37 ·4 36 ·3 36 ·4 39 ·2 43 ·6 41 ·5	° 46 °7 50 °4 50 °0 50 °0 49 °8	° 59 °0 57 °6 58 °0 61 °2 58 °0 58 °0	° 61 · 3 60 · 6 61 · 9 66 · 0 68 · 7	0 60 ⋅0 60 ⋅3 60 ⋅2 62 ⋅0 61 ⋅8 63 ⋅0	65 ·0 65 ·4 66 ·0 65 ·0 64 ·0 63 ·9	° 61 •2 59 •0 ·57 ·7 56 •3 53 2	0 55 0 55 0 54 0 53 1 52 4 52 0	46 °0 43 °0 48 °0 45 °0 45 °3	0 41 •2 41 •6 42 •1 40 •7 39 •2
Means.	41 .9	42 .0	38 .2	47 '1	53 · 9	61 • 2	62 .5	63.6	58.9	52 .4	45 • 1	41 .6

(V.)—Reading of a Thermometer whose bulb is sunk to the depth of 1 inch below the surface of the soil, at Noon on every Day of the Year—concluded.

(VI.)—Reading of a Thermometer within the case covering the deep-sunk Thermometers, whose bulb is placed on a level with their scales, at Noon on every Day of the Year.

						1883.					,	
Days of the Month.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
d	0	0	0	0	0	0	0	. 0	0	0	0	0
1	53.9	33.6	47 .0	52 · 9	57.0	70 ° 9	74 •6 78 •6	63 .0	65 • 8	54 .6	51.3	44 '1
2	49 .0	47.4	42.2	60 0	47 '9	68.8	78.6	68.9	58.9	52.8	47 .8	44 .8
3	49 °0 45 °8	47 4 43 2	46.5	54.3	52 .0	71.3	75.2	64.5	63.9	50.0	46.5	46.2
4	43.1	46.4	46.3	58 •9	48 . 1	72 •8	67 .7	63.9	62.9	50 •2	49 7	41 .1
5	47 .8	47 *2	4° °9	62 •1	51.4	72 .1	69 •4	63 • 7	59.2	53 • 2	49.6	38 •2
6	43.6	43.6	40 .2	54 •1	63.8	67 9	71 .8	67 .8	56 • 6	55 •2	54 .0	36 • 1
7	3g•9	40.0	37 9	52 .1	52.6	57 .3	69 • 5	66.8	59.8	51 •0	40.5	37 .2
8	39 • 1	48.2	36 .2	52 .2	49 · 3	65.8	71.7	61 •0	60.1	57 .0	45.0	34 7
9	34 .9	44 .2	36 .7	51 •0	46.9	71 .0,	70 * 2	62 .4	64.7	56.7	53.2	35 .7
10	40.3	48 .0	34 .7	48 3	42 .7	70 . 3	7 0 ' 0	64 •6	63.7	57 .9	42 .1	47 •8
11	41 '0	44 .7	37.8	47 .0	51 •1	56 • 0	64 .5	65 .8	59.8	54 .8	45 .1	44 •4 43 •5
12	40.5	47 1	.38.6	55 •0	52 .4	66 • 1	65 .2	6g • 5	66.0	54 .1	40.5	43.5
13	43.1	46.4	39 •0	54 •3	63.8	73.6	67 .2	76.9	61.3	59 ·6	42.8	52 .1
14	41 .1	46.5	38.2	45.0	63 • 1	71.9	64 .1	74 .0	67.3	62 .0	39.8	53.7
15	44 6	51 • 2	37 •4	56 ∙ 8	,68 • 2	62 • 3	60 · 3	64•4	64 .0	57 .5	37 .9	42.8
16	39 •7	39.0	37 •8	55.6	71 .0	53 .2	59.4	61.8	67 .9	58 .4	48 .0	38.3
17	46 .7	44 .0	45 • 1	53.3	66 • 1	58.8	63.1	66 • 3	71.6	56.3	49 °	38.5
18	49 '9	41.0	41 .0	61 .2	61.2	63 .2	61.9	70.2	73.4	54 .8	40.2	35.3
19	44 • 8	40.6	42.9	48.2	59.0	58.5	67 .1	71.3	70.9	50.8	48.8	41.3
20	46 .7	44 *2	39•3	50.6	55 · 3	57 • 8 ·	63.6	73.4	61 .1	49 .8	48.0	44 .8
21	46 · 9	49 ·3 50 · 1	39 9	51 .1	63 •7	64 .3	59 .2	· 78 · 1	57.8	53 .7	51 .5	48.3
22	41 °Č '		33.9	47 .7	70.1	63.3	58.1	71.9	58.3	49 .4	47 .8	48.4
23	· 38 • 2	44.1	36 .9	44 .8	73.7	68.6	64 .2	70.6	63.6	52.9	40.8	42.9
24	36 • 1	43.2	38.0	<u>4</u> 6 · 1	73.6	69 .7	64 .7	72.3	61.8	54 .2	50.4	46.8
25	38 •7	47 °°	38 • 3	50 •2	72 .8	71 .8	60.6	72.6	68 .9	61 •3	53 • 2	43.0
26	41 .6	42 .0	42 .5	56 · 9	59.3	64 .0	62 • 2	73.7	67.8	57 .7	47 .0	41 .8
	47 .0	43.2	40.9	58 · 3	63.0	63.5	63.8	73.7	63.5	60 .3	46.7	40.0
27 28	45.3	48.4	42.5	51 .5	66 • 9	68 •0	65.6	72.4	63.5	59 9	54 .8	40.9
	51 4		47.3	52 .1	71.4	78 .2	68.6	66 .7	57 .8	54 .8	47.5	39.9
29 30	41 .8		49 ° I 50 ° 7	5 5 •9	60.3	78 •5	65.0	68.6	50.8	53.9	48.0	38.6
31	36 • 7		50 · 7		68 ·5		69 ·3	64 •6		51 6		37 .8
Means .	43 • 3	44 .8	40 •8	52.9	60 • 2	66 •6	66 • 3	68 •6	63 • 1	55 ·o	46 .9	42 .3
I	•	<u> </u>		The mea	n of the tv	velve mont	thly value	s is 54°·22	•		<u>.</u>	<u> </u>

(lxi)

ABSTRACT OF THE CHANGES OF THE DIRECTION OF THE WIND,

Abstract of the Changes of the Direction of the Wind, as derived from the Records of Osler's ANEMOMETER in the Year 1883. (It is to be understood that the direction of the wind was nearly constant in the intervals between the times given in the second column and those next following in the first column.)

Green Mean Tir		Cha of Dir		Amou Mot		Mean	nwich Solar me.		nge ection.	Amou Mot		Mean	nwich Solar me.		nge ection.	Amou Mot	
From	То	From	То	Direct.	Retro- grade.	From	То	From	То	Direct.	Retro- grade.	From	То	From	То	Direct.	Retr
Janu	ary.			0	0	Jan	cont.			0	0	Ма	rch.			• •	0
h	d h					d h	l d h					d h	d h				
. 12	0.16	s.s.w.	S.W.	221/2		29. 4]	2 9. 5	W.	N.	- 90		0.16	0.20	W.S.W.		135	
. 6	2.18	S.W.	W.N.W.	$67\frac{1}{2}$		29. 6 1	29. $6\frac{1}{2}$		S.W. S.	225	45	1. 3 1. 13	1.11 1.16	N.N.E. E.	E. N.E.	67 <u>1</u>	4
2. 18			W.S.W.	6-1	45	30. 13 30. 16	30.14	S.W. S.	E.N.E.		112		2. 4	N.E.	E.	45	1 7
2. 22	3. 3 3.12	W.S.W. N.W.	N.W. E.S.E.	67 ¹ / ₂ 157 ¹ / ₂		31. 7		E.N.E.			45	2. 5	2. 18	E.	N.E.		4
3. 8 1 3. 23	3.12 4. 2	E.S.E.	S.S.E.	45 ^{13/2}								2.19	2.22	N.E.	E.	45	
. 17	4. 22	S.S.E.	S.S.W.	45					Sums	$3172\frac{1}{2}$	15521	1	3. 13 4. 6	E. N.E.	N.E. E.S.E.	67 1	4
5. 2	5.3	S.S.W.	S.S.E.		45			· · ·			-	4. 0 4. 6	4. 6 4. 18	E.S.E.	N.		11
5. 4	5.8	S.S.E.	W.S.W. W.N.W.	90		Febr	uary.	1)			4.19	4.21	N.	N.E.	45	
5. 13 5. 20	5. 15 5. 22	W.S.W. W.N.W.	N.	45 67 1		1001	<u></u>		.'			5. 2	5. 7	N.E.	W.N.W		1
5. 20	5. 22 7. 17	N.	E.	90		0.15	0.21		N.N.W.		45	5. 7	5.20	W.N.W.	N.	$67\frac{1}{2}$	
	13. 6	Ē.	N.E.		45	0.21	0.22	N.N.W.	S.W.		1121		7.22	N.N.E.	N.N.E. N.	$22\frac{1}{2}$	
	13. 23	N.E.	S.W.	180		1. 0	I. I	S.W. W.	W. S.E.	45 225		9.14	9. 16 10. 16	N.	w.s.w.		I
	14. 0	S.W.	S.E.		90	1. 2	1. 5 1. 10	S.E.	S.S.E.	1225 1225		10. $19\frac{3}{4}$		W.S.W.	N.N.W.	90	
	14. 3 14. 6	S.E. E.	E. S.S.E.	67 1	45	1. 9 1. 21	2. 7	S.S.E.	S.W.	671		11.23	12. 0	N.N.W.	N.	221/2	
	14. 0 14. 11	S.S.E.	S.S.L. S.	$22\frac{1}{2}$		3.12	3.15	S.W.	W.S.W.	$22\frac{\overline{1}}{2}$		12. 6	12.12	N.	W.		1
. 17	14. 18	S.	W.	90		4. 3	4. 10	W.S.W.	S.		1	12.22	12.23	W. N.N.W.	N.N.W. S.S.W.	$67\frac{1}{2}$	I
	14.20	W.	S.S.W.		671	4.17	4. 19	S.	S.S.E.	-	22 <u>1</u> 45	13. 0 13. 14	13. 12 13. 16	S.S.W.		13 5	1
. 3	15. 8	S.S.W.	S.S.E.	,	45	5. 3	5. 6	S.S.E. E.S.E.	E.S.E. S.S.E.	45	43	13.18	13. 20	N.N.W.		100	.
	15.11	S.S.E.	W. S.S.E.	$112\frac{1}{2}$		6. 7 6. 22	6.21 7.1	S.S.E.	E.S.E.	40	45			W.S.W.		180	
	15. 12 15. 15	W. S.S.E.	S.S.L. N.E.	247 1	1121	1	7. $3\frac{1}{2}$		E.N.E.			15.8	15.11	E.N.E.	W.S.W.		I
	15.17	N.E.	N.W.	270	1.1.2.2	7.5	7.9	E.N.E.	S.E.	67 1		17. 3	17.20	W.S.W.			
	16. 0	N.W.	N.N.W.	2212		7.21	8. 1	S.E.	S.S.W.	$67\frac{1}{2}$	1 .	18. 4 18. 13	18.11 18.14	S.S.W. E.	E. N.N.E.	} ``	I
$0.0\frac{3}{4}$	16. I	N.N.W.	W .	_	6 <u>7</u> 1	8.10	8.12	S.S.W. N.	N. W.S.W.	1571	1121	,	19. 5	N.N.E.	N.	1	
	16. 7	W.	S.W.		45	8.19	8.22 9.6	w.s.w.	S.S.W.		45	~	19.13	N.	E.N.E.	$67\frac{1}{2}$	
	16.13	S.W. S.S.W.	S.S.W. W.	67 <u>‡</u>	$22\frac{1}{2}$	9. 2 10. 1	9. 6 10. 2	S.S.W.	S.		221	23. 7	23.14	E.N.E.	N.		
	18.8 18.17	W.	S.S.W.	0/2	67 1	10. $14\frac{1}{2}$		S.	W.N.W.	1121			23.18	N.	W.S.W.		I
	18. 19 1	S.S.W.	E.S.E.			10.17	10.171		W.S.W.	, I			24. 2	W.S.W. N.W.	N.W. N.N.E.	67 <u>1</u> 671	
	18.21	E.S.E.	S.	67 <u>1</u> 67 <u>1</u>	_	11. 2	11. 9	W.S.W.	S.S.E. S.	201		24. 6 <u>3</u> 24. 11	24. $7\frac{1}{4}$ 24. 17	N.N.E.	N.N.W.	0/2	
. 2	19.22		W.S.W.	67 <u>1</u>			11.12 12.23	S.S.E. S.	s.w.	22 <u>1</u> 45		24.22	25. 6	N.N.W.	S.W.		I
. 22		W.S.W.	N.E.	157 1			12.23	s.w.	S.	TO	45	25. 8	25. 15	S.W.	W.	45	
. 0 <u>1</u>	20. 3 20. 6	N.E. S.S.W.	S.S.W. E.S.E.	1571	00	13. 20	15. 3	S.	S.W.	45		25.15	25. 16	W.	N.N.W.	671	
	20. 0	E.S.E.	S.S.E.	45		15. 9	16. 2	S.W.	N.W.	90	- 5 - 1	26. 9	26.11	N.N.W.			
	20.14	S.S.E.	E.N.E.		90	16.4	16. 7	N.W.	S.S.E.		1575	26. 16 27. 8	20.20	W.S.W. N.	N. S.W.	1121/2	1
. 15	20. 18	E.N.E.	E.S.E.	45		18. 0	18. $0\frac{1}{4}$	S.S.E. N.	N. W.S.W.	202克	1121	27.16	27.19	s.w.	W .	45	
	21.12	E.S.E.	S.	67 <u>1</u>	180	18. 3 18. 15	18.10	W.S.W.	N.	1121	2	27. 194	27.20	W.	N.N.W.	45 671	
	21.18	S. N.	N. E.	9 0	100	19. 13	19.11	N.	S.W.	-	135	28. 4	28. 10	N.N.W.	S .		I
	22. 4 22. I3	E.	S.E.	45		21.21	22. 4	S.W.	W.	45		29.22		S. W.S.W.	W.S.W.	671	
	23.14	S.E.	S .	45		22. 4	22. 7	W.	N.N.W.	67 <u>1</u>		30. 10 30. 17		S.S.W.	S.S.W. N.E.	2021	
. 11	24. 13	S.	S.S.W.	221			22.12	N.N.W. W.S.W.	W.S.W. NNW.	90	90	31.11		N.E.	N.	2	
. 141	24. 16	S.S.W.	W.	$67\frac{1}{2}$		24. II 24. IS	24. 15 24. 2 0	N.N.W.	S.W.	90	1121			·			-
. 2	25. 6	W. S.	S. S.W.	45		24. 18 26. 14		S.W.	W.N.W.	67 <u>1</u>	-	[Sums	1800	20
12	25. 13 25. 18	S.W.	W.S.W .	40 22]		26. 18	27. 6	W.N.W.	W.S.W.		45					-	-
	26. 21	w.s.w.	S.S.W.	2	45	27. 2I	27.22	W.S.W.	N.	1121			nnil		1 * * `		
5. 23	27.13	S.S.W.	W.	67 1		27.23	28.12	N.	W.S.W.		112-2	A	pril.		1	1	
7.15	27.21	W.	S.W.		45				Sume	17321	15071	0.12	0. 22	N.	E.	90	
3. 3	28. 7	S.W.	S.S.W.	201	221		· · · · · · · · · · · · · · · · · · ·		, Sums	-/022		1. 4	I. 7	E .	E.S.E.	221	
1. 10	28. 12 29. 4 1	S.S.W. S.W.	S.W. W.	22 1 45	1					1	1	1.21	1.23	E.S.E.	S .	671	

	Greenwi Mean So Time,	olar	Cha of Dir	nge ection.	Amou Mot		Mean	nwich Solar ne.		ange rection.		unt of tion.	Mean	nwich Solar me.		ange rection.	Amou 'Mot	
April - cont. \circ $April - cont.$	From	То	From	То	Direct.		From	То	From	То	Direct.	Retro- grade.	From	То	From	То	Direct.	Retro grad
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	April—c	cont.			0	0	April-	-cont.			o	0	May-	-cont.			,0	0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1. 23 2 2. 10 2 2. 13 2 2. 23 3	. 0 . 13 . 22	S.S.E. S.E. W.	S.E. W. N.N.E.		585	29. 17 30. 0 30. 4 30. 6 <u>1</u>	30. 0 30. 4 30. 4 <u>1</u> 30. 4 <u>1</u> 30. 6 <u>1</u>	W. N. S.W.	N. S.W.		135	26. $16\frac{1}{2}$ 26. 20 27. 3 27. 18 28. 2	26. 17 27. 0 27. 9 27. 22 28. 15	W.N.W. S.W. S. S.W.	S.W. S. S.W. S.S.E.	45	4 ⁵ 4 ⁵ 67
5. 8 6. 7 7. 14 12 5. 8 12 7. 14 12 </td <td>3.18 4 1.04</td> <td>. 0</td> <td>S.W. W.N.W.</td> <td>W.N.W. S.</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Sums</td> <td>4050</td> <td>3307<u>1</u></td> <td>29. 4 29. 19</td> <td>29. 7 29. 19<u>1</u></td> <td>S.W. W.</td> <td>W. N.N.W.</td> <td>45</td> <td>- 0.</td>	3.18 4 1.04	. 0	S.W. W.N.W.	W. N.W . S.						Sums	4050	3307 <u>1</u>	29. 4 29. 19	29. 7 29. 19 <u>1</u>	S.W. W.	W. N.N.W.	45	- 0.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5. 8 5 5. 13 6	$. \frac{81}{2}$	N. '	E.S.E.		90						22 <u>1</u>	30. 8 30. 19	30. 10 30. 19 <u>1</u>	S.S.E. S.W.	S.W. S.E.		18
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$. 19 7 . 13 7	. 14	E. N.E.	N.E.			1.3 3.5	1.19 3.6	E.N.E. N.	N. E.N.E.	[_		31. 9	30. 22 31. 12		S.S.E.		4 285
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	· 7 8	.20	N.N.W.	E. N.			4. 6	$4.7\frac{1}{2}$ 4.15	N. E.N.E.	E.N.E. N.	_				1			203
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c} 3\frac{1}{2} & 9\\ 7 & 9\\ 12 & 9\\ 5 & 10 \end{array}$	• 7 • 10 • $12\frac{1}{4}$ • 8	S. E. N.	E. N. N.E.	45		5.6 5.14 6.5	5. 12 6. 2 6. 8	E.S.E. N. E.N.E.	N. E.N.E. N.N.E.	67 <u>1</u>	-	0. 12 0. 20	0. 17 0. 21	E.S.E.	S.S.W.		4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21 II I II	· 1 · 7	S. W. N.	W. N. E.	90 90 90		6. 23 7. 0 7. 19	6. 23 <u>1</u> 7. 0 <u>1</u> 7. 22	E.N.E. S. S.W.	S. S.W. N.E.		180	1.22 2.10 2.17	2. Ġ 2. 16 2. 19	W.S.W. E.S.E. N.N.E.	E.S.E. N.N.E. N.E.	225 22]	9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16 13 6 13	• 4	S.E. N.W. N.E.	N.W. N.E. S.S.W.	180 90 157 1		8. 9 1 8. 22 9. 19	8. 13 8. 23 9. 21	N. N. N.N.E.	N.N.E. N.N.W.	1 .	45	6. 10 7. 5 7. 15	6. 17 7. 13 7. 17	E.S.E. N.N.E. S.S.E.	S.S.E. E.S.E.	135	9 4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11 14 12 15 2 16	. 14 . 20 . 18	N. W.S.W. W.N.W.	W.S.W. W.N.W. S.S.W.		90	10. 18 10. 23 11. 2	10.19 11.0 11.6	W.S.W. W S.W.	W. S.W. N.	135	45	8.13 9.23 10.3	8.16 10.3 10.4	S.S.E. E.N.E. N.	E.N.E. N E.S.E.		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	14 17 15 18	. 19	S.E. S.	S. N.		337 1	11.10 11.12 13.0	11.12 11.23 13.6	S.W. S.E. S.W.	S.E. S.W. S.S.E.	90	90	11.20 11.21 12.18	$11.20\frac{1}{4}$ $11.21\frac{1}{4}$ 12.20	N.N.E. S. N.N.W.	S. N.N.W. N.	221	20
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$17\frac{1}{2}18$ 23 19 20 20	. 23 . 5 . 0	N.N.E. S.W. N.N.W.	N.N.W. N.	$22\frac{\tilde{1}}{2}$		14•7 14.12	14. 1 2 14. 22	S.W. S.E.	S.E. N.E.	270		13. 17 14. 1 14. 5	13.21 14.4 14.9	S. N.N.W. W.	N.N.W. W. N.	157 1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	23 21 23] 22	. 23 1 . 15	N.E. E. N.	É. N. E.N.E.	45 67 1	9 0	15.11 16.3 16.9	15. 15 16. 4 16. 15	E.S.E. N.E. E.S.E.	N.E. E.S.E. N.E.	67 <u>‡</u>		15. 1 15. 21	15. 6 16. 0	S.S.W. W.	W. N.N.W.		15
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4 23 17 23 8 24	5. 7 5. 21 - 9	N.N.E. N.E.	N.E. N.		45 90	17.9 17.17 18.9	17. 13 17. 18 18. 10 1	E.S.E. W.S.W. N.N.W.	W.S.W. N.N.W. S.W.	135 90	112	16. 17 17. 2 17. 20	17. 2 17. 15 18. 3	S.W. N.N.W S.W.	N.N.W. S.W. N.	T	11
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	23 25 13 25 18 25	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	W. S. E.	S. E. S.E.	45	90 90	18. 12 19. 21 20. 19	18. 23 <u>1</u> 19. 23 21. 2	S.W. N.N.W. E.S.E.	N.N.W. E.S.E. S.S.W.	90		19. 1 19. 6 19. 15	19. 1 <u>4</u> 19. 11 19. 20	S.W. N.E. S.W.	N.E. S.W. S.S.E.	180	
$13\frac{3}{4}27.14$ S.E. N.E. 90 23. 1 25. 4 E.N.E. 5.5.W. 100 N.F. W.S.W. 157425. 5 25. 7 S.S.W. E.S.E. 90 21.20 21.21 N. S.	19 27 0 27	7. 0 7. 3	Ε.	S.S.E.	6 <u>7 1</u>	22	23. 9 24. 19	24. 3 24. 20	W. S.S.W.	S.S.W. E.N.E.	135	135	20. 6 20. 13 21. 0	20.10 21.0 21.8	E. .S.	S. N.	90	- - - -

.

AT THE ROYAL OBSERVATORY, GREENWICH, IN THE YEAR 1883.

(lxiii)

(lxiv)

ſ

ſ

$June - con a -1 a 4. 23 25. 6. 19 27. 7. 11 28. 8. 8 28. 1 8. 20 28. 2 9. 6 29. 9. 12 29. 1 July. I. 8 1. 1 2. 21 3. 3. 13 3. 1 3. 18 3. 2 3. 21 4. 5. 12 5. 1 5. 19 6. 8. 6 8. 8. 12 9. 9. 5 9. 0. 2 10. 1 0. 20 11. 3. 19 13. 2 4. 0 14. 4. 0\frac{1}{2} 14.4. 0\frac{1}{2} 14.$	h 5. 0 7. 5 3. 0 3. 19 3. 22 5. 18 5. 19 5. 19 5	From S.E. S.W. S. S.W. S.S.E. E. S.S.E. E. S.S.W. S.S.W. E.S.E. S.S.W. E.S.E. S.S.W. E.S.E. S.S.W. S.S.W. S.S. S.W. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S	To S.W. S. S.W. E.S.E. S.S.E. S.W. Sums Sums Sums S.S.W. E.S.E. S.S.W. E.S.E. S.S.W. E.S.E. S.S.W. E.S.E. S.S.W. E.S.E. S.S.W. S.W.	Direct. \circ 9^{0} 45 45 495 $3262\frac{1}{2}$ 45 $67\frac{1}{2}$ $112\frac{1}{2}$ 9^{0} $157\frac{1}{2}$ 45	90 90 45 45	2. 9 2. 17 3. 3 3. 6 5. 23 6. 13 6. 20 7. 4 7. 9 8. 15 8. 22 11. 12 12. 3 12. 15 14. 20 16. 8 17. 2 17. 20 18. 19 19. 0	To gust. d h 0. 15 0. 19 2. 2 2. 7 2. 11 2. 18 3. 50 6. 0 6. 15 7. 2 7. 6 7. 10 8. 19 9. 0 11. 14 13. 1 15. 15 16. 9 17. 14 18. 21 19. 2	W.S.W. N.N.W. S.W.	W.S.W. N.N.W. S.W. W. N.N.W.	Direct. \circ 45 90 45 $67\frac{1}{2}$ 360 $22\frac{1}{3}$ $112\frac{1}{2}$ 90 45 90 45 90 $67\frac{1}{2}$ 90 45 $112\frac{1}{3}$ 90 45 $112\frac{1}{3}$ $112\frac{1}{$	135 22 <u>1</u> 22 <u>1</u> 90	7. 22 8. 12 8. 20 8. 21 $\frac{1}{2}$ 8. 23 9. 17 10. 6 10. 15 12. 2 14. $7\frac{1}{2}$ 14. $7\frac{1}{2}$ 14. 23 16. 0 16. 11 16. 22 17. 10 17. 21	^d h 3. 21 4. 10 4. 17 5. 14 8. 0 8. 14 8. 20 4 8. 22 9. 12 10. 4 10. 8 11. 8 12. 7 12. 13	From S.W. W.N.W. S.S.W. N. S.W. N.W. S.W. N.N.E. S.E. S.E. S.E. N.N.E. S.E. N.N.E. S.E. N.N.E. S.E. N.N.E. S.E. S	T₀ W.N.W. S.S.W. N.W. S.W. N.W. S.W. N.N.E. S.E. S.E. S.E. S.E. S.E. S.E. S	Direct. 0 $67\frac{1}{2}$ $157\frac{1}{2}$ 90 $157\frac{1}{3}$ 45 $112\frac{1}{2}$ $112\frac{1}{2}$ 270 $112\frac{1}{2}$ 90	Retrograde 90 135 90 202 45 67 112 90 135 135 472 67 90
a 1 d 4 23 25. 6. 19 27. 7. 11 28. 8. 8 28. 1 9. 6 29. 9. 12 29. 1 July. 1. 8 1. 1 2. 21 3. 3. 13 3. 1 3. 13 3. 1 3. 13 3. 1 3. 13 3. 1 3. 13 3. 1 3. 14 3. 2 5. 12 9. 9. 5 9. 9. 5 9. 9. 5 9. 9. 5 9. 9. 5 9. 9. 5 9. 13. 19 13. 2 4. $0\frac{14.}{24}$ 4. $3\frac{3}{4}$ 14. $17. 2$ 8. 11 18. 18 18 18. 18. 18 19. 13 19. 1 9. 10 19. 1 9. 13 19. 1 9. 10 19. 1 3. 3 23. 3 3. 3	h 5. 0 7. 5 3. 0 3. 19 3. 22 5. 18 5. 19 5. 19 5	S.W. S.W. E.S.E. S.S.E. E. S.S.W. S.S.W. E. S.S.W. E.S.S.W. E.S.S.W. E.S.S.W. E.S.E. S.S.W. S.S.W. S.S.W. S.S.W. S.S.W. S.S.W. S.S.W. S.S.W. S.S.W. S.S.W. S. S.S.W. S.S. S.S.W. S.S. S.S. S.S. S.S. S. S.S. S.S. S.S. S.	S. S.W. E.S.E. S.S.E. S.W. Sums Sums S.E. S.S.W. W. E.S.E. S.S.W. E.S.E. S.S.W. E.S.E. S.S.W. S.W.	90 45 45 495 $3262\frac{1}{2}$ 45 $67\frac{1}{2}$ $112\frac{1}{2}$ 90 $157\frac{1}{2}$	45 $112\frac{1}{2}$ $67\frac{1}{2}$ $2\overline{475}$ 90 180 90 90 45 45	a h 0. 12 0. 172 1. 22 2. 6 2. 17 3. 3 3. 3 6 5. 23 6. 13 6. 20 7. 4 7. 9 8. 15 8. 22 11. 12 12. 3 12. 3 12. 15 14. 20 16. 8 8 17. 20 18. 19 19. 0 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	W.N.W. W.S.W. N.N.W. S.W. S.W. S.W. W.S.W. W.S.W. M. S.W. W.S.W. S.W.	W.S.W. N.N.W. S.W. N.N.W. S.W. S.W. W.S.W. N. S.W. W.S.W. S.W.	$ \begin{array}{r} 45\\ 90\\ 45\\ 67\frac{1}{2}\\ 360\\ 22\frac{1}{2}\\ 112\frac{1}{2}\\ 90\\ 45\\ 90\\ 90\\ 67\frac{1}{2}\\ 135\\ \end{array} $	45 $112\frac{1}{2}$ $112\frac{1}{2}$ 90 135 $22\frac{1}{2}$ 90	a h 3. 11 3. 23 4. 15 5. 12 7. 22 8. 20 8. 21 $\frac{1}{2}$ 8. 23 9. 17 10. 6 10. 15 12. 2 12. 7 13. 23 $\frac{1}{2}$ 14. 7 $\frac{1}{2}$ 14. 7 $\frac{1}{2}$ 14. 23 16. 11 16. 22 17. 10 17. 21	$\begin{array}{c} a & h \\ 3. & 21 \\ 4. & 10 \\ 4. & 17 \\ 5. & 14 \\ 8. & 24 \\ 8. & 22 \\ 8. & 22 \\ 9. & 12 \\ 10. & 4 \\ 10. & 8 \\ 11. & 8 \\ 12. & 7 \\ 12. & 13 \\ 14. & 6 \\ 14. & 13 \\ 15. & 9 \\ 16. & 15 \\ 17. & 0 \\ 16. & 15 \\ 17. & 0 \\ 17. & 12 \\ 18. & 2 \end{array}$	W.N.W. S.S.W. N. S.W. N.W. S.W. N.W. S.E. S.E. S.E. S.E. N.N.E. S.E. N. S.E. N. S.E. N. S.E. N. S.E. S.E	S.S.W. N. S.W. N.W. S.W. N.N.E. S.E. S.E. S.E. N. S.E. N. S.E. N. S.E. N. S.E. S.E	$67\frac{1}{2}$ $157\frac{1}{2}$ 90 $157\frac{1}{2}$ 45 $112\frac{1}{2}$ $112\frac{1}{2}$ 270 $112\frac{1}{2}$ 90	90 135 90 202 45 67 112 90 135 135 472 67
4. 23 25. 6. 19 27. 7. 11 28. 8. 8 28. 1 8. 20 28. 2 9. 6 29. 9. 12 29. 1 July. 1. 8 1. 1 3. 13 3. 1 3. 12 5. 1 5. 19 6. 8. 6 8. 8. 12 9. 9. 5 9. 0. 2 10. 1 5. 19 13. 2 9. 5 9. 0. 2 10. 1 5. 8 15. 1 7. 14 17. 2 8. 11 18. 1 8. 18 18. 2 9. 10 19. 1 9. 13 19. 1 1. 23. 3 23. 3. 8 23. 1 3. 14 3 23. 14 3 23. 15 15 15 15 15 15 15 15 15 15 15 15 15	5. 0 7. 5 3. 19 3. 22 3. 22 5. 18 5. 1	S.W. S.W. E.S.E. S.S.E. E. S.S.W. S.S.W. E. S.S.W. E.S.S.W. E.S.S.W. E.S.S.W. E.S.E. S.S.W. S.S.W. S.S.W. S.S.W. S.S.W. S.S.W. S.S.W. S.S.W. S.S.W. S.S.W. S. S.S.W. S.S. S.S.W. S.S. S.S. S.S. S.S. S. S.S. S.S. S.S. S.	S. S.W. E.S.E. S.S.E. S.W. Sums Sums S.E. S.S.W. W. E.S.E. S.S.W. E.S.E. S.S.W. E.S.E. S.S.W. S.W.	$45 45 495 3262\frac{1}{2}45 67\frac{1}{2}112\frac{1}{2}90157\frac{1}{2}$	112 ¹ / ₂ 67 ¹ / ₂ 2475 90 180 90 90 45 45	0. 12 1. 22 2. 6 2. 9 2. 17 3. 3 3. 6 5. 23 6. 13 6. 20 7. 4 7. 9 8. 15 8. 22 11. 12 12. 15 14. 20 16. 8 17. 2 18. 19 19. 0	$\begin{array}{c} 0. \ 15 \\ 0. \ 19 \\ 2. \ 2 \\ 7 \\ 2. \ 11 \\ 2. \ 18 \\ 3. \ 5 \\ 3. \ 10 \\ 6. \ 0 \\ 6. \ 15 \\ 7. \ 2 \\ 7. \ 6 \\ 7. \ 10 \\ 8. \ 19 \\ 9. \ 0 \\ 11. \ 14 \\ 12. \ 14 \\ 13. \ 15 \\ 15 \\ 16. \ 9 \\ 17. \ 14 \\ 18. \ 2 \\ 18. \ 21 \end{array}$	W.N.W. W.S.W. N.N.W. S.W. S.W. S.W. W.S.W. W.S.W. M. S.W. W.S.W. S.W.	W.S.W. N.N.W. S.W. N.N.W. S.W. S.W. W.S.W. N. S.W. W.S.W. S.W.	90 45 $67\frac{1}{2}$ 360 $22\frac{1}{3}$ $112\frac{1}{2}$ 90 45 90 90 $67\frac{1}{2}$ 135	$112\frac{1}{2}$ 90 135 $22\frac{1}{2}$ 90	3. 11 3. 23 4. 15 5. 12 7. 22 8. 20 8. 21 $\frac{1}{2}$ 8. 23 9. 17 10. 6 10. 15 12. 2 14. $7\frac{1}{2}$ 14. $7\frac{1}{2}$ 14. 23 16. 11 16. 22 17. 10 17. 21	3. 21 4. 10 4. 17 5. 14 8. $20\frac{1}{4}$ 8. $22\frac{1}{9}$ 9. 12 10. 4 10. 8 11. 8 12. 7 13. 15 14. 13 15. 0 16. 15 17. 0 17. 12 18. 2	W.N.W. S.S.W. N. S.W. N.W. S.W. N.W. S.E. S.E. S.E. S.E. N.N.E. S.E. N. S.E. N. S.E. N. S.E. N. S.E. S.E	S.S.W. N. S.W. N.W. S.W. N.N.E. S.E. S.E. S.E. N. S.E. N. S.E. N. S.E. N. S.E. S.E	$157\frac{1}{2}$ 90 $157\frac{1}{2}$ 45 $112\frac{1}{2}$ $112\frac{1}{2}$ 270 $112\frac{1}{2}$ 90	135 90 202 45 67 112 90 135 135 472 67
$\begin{array}{c} 6. 19 & 27. \\ 7. 11 & 28. \\ 8. 8 & 28. 1 \\ 8. 8 & 28. 2 \\ 9. 6 & 29. \\ 9. 12 & 29. 1 \\ \hline \\ 1. 8 & 1. 1 \\ 3. 13 & 3. 1 \\ 3. 13 & 3. 1 \\ 3. 13 & 3. 1 \\ 3. 13 & 3. 1 \\ 3. 13 & 3. 1 \\ 3. 13 & 3. 1 \\ 3. 13 & 3. 1 \\ 3. 13 & 3. 1 \\ 5. 12 & 5. 1 \\ 5. 12 & 5. 1 \\ 5. 12 & 5. 1 \\ 5. 12 & 5. 1 \\ 5. 12 & 5. 1 \\ 5. 12 & 5. 1 \\ 5. 12 & 5. 1 \\ 5. 12 & 5. 1 \\ 5. 12 & 5. 1 \\ 5. 12 & 5. 1 \\ 5. 12 & 5. 1 \\ 5. 12 & 5. 1 \\ 5. 12 & 5. 1 \\ 7. 12 & 5. 1 \\ 7. 14 & 17. 2 \\ 8. 11 & 18. 1 \\ 14. 18 & 15. 1 \\ 7. 14 & 17. 2 \\ 8. 11 & 18. 1 \\ 19. 19 & 10. 1 \\ 9. 19 & 20. \\ 19. 13 & 19. 1 \\ 9. 19 & 20. \\ 19. 13 & 19. 1 \\ 9. 19 & 20. \\ 19. 13 & 19. 1 \\ 9. 19 & 20. \\ 19. 13 & 19. 1 \\ 9. 13 & 19. 1 \\ 3. 3 & 23. \\ 3. 8 & 23. 1 \\ 3. 14 \\ \frac{1}{2} 23. 1 \\ 10. 12 \\ 10. $	5 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7	S.W. S.W. E.S.E. S.S.E. E. S.S.W. S.S.W. E. S.S.W. E.S.S.W. E.S.S.W. E.S.S.W. E.S.E. S.S.W. S.S.W. S.S.W. S.S.W. S.S.W. S.S.W. S.S.W. S.S.W. S.S.W. S.S.W. S. S.S.W. S.S. S.S.W. S.S. S.S. S.S. S.S. S. S.S. S.S. S.S. S.	S. S.W. E.S.E. S.S.E. S.W. Sums Sums S.E. S.S.W. W. E.S.E. S.S.W. E.S.E. S.S.W. E.S.E. S.S.W. S.W.	$45 45 495 3262\frac{1}{2}45 67\frac{1}{2}112\frac{1}{2}90157\frac{1}{2}$	112 ¹ / ₂ 67 ¹ / ₂ 2475 90 180 90 90 45 45	$\begin{array}{c} 0. \ 17\frac{1}{2}\\ 1. \ 22\\ 2. \ 6\\ 2. \ 9\\ 2. \ 17\\ 3. \ 3\\ 6\\ 5. \ 23\\ 6. \ 13\\ 6. \ 20\\ 7. \ 4\\ 7. \ 9\\ 8. \ 15\\ 8. \ 22\\ 11. \ 12\\ 12. \ 3\\ 12. \ 15\\ 14. \ 20\\ 16. \ 8\\ 17. \ 2\\ 17. \ 20\\ 18. \ 19\\ 19. \ 0\end{array}$	0. 19 2. 2 2. 7 2. 11 2. $18\frac{1}{4}$ 3. 5 3. 10 6. 0 6. 15 7. 2 7. 6 7. 10 8. 19 9. 0 11. 14 13. 1 15. 15 16. 9 17. 14 18. 2 18. 21	W.N.W. W.S.W. N.N.W. S.W. S.W. S.W. W.S.W. W.S.W. M. S.W. W.S.W. S.W.	W.S.W. N.N.W. S.W. N.N.W. S.W. S.W. W.S.W. N. S.W. W.S.W. S.W.	90 45 $67\frac{1}{2}$ 360 $22\frac{1}{3}$ $112\frac{1}{2}$ 90 45 90 90 $67\frac{1}{2}$ 135	$112\frac{1}{2}$ 90 135 $22\frac{1}{2}$ 90	3. 23 4. 15 5. 12 7. 22 8. 20 8. 21 $\frac{1}{2}$ 8. 23 9. 17 10. 6 10. 15 12. 2 14. $7\frac{1}{2}$ 14. $23\frac{1}{2}$ 14. 25 16. 0 16. 11 16. 22 17. 10 17. 21	4. 10 4. 17 5. 14 8. 0 8. 14 8. $20\frac{1}{4}$ 8. $22\frac{1}{9}$ 12. 12 10. 4 11. 8 12. 7 14. 6 14. 13 15. 0 16. 9 16. 15 17. 0 17. 12 18. 2	W.N.W. S.S.W. N. S.W. N.W. S.W. N.W. S.E. S.E. S.E. S.E. N.N.E. S.E. N. S.E. N. S.E. N. S.E. N. S.E. S.E	S.S.W. N. S.W. N.W. S.W. N.N.E. S.E. S.E. S.E. N. S.E. N. S.E. N. S.E. N. S.E. S.E	$157\frac{1}{2}$ 90 $157\frac{1}{2}$ 45 $112\frac{1}{2}$ $112\frac{1}{2}$ 270 $112\frac{1}{2}$ 90	135 90 202 45 67 112 90 135 135 472 67
7. 11 28. 8. 8 28. 1 8. 20 28. 2 9. 6 29. 9. 12 29. 1 9. 12 29. 1 9. 12 29. 1 9. 12 29. 1 9. 12 29. 1 9. 12 29. 1 9. 12 29. 1 1. 8 1.1 2. 21 3. 3. 13 3. 1 3. 13 3. 1 3. 13 3. 1 3. 14 3. 1 3. 15 14. 5. 12 5. 1 9. 5 9. 1 9. 5 9. 1 0. 20 11. 3. 19 14. 4. $0\frac{1}{2}$ 14. 4. $0\frac{1}{2}$ 14. 4. $0\frac{1}{2}$ 14. 4. $0\frac{1}{2}$ 14. 7. 14 17. 2 8. 11 18. 18 9. 10 19. 1 9. 10 20. 1 13. 3 23. 3 3. 3 23. 3 3. 3	3. 0 3. 19 3. 22 3. 22 3. 18 3. 18 4. 15 3. 18 5. 18 5. 18 5. 4 3. 9 5. 18 5. 18	S. S.W. E.S.E. S.S.E. E. S.S.W. S.S.W. E. S.S.W. E.S.E. S.S.W. E.S.E. S.S.W. E.S.E. S.S.W. S.W.	S.W. E.S.E. S.S.E. S.W. Sums Sums S.E. S.S.W. E. S.S.W. E.S.E. S.S.W. E.S.E. S.S.W. S.S.W. S.W.	$45 495 3262\frac{1}{2}45 67\frac{1}{2}112\frac{1}{2}90157\frac{1}{2}$	112 ¹ / ₂ 67 ¹ / ₂ 2475 90 180 90 90 45 45	1. 22 2. 6 2. 9 2. 17 3. 3 3. 6 5. 23 6. 13 6. 20 7. 4 7. 9 8. 15 8. 22 11. 12 12. 3 12. 15 14. 20 16. 8 17. 2 17. 20 18. 19 19. 0	2. 2 2. 7 2. 11 2. $18\frac{1}{4}$ 3. 5 3. 10 6. 0 6. 15 7. 2 7. 6 7. 10 8. 19 9. 0 11. 14 13. 1 15. 15 16. 9 17. 14 18. 2 18. 21	W.S.W. N.N.W. S.W. S.W. S.W. W.S.W. W.S.W. W. S.W. W. S.W. S.W. S.W. S.E. S.W. N.W. S.S.W. N.W. S.S.W. N.E.	N.N.W. S.W. N.N.W. S.W. S.W. W.S.W. N. S.W. W.S.W. S.W.	$ \begin{array}{c} 45\\ 67\frac{1}{2}\\ 360\\ 22\frac{1}{3}\\ 112\frac{1}{2}\\ 90\\ 45\\ 90\\ 90\\ 67\frac{1}{2}\\ 135\\ \end{array} $	$112\frac{1}{2}$ 90 135 $22\frac{1}{2}$ 90	4. 15 5. 12 7. 22 8. 12 8. 20 8. $21\frac{12}{2}$ 8. 23 9. 17 10. 6 10. 15 12. 2 13. $23\frac{1}{2}$ 14. $7\frac{1}{2}$ 14. 23 16. 0 16. 11 16. 22 17. 10 17. 21	4. 17 5. 14 8. 0 8. 14 8. $20\frac{1}{4}$ 8. 22 9. 12 10. 4 10. 8 11. 8 12. 73 14. 6 14. 13 15. 0 16. 9 16. 15 17. 0 17. 0 18. 2	S.S.W. N. S.W. N.W. S. S. S. E.S.E. S. E.S.E. N. S.E. S.E.	N. S.W. N.W. S.W. N.N.E. S.E. S.E. S.E. N.N.E. S.E. N. S.E. N.N.E. S.E. S	90 $157\frac{1}{3}$ 45 $112\frac{1}{2}$ $112\frac{1}{2}$ 270 $112\frac{1}{2}$ 90	135 90 202 45 67 112 90 135 135 472 67
8 8 28. 1 8. 20 28. 2 9. 6 29. 2 9. 12 29. 1 9. 12 29. 1 9. 12 29. 1 9. 12 29. 1 9. 12 29. 1 9. 12 29. 1 1. 12 29. 1 3. 13 3. 1 3. 13 3. 1 3. 13 3. 1 3. 13 3. 1 3. 13 3. 1 3. 13 3. 1 3. 14 3. 2 5. 12 5. 1 5. 12 5. 1 5. 19 6. 8. 12 9. 9. 5 9. 9. 5 9. 9. 5 9. 9. 5 9. 13. 19 13. 2 9. 13 19. 1 9. 13 19. 1 9. 10 19. 1 9. 10 19. 1 13. 3 23. 3 3. 8 23. 1	3. 19 3. 22 3. 18 3. 18 3. 15 3. 18 3. 18 5. 18 5. 18 5. 18 5. 18 5. 18 5. 18 5. 18 5. 18 5. 18	S.W. E.S.E. S.S.E. E. S.S.W. S.S.W. E. S.S.W. E.S.E. S.S.W. E.S.E. S.S.W. E.S.E. S.S.W. S.W.	E.S.E. S.S.E. S.W. Sums S.E. S.S.W. W. E.S.E. S.S.W. E.S.E. S.S.W. E.S.E. S.S.W. S.W.	$45 495 3262\frac{1}{2}45 67\frac{1}{2}112\frac{1}{2}90157\frac{1}{2}$	67½ 2475 90 180 90 90 45 45	2. 6 2. 9 2. 17 3. 3 3. 6 5. 23 6. 13 6. 20 7. 4 7. 9 8. 15 8. 20 7. 4 7. 9 8. 15 8. 12 11. 12 12. 3 12. 15 14. 20 16. 8 17. 2 16. 8 17. 2 18. 19 19. 0	2. 7 2. 11 2. $18\frac{1}{4}$ 3. 5 3. 10 6. 0 6. 15 7. 2 7. 6 7. 10 8. 19 9. 0 11. 14 12. 14 13. 1 15. 15 16. 9 17. 14 18. 2 18. 21	N.N.W. S.W. W. N.N.W. S.W. W.S.W. W. W. W. S.W. S.	S.W. W. N.N.W. S.W. S.W. W.S.W. N. S.W. W. S.W. S.	$ \begin{array}{c} 45\\ 67\frac{1}{2}\\ 360\\ 22\frac{1}{3}\\ 112\frac{1}{2}\\ 90\\ 45\\ 90\\ 90\\ 67\frac{1}{2}\\ 135\\ \end{array} $	$ \begin{array}{c} 112\frac{1}{2}\\ 90\\ 135\\ 22\frac{1}{2}\\ 90\\ \end{array} $	5. 12 7. 22 8. 12 8. 20 8. $21\frac{1}{2}$ 8. 23 9. 17 10. 6 10. 15 12. 2 14. $7\frac{1}{2}$ 14. $23\frac{1}{2}$ 14. 2 16. 0 16. 11 16. 22 17. 10 17. 21	5. 14 8. 0 8. 14 8. $20\frac{1}{4}$ 8. 22 9. 12 10. 4 10. 8 11. 8 12. 7 12. 13 14. 6 14. 13 15. 0 16. 9 16. 15 17. 0 17. 12 18. 2	N. S.W. N.W. S. S.E. S.E. S.E. N. S.E. N. S.E. N. S.E. N. S.E. N. S.E. S.E	S.W. N.W. S.W. N.N.E. S. E.S.E. S. E.S.E. N.N.E. S.E. N.N.E. S.E. N.N.E. S.E. S	90 $157\frac{1}{3}$ 45 $112\frac{1}{2}$ $112\frac{1}{2}$ 270 $112\frac{1}{2}$ 90	90 202 45 67 112 90 135 135 472 67
9. 6 29. 9. 12 29. 1 July. 1. 8 1. 1 2. 21 3. 3. 13 3. 1 3. 12 5. 1 5. 19 6. 8. 6 8. 8. 12 9. 9. 5 9. 1. 2 5. 1 5. 19 6. 8. 6 8. 8. 12 9. 9. 5 9. 1. 2 10. 1 6. 8. 8. 12 9. 9. 5 9. 1. 2 10. 1 6. 1 8. 6 8. 8. 12 9. 9. 5 9. 1. 2 10. 1 7. 14 17. 2 8. 11 18. 1 8. 18 18. 2 9. 10 19. 1 9. 13 19. 1 9. 19 20. 0. 16 21. 1 2. 3 2. 3. 8 2.3. 3. 8 2.3. 3. 14 2.3.	. 8 . 18 . 15 3. 15 3. 18 . 18 . 18 . 18 . 18 . 18 . 18 . 18 . 18 . 18	S.S.E. E. S.W. S.E. S.S.W. W. E. S.S.W. E.S.E. S.S.W. E.S.E. S.S.W. S.W.	E. S.W. Sums S.E. S.S.W. W. E. S.S.W. E.S.E. S.S.W. E.S.E. S.S.W. S.W.	$4953262\frac{1}{2}4567\frac{1}{2}112\frac{1}{2}90157\frac{1}{2}$	2475 90 180 90 90 45 45	2. 17 3. 3 3. 6 5. 23 6. 13 6. 20 7. 4 7. 9 8. 15 8. 22 11. 12 12. 15 14. 20 16. 8 17. 2 18. 19 19. 0	2. 18 ¹ 3. 5 3. 10 6. 0 6. 15 7. 2 7. 6 7. 10 8. 19 9. 0 11. 14 13. 1 15. 15 16. 9 17. 14 18. 2 18. 21	W. N.N.W. S.W. S.W. W.S.W. N. S.W. W. S.W. S.	N.N.W. S.W. S.W. W.S.W. N. S.W. W. S.W. S.	$67\frac{1}{2}$ 360 $22\frac{1}{3}$ $112\frac{1}{2}$ 90 45 90 90 $67\frac{1}{2}$ 135	90 135 $22\frac{1}{2}$ $22\frac{1}{2}$ 90	8. 12 8. 20 8. $21\frac{1}{2}$ 8. 23 9. 17 10. 6 10. 15 12. 2 14. $7\frac{1}{2}$ 14. $7\frac{1}{2}$ 14. 23 16. 0 16. 11 16. 22 17. 10 17. 21	8. 14 8. 20 9. 12 10. 4 10. 8 11. 8 12. 7 12. 13 14. 6 14. 13 15. 0 16. 15 17. 0 17. 12 18. 2	N.W. S.W. N.N.E. S. E.S.E. S. E.S.E. N.N.E. S.W. S.E. N.N.E. S.E. N.N.E. - S.E. E.N.E.	S.W. N.N.E. S. E.S.E. N. E.S.E. N.N.E. S.E. N.N.E. S.E. N.N.E. S.E. S	$157\frac{1}{2}$ 45 112 $\frac{1}{2}$ 112 $\frac{1}{2}$ 270 112 $\frac{1}{2}$ 90	202 45 67 112 90 135 135 472 67
9. 12 29. 1 July. 1. 8 1. 1 2. 21 3. 3. 13 3. 1 3. 13 3. 1 3. 13 3. 1 3. 12 4. 5. 12 5. 1 5. 19 6. 8. 6 8. 8. 12 9. 9. 5 9. 0. 20 11. 3. 19 13. 2 4. $0\frac{1}{2}$ 14. 4. $3\frac{3}{4}$ 14. 5. 8 15. 1 7. 14 17. 2 8. 11 18. 18. 2 9. 10 19. 1 9. 13 19. 1 9. 19 20. 0. 16 21. 1 2. 3 3. 3 3. 3 23. 3 3. 3 23. 3). 18 . 15 3. 0 3. 18 3. 20 1. 0 5. 18 5. 18 5. 4 3. 9 9 9 4 9 4 9 8 5. 18 5.	E. S.W. S.E. S.S.W. W. E.S.E. S.S.W. E.S.E. S.S.W. E.S.E. W. S.W. S.	S.W. Sums S.E. S.S.W. W. E.S.W. E.S.E. S.S.W. E.S.E. S.S.W. S.W.	$ \begin{array}{r} 3262\frac{1}{2} \\ 45 \\ 67\frac{1}{2} \\ 112\frac{1}{2} \\ 90 \\ 157\frac{1}{2} \end{array} $	2475 90 180 90 90 45 45	3. 3 3. 6 5. 23 6. 13 6. 20 7. 4 7. 9 8. 15 8. 22 11. 12 12. 15 14. 20 16. 8 17. 2 18. 19 19. 0	3. 5 3. 10 6. 0 6. 15 7. 2 7. 6 7. 10 8. 19 9. 0 11. 14 13. 1 15. 15 16. 9 17. 14 18. 2 18. 21	N.N.W. S.W. S.W. W.S.W. N. S.W. W.S.W. W.S.W. S.E. S.W. N.W. S.S.W. N.W. S.S.W. N.E.	S.W. S.W. W.S.W. N. S.W. W. W.S.W. S.W.	$ \begin{array}{r} 360 \\ 22\frac{1}{2} \\ 112\frac{1}{2} \\ 90 \\ 45 \\ 90 \\ 90 \\ 67\frac{1}{2} \\ 135 \\ \end{array} $	90 135 $22\frac{1}{2}$ $22\frac{1}{2}$ 90	8. 20 8. 21 $\frac{1}{2}$ 8. 23 9. 17 10. 6 10. 15 12. 2 13. 2 $\frac{1}{2}$ 14. 7 $\frac{1}{2}$ 14. 7 $\frac{1}{2}$ 14. 23 16. 0 16. 11 16. 22 17. 10 17. 21	8. 2014 8. 22 9. 12 10. 4 10. 8 11. 8 12. 7 12. 13 14. 13 15. 0 16. 15 17. 0 17. 12 18. 2	S.W. N.N.E. S.E. S.E. E.S.E. N.N.E. S.E. N. S.E. N.N.E. S.E. N.N.E. - S.E. E.N.E.	N.N.E. S. S.E. S. E.S.E. N. E.S.E. N.N.E. S.E. N.N.E. S.E. S	45 112 $\frac{1}{2}$ 112 $\frac{1}{2}$ 270 112 $\frac{1}{2}$ 90	202 45 67 112 90 135 135 472 67
July. 1. 8 1.1 2. 21 3. 3. 13 3.1 3. 13 3.1 3. 13 3.1 3. 13 3.1 3. 13 3.1 3. 12 5.1 5. 19 6. 8. 6 8. 8. 12 9. 9. 5 9. 0. 2 10.1 0. 20 11. 3. 19 13.2 4. 0 $\frac{1}{2}$ 14. 4. 3 $\frac{3}{2}$ 14. 4. 3 $\frac{4}{3}$ 14. 14. 5. 8 15. 15. 19 14. 7. 14 17.2 8. 11 18.1 8. 18 18.2 9. 10 19.1 9. 13 19.1 9. 19 20. 0. 16 21.1 2. 19 23. 3. 3 23. 3. 8 23.1 3. 14 $\frac{1}{2}$ 23. 1	. 15 3. 0 3. 18 3. 20 4. 0 5. 18 5. 4 3. 9 9 4 9 . 8 5. 18 5. 18 5. 18	S.E. S.S.W. W. E. S.S.W. E.S.E. S.S.W. E.S.E. W. S.W. S.	S.E. S.S.W. E. S.S.W. E.S.E. S.S.W. E.S.E. S.S.W. S.W.	$ \begin{array}{r} 3262\frac{1}{2} \\ 45 \\ 67\frac{1}{2} \\ 112\frac{1}{2} \\ 90 \\ 157\frac{1}{2} \end{array} $	90 180 90 90 45 45	5. 23 6. 13 6. 20 7. 4 7. 9 8. 15 8. 22 11. 12 12. 13 14. 20 16. 8 17. 2 17. 20 18. 19 19. 0	6. 0 6. 15 7. 2 7. 6 7. 10 8. 19 9. 0 11. 14 13. 11 15. 15 16. 9 17. 14 18. 2 18. 21	S.W. W.S.W. N. S.W. W. S.W. W.S.W. S.E. S.E. S.W. N.W. S.S.W. W. N.E.	W.S.W. N. N. S.W. W. W. S.W. S.W. S.E. S.W. S.S.W. W. N.E. S.S.E.	$ \begin{array}{c} 22\frac{1}{3}\\ 112\frac{1}{2}\\ 90\\ 45\\ 90\\ 90\\ 67\frac{1}{2}\\ 135\\ \end{array} $	90 135 $22\frac{1}{2}$ $22\frac{1}{2}$ 90	8. $21\frac{1}{2}$ 8. 23 9. 17 10. 6 10. 15 12. 2 13. $23\frac{1}{2}$ 14. $7\frac{1}{2}$ 14. $7\frac{1}{2}$ 14. 23 16. 11 16. 22 17. 10 17. 21	9. 12 10. 4 10. 8 11. 8 12. 7 12. 13 14. 6 14. 13 15. 9 16. 15 17. 0 17. 12 18. 2	S. S.E. S. E.S.E. N. S.E. S.E. S.E. N. S.E. N.N.E. - S.E. E.N.E.	S.E. S. E.S.E. N.N.E. S.E. N.N.E. S.W. S.E. N.N.E. S.E. E.N.E. S.S.E.	45 112 $\frac{1}{2}$ 112 $\frac{1}{2}$ 270 112 $\frac{1}{2}$ 90	67 112 90 135 135 472 67
1. 8 1. 1 2. 21 3. 1 3. 13 3. 1 3. 18 3. 2 3. 18 3. 2 3. 18 3. 2 3. 12 5. 1 5. 12 5. 1 5. 12 5. 1 5. 12 5. 1 5. 12 5. 1 6. 8. 8. 9. 9. 9. 5 9. 9. 0. 2 0. 2 10. 1 2. 3. 19 13. 2 14. 4. 6 4 14. 14. 4. 18 15. 1 1 7. 14 17. 2 2 1 9. 13 19. 1 2 1 9. 13 19. 1 2 1	1. 15 3. 0 3. 18 3. 20 4. 0 5. 18 5. 4 3. 9 4. 8 5. 4 3. 9 4. 8 5. 18 5. 18	S.E. S.S.W. W. E. S.S.W. E.S.E. S.S.W. E.S.E. W. S.W. S.	S.E. S.S.W. E. S.S.W. E.S.E. S.S.W. E.S.E. S.S.W. S.W.	45 67½ 112½ 90 157½	90 180 90 90 45 45	6. 13 6. 20 7. 4 7. 9 8. 15 8. 22 11. 12 12. 13 14. 20 16. 8 17. 2 17. 20 18. 19 19. 0	6. 15 7. 2 7. 6 7. 10 8. 19 9. 0 11. 14 12. 14 13. 1 15. 15 16. 9 17. 14 18. 2 18. 21	W.S.W. N. S.W. W.S.W. S.W. S.W. S.E. S.W. N.W. S.S.W. W. N.E.	N. W. N. S.W. W. S.W. S.E. S.W. N.W. S.S.W. W. N.E. S.S.E.	112 ¹ / ₂ 90 45 90 90 67 ¹ / ₂ 135	135 22 <u>1</u> 22 <u>1</u> 90	9. 17 10. 6 10. 15 12. 2 13. $23\frac{1}{2}$ 14. $7\frac{1}{2}$ 14. 23 16. 0 16. 11 16. 22 17. 10 17. 21	10. 4 10. 8 11. 8 12. 7 12. 13 14. 13 15. 0 16. 9 16. 15 17. 0 17. 12 18. 2	S.E. S. E.S.E. N.N.E. S.E. N.N.E. S.E. N.N.E. - S.E. E.N.E.	S. E.S.E. N. S.E. S.W. S.E. N.N.E. S.E. S.E. E.N.E. S.S.E.	1121 1121 270 1121 90	67 112 90 135 135 472 67
1. 8 1. 1 2. 21 3. 1 3. 13 3. 1 3. 18 3. 2 3. 18 3. 2 3. 18 3. 2 3. 12 5. 1 5. 12 5. 1 5. 12 5. 1 5. 12 5. 1 5. 12 5. 1 6. 8. 8. 9. 9. 9. 5 9. 9. 0. 2 0. 2 10. 1 2. 3. 19 13. 2 14. 4. 6 4 14. 14. 4. 18 15. 1 1 7. 14 17. 2 2 1 9. 13 19. 1 2 1 9. 13 19. 1 2 1	1. 15 3. 0 3. 18 3. 20 4. 0 5. 18 5. 4 3. 9 4. 8 5. 4 3. 9 4. 8 5. 18 5. 18	S.E. S.S.W. W. E. S.S.W. E.S.E. S.S.W. E.S.E. W. S.W. S.	S.S.W. W. E. S.S.W. E.S.E. S.S.W. E.S.E. W. S.W. S.	$67\frac{1}{2}$ $112\frac{1}{2}$ 90 $157\frac{1}{2}$	180 90 90 45 45	6. 20 7. 4 7. 9 8. 15 8. 22 11. 12 12. 3 12. 15 14. 20 16. 8 17. 2 17. 20 18. 19 19. 0	7. 2 7. 6 7. 10 8. 19 9. 0 11. 14 13. 1 15. 15 16. 9 17. 14 18. 2 18. 21	N. W. S.W. W.S.W. S.W. S.E. S.W. N.W. S.S.W. W. N.E.	W. N. S.W. W. W. S.W. S.W. S.W. S.S.W. W. N.E. S.S.E.	90 45 90 90 67 ¹ / ₂ 135	135 22 <u>1</u> 22 <u>1</u> 90	10. 6 10. 15 12. 2 12. 7 13. $23\frac{1}{2}$ 14. $7\frac{1}{2}$ 14. 23 16. 0 16. 11 16. 22 17. 10 17. 21	10. 8 11. 8 12. 7 12. 13 14. 6 14. 13 15. 0 16. 9 16. 15 17. 0 17. 12 18. 2	S. E.S.E. N.N.E. S.E. N. S.E. N.N.E. S.E. N.N.E. - S.E. E.N.E.	E.S.E. N. E.S.E. N.N.E. S.E. N.N.E. S.E. N.N.E. S.E. E.N.E. S.S.E.	1121 1121 270 1121 90	112 90 135 135 472 67
1. 8 1. 1 2. 21 3. 1 3. 13 3. 1 3. 18 3. 2 3. 18 3. 2 3. 18 3. 2 3. 12 5. 1 5. 12 5. 1 5. 12 5. 1 5. 12 5. 1 5. 12 5. 1 6. 8. 8. 9. 9. 9. 5 9. 9. 0. 2 0. 2 10. 1 2. 3. 19 13. 2 14. 4. 6 4 14. 14. 4. 18 15. 1 1 7. 14 17. 2 2 1 9. 13 19. 1 2 1 9. 13 19. 1 2 1	1. 15 3. 0 3. 18 3. 20 4. 0 5. 18 5. 4 3. 9 4. 8 5. 4 3. 9 4. 8 5. 18 5. 18	S.E. S.S.W. W. E. S.S.W. E.S.E. S.S.W. E.S.E. W. S.W. S.	S.S.W. W. E. S.S.W. E.S.E. S.S.W. E.S.E. W. S.W. S.	$67\frac{1}{2}$ $112\frac{1}{2}$ 90 $157\frac{1}{2}$	180 90 90 45 45	7. 9 8. 15 8. 22 11. 12 12. 3 12. 15 14. 20 16. 8 17. 2 17. 20 18. 19 19. 0	7. 10 8. 19 9. 0 11. 14 12. 14 13. 1 15. 15 16. 9 17. 14 18. 2 18. 21	N. S.W. W.S.W. S.W. S.E. S.W. N.W. S.S.W. W. N.E.	S.W. W. S.W. S.W. S.E. S.W. N.W. S.S.W. W. N.E. S.S.E.	45 90 90 67 ¹ / ₂ 135	$22\frac{1}{2}$ $22\frac{1}{2}$ 90	12. 2 12. 7 13. $23\frac{1}{2}$ 14. $7\frac{1}{2}$ 14. 23 16. 0 16. 11 16. 22 17. 10 17. 21	12. 7 12. 13 14. 6 14. 13 15. 0 16. 9 16. 15 17. 0 17. 12 18. 2	N. E.S.E. N.N.E. S.E. N. S.W. S.E. N.N.E. - S.E. E.N.E.	E.S.E. N.N.E. S.E. N. S.W. S.E. N.N.E. S.E. E.N.E. S.S.E.	1 12 ¹ / ₂ 270 112 ¹ / ₂ 90	90 135 135 472 67
2. 21 3. 3. 13 3. 1 3. 18 3. 2 3. 18 3. 2 5. 12 5. 1 5. 12 5. 1 5. 19 6. 8. 6 8. 9. 5 9. 0. 20 11. 0. 20 13. 2 4. $0\frac{1}{2}$ 14. 5. 8 15. 1 7. 14 17. 2 8. 18 15. 1 9. 10 19. 1 9. 13 19. 1 9. 19 20. 0. 16 21. 1 2. 3. 3 23. 3. 8 23. 3. 3 23.	3. 0 3. 18 3. 20 4. 0 5. 18 5. 4 5. 4 5. 4 5. 4 5. 18 5. 18 5. 18 5. 18 5. 18	S.E. S.S.W. W. E. S.S.W. E.S.E. S.S.W. E.S.E. W. S.W. S.	S.S.W. W. E. S.S.W. E.S.E. S.S.W. E.S.E. W. S.W. S.	$67\frac{1}{2}$ $112\frac{1}{2}$ 90 $157\frac{1}{2}$	180 90 90 45 45	8. 15 8. 22 11. 12 12. 3 12. 15 14. 20 16. 8 17. 2 17. 20 18. 19 19. 0	8. 19 9. 0 11. 14 12. 14 13. 1 15. 15 16. 9 17. 14 18. 2 18. 21	S.W. W.S.W. S.W. S.E. S.W. N.W. S.S.W. W. N.E.	W. W.S.W. S.W. S.E. S.W. N.W. S.S.W. W. N.E. S.S.E.	90 90 67 ¹ / ₂ 135	$22\frac{1}{2}$ $22\frac{1}{2}$ 90	12. 7 13. $23\frac{1}{2}$ 14. $7\frac{1}{2}$ 14. 23 16. 0 16. 11 16. 22 17. 10 17. 21	12. 13 14. 6 14. 13 15. 0 16. 9 16. 15 17. 0 17. 12 18. 2	E.S.E. N.N.E. S.E. N. S.W. S.E. N.N.E. - S.E. E.N.E.	N.N.E. S.E. N. S.W. S.E. N.N.E. S.E. E.N.E. S.S.E.	1 12 ¹ / ₂ 270 112 ¹ / ₂ 90	135 135 472 67
3. 13 3. 1 3. 18 3. 2 3. 21 4. 5. 12 5. 1 5. 12 5. 1 5. 12 5. 1 5. 12 5. 1 5. 12 5. 1 9. 5 9. 9. 5 9. 9. 5 9. 0. 20 11. 3. 19 13. 2 4. 0 14. 4. 0 14. 4. 0 14. 4. 0 14. 15. 8 15. 1 7. 14 17. 2 8. 18 15. 1 9. 10 19. 1 9. 13 19. 1 9. 10 20. 0. 16 21. 1 2. 3. 3 3. 3 23. 3. 3 23. 3. 14 23.	3. 18 3. 20 4. 0 5. 18 5. 4 6. 4 6. 4 7. 18 7. 18 7. 18 7. 18	S.S.W. W. E. S.S.W. E.S.E. S.S.W. E.S.E. W. S.W. S.	W. E. S.S.W. E.S.E. S.S.W. E.S.E. W. S.W. S.	$67\frac{1}{2}$ $112\frac{1}{2}$ 90 $157\frac{1}{2}$	90 90 45 45	11.12 12.3 12.15 14.20 16.8 17.2 17.20 18.19 19.0	11. 14 12. 14 13. 1 15. 15 16. 9 17. 14 18. 2 18. 21	W.S.W. S.W. S.E. S.W. N.W. S.S.W. W. N.E.	S.W. S.E. S.W. N.W. S.S.W. W. N.E. S.S.E.	90 67 <u>1</u> 135	22 <u>1</u> 90	14. $7\frac{1}{2}$ 14. 23 16. 0 16. 11 16. 22 17. 10 17. 21	14. 13 15. 0 16. 9 16. 15 17. 0 17. 12 18. 2	S.E. N. S.W. S.E. N.N.E. - S.E. E.N.E.	N. S.W. S.E. N.N.E. S.E. E.N.E. S.S.E.	270 112 1 90	135 472 67
3. 18 3. 2 3. 21 4. 5. 12 5. 1 5. 12 5. 1 5. 12 5. 1 5. 12 5. 1 5. 12 5. 1 5. 12 5. 1 5. 12 5. 1 8. 12 9. 9. 5 9. 9. 5 9. 0. 2 10. 1 0. 20 11. 3. 19 13. 2 4. $0^{\frac{1}{23}}$ 14. 5. 8 15. 1 7. 14 17. 2 8. 18 18. 1 9. 10 19. 1 9. 13 19. 1 9. 19 20. 16 21. 1 2. 3. 3. 8 23. 3 23. 1 3. 14 $\frac{1}{2}$ 23. 1	3. 20 1. 0 5. 18 5. 4 3. 9 4. 9 5. 18 5. 18 5. 18 5. 18	W. E. S.S.W. E.S.E. S.S.W. E.S.E. W. S.W. S.	E. S.S.W. E.S.E. S.S.W. E.S.E. W. S.W. S.	112 <u>1</u> 90 157 <u>1</u>	90 90 45 45	12. 3 12. 15 14. 20 16. 8 17. 2 17. 20 18. 19 19. 0	12. 14 13. 1 15. 15 16. 9 17. 14 18. 2 18. 21	S.W. S.E. S.W. N.W. S.S.W. W. N.E.	S.E. S.W. N.W. S.S.W. W. N.E. S.S.E.	90 67 <u>1</u> 135	90	14. 23 16. 0 16. 11 16. 22 17. 10 17. 21	15. 0 16. 9 16. 15 17. 0 17. 12 18. 2	N. S.W. S.E. N.N.E. - S.E. E.N.E.	S.W. S.E. N.N.E. S.E. E.N.E. S.S.E.	112 1 90	135 472 67
5. 12 5. 12 5. 10 6. 8. 8. 6 8. 8. 9. 5 9. 5 9. 2 10. 20 11. 9. 20 11. 14. 15. 19. 19. 10.	5. 18 5. 4 3. 9 9. 4 9. 8 5. 18 5. 18	S.S.W. E.S.E. S.S.W. E.S.E. W. S.W. S.	E.S.E. S.S.W. E.S.E. W. S.W. S.	90 157 ¹ /2	90 90 45 45	12. 15 14. 20 16. 8 17. 2 17. 20 18. 19 19. 0	13. 1 15. 15 16. 9 17. 14 18. 2 18. 21	S.W. N.W. S.S.W. W. N.E.	N.W. S.S.W. W. N.E. S.S.E.	90 67 <u>1</u> 135	112 <u>1</u>	16. 11 16. 22 17. 10 17. 21	16. 15 17. 0 17. 12 18. 2	S.E. N.N.E. - S.E. E.N.E.	N.N.E. S.E. E.N.E. S.S.E.	112 1 90	67
$5. 19 8. 6 8. 6 8. 8 9. 5 9. 5 9. 2 10. 2 11. 3 14. 6 14. 6 14. 6 14. 18 15. 8 15. 1 15. 8 15. 1 15. 1 16. 1 16. 2 14. 6 14. 1 15. 1 16. 1 16. 2 14. 1 15. 1 16. 1 16. 1 16. 2 16. 1 16. 1 16. 1 16. 2 16. 1 17. 2 8. 11 18. 1 19. 19 2 20. 1 19. 19 2 20. 1 19. 19 2 20. 1 21. 1 2. 8 2 2 . 1 3. 3 2 3 . 3 3. 14 \frac{1}{2} 23. 13. 34 \frac{1}{2} 24. 13. 34 \frac{1}{2} 25. 13. 34 \frac{1}{2} 27. 13. 34 \frac{1}{2} 27$	5. 4 3. 9 9. 4 9. 8 9. 18 1. 1	E.S.E. S.S.W. E.S.E. W. S.W. S.	S.S.W. E.S.E. W. S.W. S.	157 ¹ / ₂	90 45 45	16.8 17.2 17.20 18.19 19.0	16. 9 17. 14 18. 2 18. 21	N.W. S.S.W. W. N.E.	S.S.W. W. N.E. S.S.E.	67 <u>1</u> 135	112 <u>1</u>	16. 22 17. 10 17. 21	17.0 17.12 18.2	N.N.E. - S.E. E.N.E.	S.E. E.N.E. S.S.E.	9 0	67
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3. 9)• 4)• 8)• 8)• 18	S.S.W. E.S.E. W. S.W. S.	E.S.E. W. S.W. S.	157 ¹ / ₂	45 45	17.2 7.20 18.19 19.0	17.14 18.2 18.21	S.S.W. W. N.E.	W. N.E. S.S.E.	135		17. 10 17. 21	17.12 18.2	- S.E. E.N.E.	E.N.E. S.S.E.	9 0	
9. 5 9. 5 9. 2 10. 2 10. 2 11. 3. 2 4. 0 14. $\frac{14}{14}$. 4. $\frac{14}{14}$. 4. $\frac{14}{14}$. 4. $\frac{14}{14}$. 4. $\frac{14}{14}$. 5. 8 15. 1 7. 14 17. 2 8. 11 18. 18 18. 1 9. 10 9. 10 9. 19 19. 1 9. 19 19. 1 9. 19 20. 0. 16 21. 1 3. 3 23. 3. 8 23. 1. 1 2. 1 2. 1 3. 2 1. 1 1.). 8). 18 . 1	W. S.W. S.	S.W. S.		45	18.19 19.0	18.21	N.E.	S.S.E.	-						Ĩ	0
0. 2 10. 1 0. 20 11. 3. 19 13. 2 4. 0 14. 4. $3\frac{3}{4}$ 14. 4. $3\frac{3}{4}$ 14. 4. $3\frac{3}{4}$ 14. 4. $3\frac{3}{4}$ 14. 4. 18 15. 7. 14 17. 2 8. 11 18. 1 9. 10 19. 1 9. 10 19. 1 9. 13 20. 0. 0. 16 21. 1 3. 3 23. 3 3. 8 23. 1 3. 8 23. 1	5. 18 . 1	S.W. S.	S.	45	45	19. Õ				1145							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			S.W.	45					, LU, .	ĺ	671		18.21	E.N.E.	S.E.	67 <u>1</u>	90
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				· ·			20. 0	E.	S.S.W.	$112\frac{1}{2}$			19. 7	S.E. E.S.E.	E.S.E. S.S.W.		22
4. $0\frac{1}{2}$ 4. $3\frac{3}{4}$ 4. $3\frac{3}{4}$ 4. $6\frac{3}{4}$ 14. 15. 5. 8 15. 7. 14 17. 8. 11 18. 7. 14 17. 8. 11 18. 9. 10 19. 9. 10 19. 9. 10 20. 0. 16 21. 2. 8 22. 3. 3 23. 3. 8 23. 3. 8 23. 3. 14 23.		S.W. N.E.	N.E. N.	180 315			20. 4 20. I I	S.S.W. E.	E. W.	180	1122	4	20. 5 20. 20	S.S.W.	S.E.	90 292]	1
4. $6\frac{3}{4}$ [4.1] 4. 18 15. 5. 8 15. 7. 14 17. 2 8. 11 18. 1 8. 11 18. 1 9. 10 19. 1 9. 13 19. 1 9. 19 20. 1 0. 16 21. 1 2. 8 22. 1 3. 3 23. 3 3. 8 23. 1 3. 8 23. 1	. I	N.	S.		180	20. 13	20. 21	W.	S.S.E.			1	21. 3	S.E.	S.W.		270
4. 18 15. 5. 8 15. 1 5. 14 17. 2 8. 15 18. 1 9. 10 19. 1 9. 10 19. 1 9. 13 19. 1 9. 14 20. 0. 16 21. 1 2. 8 22. 1 3. 3 23. 3. 14 $\frac{1}{2}$ 23. 1		S. N.N.W.	N.N.W. W.S.W.	1571	1		21. 0 21. 5	S.S.E. S.S.W.	S.S.W. N.	157 1			21. 8 21. $9\frac{1}{4}$	S.W. S.S.W.	S.S.W. N.	337]	202
7. 14 17. 2 8. 11 18. 1 8. 18 18. 2 9. 10 19. 1 9. 13 19. 1 9. 19 20. 0. 16 21. 1 2. 8 22. 1 3. 3 23. 3. 8 23. 1 3. 14 $\frac{1}{2}$ 23. 1	5.6	W.S.W.	N.N.W.	90		21 . $6\frac{1}{2}$	21.10	N.	S.S.W.	2021		21. 101	21.12	N.	N.E.	405	
8. 11 18. 1 8. 18 18. 2 9. 10 19. 1 9. 13 19. 1 9. 14 20. 0. 15 21. 1 2. 8 22. 1 3. 3 23. 3. 8 23. 1 3. 14 $\frac{1}{2}$ 23. 1		N.N.W. W.S.W.	W.S.W. N.W.	671		21.15		S.S.W. N.	N. N.E.	$157\frac{1}{2}$ 45		21.15 22.12		N.E. N.	N. S.E.		45 225
9. 10 19. 1 9. 13 19. 1 9. 19 20. 0. 16 21. 1 2. 8 22. 1 3. 3 23. 3. 8 23. 1 3. 14 $\frac{1}{2}$ 23. 1		N.W.	S.W.	67 <u>1</u>	90	22.21 23.4	2 <i>2</i> . 2 <i>3</i> . 5	N.E.	E.	45		22.21	23. 0	S.E.	S.S.W .	67]	
9. 13 19. 1 9. 19 20. 0. 16 21. 1 2. 8 22. 1 3. 3 23. 3. 8 23. 1 3. 14 $\frac{1}{2}$ 23. 1		S.W.	W.S.W.	$22\frac{1}{2}$		23. 9	23.16	· E.	N.N.E.		67 <u>1</u>		23.11	S.S.W. S.E.	S.E. W.S.W.	ival	67
9. 19 20. 0. 16 21. 1 2. 8 22. 1 3. 3 23. 3. 8 23. 1 3. $14\frac{1}{2}$ 23. 1		W.S.W. S.S.E.	S.S.E. E.N.E.	270		23. 19 24. 8	24. 3 24. 16	N.N.E. E.S.E.	E.S.E. N.E.	90	671	23. 12 24. 5	24. 2 24. 8	W.S.W.	S.W.	1125	22
2. 8 22. 1 3. 3 23. 3. 8 23. 1 3. $14\frac{1}{2}$ 23. 1	. 8	E.N.E.	S.	$112\frac{1}{2}$		24. 18	25. O	N.E.	S.E.	90		25. 7	25.15	S.W.	S.S.E.		67
3. 3 23. 3. 8 23. 1 3. $14\frac{1}{2}$ 23. 1		S. W.	W. S.W.	90		25. 15 26. 7	26. 0 26. 10	S.E. W.N.W	W.N.W. S.W.	1571	67 1	25. 17 28. 3	25.23 28.6	S.S.E. S.W.	S.W. S.	67 <u>1</u>	45
3. 141 23. 1		S.W.	S.				27. 9	S.W.	W.	45		28.8	28.13	S	W.	9 0	
$3.14\frac{1}{2}23.1$ 3.23 24.1		S.	W. N.	90		27.10	27.11	W.S.W	W.S.W.	201			29. 0	S.W.	S.W. N.	135	45
	. 17	W. N.	\mathbf{W} .S.W.	90	1121	27.22 28.3	28. 0 28. 9	W.S.W. W.	W. S.W.	22 <u>1</u>	45	29. 10 29. 12 :	29. 11 1 29. 16	N.	N.	100	360
5. o 25.	5.6	W.S.W.	N.W.	67 1		28. 16	28. 22	S.W.	W.	45		29.17	29. 23]	N.	N.W.		45
5. 8 25. 1 5. 18 26.		N.W. W.S.W.	W.S.W. N.	1121			29. 10 30. 23	W. S.W.	S.W. W.	45		29. 23 1 30. 1		N.W. N.E.	N.E. N.N.W.	- 90	67
6. 5 26.	5.6	N.	E.N.E.	$67\frac{2}{3}$		31. O	31. 5	W .	N.E.	T	225				•	,	
6. 8 26. 1 8. 3 28.		E.N.E. N.N.W.	N.N.W. E.N.E.		90	31. 8	31. 12	N.E.	N.W.		90				Sums	3037]	3375
8. 8 28.	3. 9	E.N.E.	S.W.	90 157 1			<u> </u>		Sums	2767 1	1980						
9. 7 29.1). 13	S.W .	S.E.		90			······································		· · · · ·)	1		
9. 14 30. 0. 15 30. 1), O	S.E. S.S.W.	S.S.W. W.S.W.	67 <u>1</u> 45		G .]					ober.				
1. 8 31.		W.S.W .	N.N.E.	135		Septe	mber.						over.				
1. 9 1 31. 1	1. 9 1	N.N.E.	W.S.W.		135			NW	s.s.w.		112	0.12	0 1/1	N.N.W.	N.W.		22
	1. 9 1		~	2745	1665	0. 12 1. 1	0.21 1.5	N.W. S.S.W.	S.S.E.	1			,+9	N.W.	₩.	45	, ~~~

ABSTRACT of the CHANGES of the DIRECTION of the WIND-continued. Greenwich Greenwich Greenwich Change Change of Direction. Change of Direction. Amount of Amount of Amount of Mean Solar Mean Solar Mean Solar of Direction. Motion. Motion. Motion. Time. 'lime. Time. Retro Retro Retro From То From То Direct. From From Direct. From From Direct. То То То То grade grade grade 0 0 0 0 0 ο December. Oct.-cont. Nov.-cont. đ d h d h d h d h h d h 3. 7 N.N.W. W.S.W N.W. N.N.W. 3. 5 N.N.W. S.W. 1.13 90 1.1.3 112 **I**. 9 I. I4 22층 W.S.W. W.N.W S.S.W 2.13 N.N.W. S.W. I I 2 1 3. 15 3.16 S.W. 22 1.21 2. 3 45 2. - 3 W.N.W. S.W. W. S.S.W. S.W 2. 6 S.W. 673 3. o 3. 4 3.18 4. 0 2.19 45 4.5 67늘 S.W. W.S.W W. N.N.W. 67<u>1</u> S.W. W.N.W 2.23 3. o 223 3.17 3.18 4. 4 N.N.W. 5<u>1</u> W.N.W. W.S.W W.S.W. N.N.W 4. 10 5. 10 6 N. 223 45 3. 3.14 90 4. 0 4. Ι 4. 5. 5. 3 5. 6 N. W.N.W 671 W.S.W. S.S.E. 5.19 5. 22 N.N.W. N.N.E 45 4.15 90 W.N.W S.W. N.N.E. N.W. 67t 5.11 S.S.E. N. 67<u>1</u> 5.15 67<u>1</u> 7.11 5. -6 5. 61 7. O W.S.W. N.W. S.W. N. 5. $23\frac{1}{2}$ 5. $23\frac{3}{4}$ S.W. Ν. 135 7.14 6.13 6. 15 112 7.17 90 W.S.W W.S.W 6. 111 S.W. S.S.E 671 S.W. N. 1123 9. o 7. 5 6. 5 Q. I .7. 9 22 + S.S.W W.S.W. S.S.E. 45 S.W. S 6.20 S. I 6 315 6.18 $67\frac{1}{2}$ 9. 9. **2** 9. 9 g. S.S.W. W.N.W S.S.W. W.S.W. 6.21 s. 3823 10.16 90 9.12 9.13 S. go 7. 0 10.12 11. 8 W.N.W. S.W W.S.W. S.S.W. S.E. 67111. ່ 2 671 S.E. 7.4 9.13 9.17 1124 7. 2 11.13 11.13 $\frac{1}{4}$ S.W. W.N.W S:W 10. 11 10. 12 S.E E.N.E67성 7.10 7.12 S.E. 270 671 W.N.W. W.S.W S.W. 7.23 8. o S.W. 12.14 671 E.N.E. W. 2023 223 12. 7 10. 20 10. 23 8. 2 S.W. W.S.W W. N.E. 135 8. 7 W. .W. S.S.W 45 12.17 12.22 22] II. O 11.12 .W. W.S.W 45 W.S.W.N.N.W 15. 15 15. 18 N.E S.E. 8.11 8.23 S. 90 12.12 12.13 90 N.N.W.W.S.W S.E. S. 45 9.20 Q. 21 W.S.W. N.N.W 90 17.18 17.23 90 12.23 13. 3 W.S.W. N.N.W 10. 5 N.N.W. W.S.W 18. 10 18. 16 S.E. 13. 7 45 90 13.13 S. 9.21 90 N.N.W. W.S.W.W.N.W 45 S.W. S.E. 45 10.22 10.23 18.19 19.13 112 13. 17 13. 22 S. W.S.W W. W.N.W. S.W. 90 11. 2 11. 19 N 292 19.17 19.19 221 S. 14. 12 14. 12¹/₂ N.N.W W.S.W. W. Ŵ. S.W. 12. 3 12. 8 N. 22] 20. 20 21. 1 45 22 14. 123 14. 14 12. 10 12. $10\frac{1}{4}$ N.N.W. W.S.W S.W. W. 21. 3 21. 5 45 15. 2 15. 5 S.W. S. 45 90 45 W.S.W. 22.13 23. 3 S.W. N.N.W S. S.W. 12.21 N. 1123 1121 12.17 15.14 15. 23 W.S.W N.N.W. S.S.W. $112\frac{1}{2}23. 5\frac{1}{2}23. 6$ S.W. W. 225 16. 18 45 13. 7 13.13 N. 16. 20 S.S.W. W.S.W 13. 231 W.S.W $67\frac{1}{2}$ 23.19 W. S.S.W N.W. 23. 23 45 67 13. 23 16.20 17. 4 S.W. W.S.W.W.N.W S.S.W. W.S.W 45 N.W. 45 14. 10 14.19 00 17. 8 17. 7 S.W. W.N.W.W.S.W. 45 S.S.E 18. 3 19. 2 W.S.W S 671 15. 4 15. 7 671 W.S.W. $5\frac{1}{2}$ S.S.W. S. N.N.W 157호 15. 19 15. 22 SSE. S.W. 67] 315 19. 3 19. w.s.w 25. 9 S.S.W. E.S.E. 16. 10 16. 17 S.W. 45 25. 7 90 N.N.W. S. 19. 5119. 8 90 W.N.W 405 25. 15 25.21 E.S.E. S.S.E. W.S.W. N. 17. 31 S. 1121 $21.17\frac{1}{2}21.18$ 1121 17. 2 17. 31 17. 5 W.N.W. W S.W 26. 7 25.23 S.S.E. Е. 671 S.S.W 45 22. 2 22. N 157f S.S.W. 671 26. 12 E. W. W.S.W W.S.W. 27. 0 180 23. 6 18. 0 18. 4 S 45 22.19 w. N.E. w 135 27. 3 W.S.W. S.S.W. 45 18. 5 18.13 S. 90 27. 0 23. 23 24. 2 W.S.W 18. 15 18. 19 w. S.W. 45 8 27.13 N.E. S. 135 S.S.W. 27. 45 24. 5 24. 9 45 S. S.W. S.W. W. 27.16 28. 0 405 24. 10 W.S.W S.W. 18.20 19. 0 22 24. 12 S.W. S.S.E. W. S.W 28. I 67 S.W. S.S.E. 45 28. O 671 2 19. 7 25.15 26. 8 I۵. S.S.E. S.S.E. 19. 17 19. 23 S.W. W.S.W 22<u>1</u> 28. 7 28. 10 E.S.E. 45 S. 22] 26.13 26.12 20. 16 W.S.W 45 28.21 28.23 E.S.E. E. S.S.W. 221 W S. 90 20. 7 26. 19 27. 0 N.N.E E. W. E.S.E. 157 3 20. 20 21. 2 S.S.W. w 671 29. 14 29.18 67 27. 0 $27. \ 0 \ 27. \ 4$ $27. \ 4\frac{1}{2} \ 27. \ 8$ 27. S.S.W 30. 2 30.20 N.N.E. E.N.E. 21. 2 21. 19 W. 67 45 E.S.E. S.S.W 90 31. 11 31. 12 E.N.E. E. S.S.W 221 S.S.W. 112 21.22 22. 0 S.W. 221/2 E. 9127.23 27. N.N.E. E. 671222.16 22.161 S.W. N. 225 9 29.14 29. S.W. N. 135 29. 18 N.N.E. E. 67 1 22. 19 22.21 30. 12 W. S.W. Sums 2722 S.S.E. 22.22 45 1170 E. 671 22.21 31. 3 31.12 23.12 W. S. 90 23. O S.W. 23.15 23. 22 S. 45 1552124. 2 S.W. S. 45 Sums 2115 24. 7 S.S.W 8 S. 223 24. 10 S.S.W. S.W. 25. 21 26. 0 221 27. 2 S.W. S.S.W 22 27. 0 28. 16 S.S.E. S.S.W. 45 28. 4 November. 2 29. 8 S.S.E. S.W. 67] 29. S.W. S.S.W 30. 4 221 30. 2 30. 91 S.S.W. N.N.W 135 S.S.E. E.S.E. 45 30. q 0. 131 0. 14 E.S.E. S.S.W. 90 1.20 2. 0 Sums 2137 2677 E.S.E. S.S.W. 3 90 2. 0 2. E.S.E. N.N.W. 225 3. 2 2.20

GREENWICH MAGNETICAL AND METEOROLOGICAL OBSERVATIONS, 1883.

I

(lxv)

(lxvi)

CHANGES OF THE DIRECTION OF THE WIND AND HORIZONTAL MOVEMENT OF THE AIR,

• •		Excess of M	otion in each Month.
January February March April May June	•••••	Direct. Retrograde. \circ \circ 1620 225 $247\frac{1}{2}$ $742\frac{1}{2}$ 495 $787\frac{1}{2}$	Direct.Retrograde. \circ \circ July1080August $787\frac{1}{2}$ September $337\frac{1}{2}$ October $562\frac{1}{2}$ November 540 December $1552\frac{1}{2}$
,		The whole excess of dir	rect motion for the year was $6727\frac{1}{2}$.
· •			
•			

1

(lxvii)

						18	83.						Mean fo
Hour ending	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.	the Yea
- h	Miles.	Miles.	Miles.	Miles.	Miles.	Miles.	Miles.	Miles.	Miles.	Miles.	Miles.	Miles.	Miles.
1 a.m.	14 •3	13.5	12 '2	7 7	8.5	8 .7	9.3	9.0	8.6	11 <i>°</i> 5	12.7	14.7	10.9
2 a.m.	13.8	13.2	11.6	8 •0	8.6	8 •0	8 °7 ·	9.0	9.1	11.2	12.7	15.1	10.8
3 a.m.	13.4	14.1	12.3	7 '7	8.5	7 •3	8.7	9.2	8.9	0. 11	12.8	15.4	10.8
4 a.m.	12.8	14.3	11.7	<u>7</u> •5	8 • 1	7 .1	8.9	9.4	, 9.3	11.2	13.4	15.6	10.8
5 a.m.	12.7	14.1	11.8	7 *7	7 •5	7.3	8 •6 .	8:2	9.5	11.4	13.0	15 • 1	10.6
6 a.m.	12.6	14.1	12.1	7 *4	7 .3	7 .4	9 ' 4	7 .8	9.4	11.2	13.5	14.6	10.6
7 a.m.	14 .5	14 '2	12.5	8 •0	7 4	7 • 3	10 '2	8.5	10.2	12.1	13.9	14 •7	11.1
8 a.m.	13.4	14.5	12.6	9 . 2	7 ' 9	7 .7	11 *2	9.5	10.6	12.0	13.4	14 .0	11 3
9 a.m.	12 .7	13.9	13.3	9 .9	8 ·3	8 • 5	11.8	10.0	11.3	12 .4	13.0	14 •7	11.
io a.m.	13.5	13.9	14.2	10.6	8 • 8	9.3	12.5	10.0	12.3	13.3	14 .0	15 •1	12 .
11 a.m.	14.7	14.5	16.6	11.7	9.8	10.0	12.9	11.8	13.5	13.7	14.5	15.6	13.
Noon.	15 ·3	15.7	18.0	11 '9	11.3	10.0	13.4	12.3	13.7	13.7	14 '0	16•1	13.
1 <u>p</u> .m.	15.5	16.3	18.4	11 ' 9	11.7	10.3	13.7	12.1	13.7	13.9	14 '2	16.4	14.
2 p.m.	16 .0	16.6	18.1	12 .0	11.8	10.8	14.1	13.0	14.6	13.7	15.3	16.8	14.
3 p.m.	15.8	16.6	18.0	12.5	11.9	11.4	14 .8	12.9	14.4	13.4	15.7	16.8	14 .
4 p.m.	14.6	15.9	16.8	11.7	12.2	11.4	15.3	14.2	13.5	12.7	14.3	15.9	14.
5 p.m.	13.7	15.2	16.7	11.1	11.6	12.1	14.5	14.2	12.8	12.9	13.2	16.3	13.
6 p.m.	13.9	13.5	15.6	10 5	11.4	11.4	13.8	13.2	11.6	12.2	12.8	15.9	13.
7 p.m.	13.7	14.0	14-1	9 • 5	10.0	10.1	11.7	11.2	10.3	11.5	12.4	14.5	12 .
8 p.m.	14.1	13.9	13.3	9.1	10.2	9.9	11.2	11 '2	10.0	12.3	13.5	16.0	12.
_	14.4	14.7	12.5	9 - 8 •7	10.1	8.6	10.0	10.1	10.3	11.6	12.5	15.4	11.
9 p.m.	•4 4 14 •2	13.8	12.6	8.1	9.9	8.5	9.6	10.5	9.8	11.5	12.4	14.8	11.
10 p.m.		13.8	12.6	7 • 6	9.9 9 . 7	8.6	9°4	9.3	8.9	11.9	12.3	15.1	11.
11 p.m.	14.7		12.5		97 95	8.5		-	8.6				
Midnight.	14 •5	14 °0	12-5	7.0			9 ° 4	9.2	0 ⁻ U	11.3	12.7	15 %	11.
eans	14.1	14.5	14 *2	9.5	9 7	9 • 2	11.4	10.7	11 '1	12.2	13.4	15.4	12 .
eatest Hourly }	57	49	39	28	29	24 ·	33	34	35	39	39	53	••
ast Hourly]	I	. I	I	0	o	0	I	0	0	0	0	o	

١

I 2

(lxviii)

,

ELECTRICAL POTENTIAL OF THE ATMOSPHERE,

MEAN ELECTRICAL POTENTIAL of the ATMOSPHERE, from THOMSON'S ELECTROMETER, for each Civil Day.

(Each result is the Mean of Twenty-four Hourly Ordinates from the Photographic Register. The scale employed is arbitrary : the sign + indicates positive potential.)

Days of	τ.	1.1				-						
the Month.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	Decembe
đ									-			
, I	+ 39	+ 270	+ 261	+ 550	+ 302	+ 417	+ 417	+ 178	+ 278		+ 388	+ 254
2	+ 177	- 292	+ 368	+ 574	+ 436	+ 291	+ 269	+ 243	- 27	+ 252	+ 360	+ 413
3	+ 140	+ 340	+ 534	+ 325	+ 324	+ 293	+ 165	+ 140	+ 189	- 208	·+ 31	+ 294
4	+ 544	+ 395	+ 484	+ 418	+ 492	+ 208	+ 455	+ 141	+ 149	+ 184	+ 301	+ 385
5	+ 71	+ 260	+ 361	+ 452	+ 505	+ 132	+ 288	+ 200	+ 218	+ 256	+ 384	+ 551
. 6	+ 258	+ 325	+ 215	+ 305	••	+ 295	+ 370	+ -145	+ 213	+ 490	+ 148	, • •
7	+ 288	+ 190	+ 221	+ 293	+ 187	••	+ 289	+ 214	+ 341	+ 413	+ 514	••
8	+ 195	+ 47	••	+ 298	+ 57	+ 287	+ 265	+ 180	+ 281	+ 181	+ 578	+ 597
9	+ 349	+ 11	••		+ 133	+ 429	+ 299	+ 147	+ 512	+ 342	+ 349	••
10	+ 330	- 37	••	+ 467	- 131	+ 280	+ 321	- 28	+ 113	+ 344	+ 478	••
11	+ 189	+ 258	••	+ 288	+ 140	+ 211	+ 152	+ 430	+ 63	+ 118	+ 565	+ 293
12	+ 369	- 166	+ 507	+ 482	+ 58	+ 51	+ 284	+ 492	+ 143	+ 196	+ 620	+ 295
13	+ 321	+ 311	+ 528	+ 288	+ 291	+ 336	+ 273	+ 370	+ 110	+ 266	+ 604	+ 152
14	+ 426	+ 14	+ 432	+ 96	+ 76	+ 17	- 270	— I	+ 214	+ 157	+ 466	+ 210
15	+ 237	+ 124	+ 438	+ 577	+ 154	- 150	- 130	+ 216	+ 116	+ 320	+ 555	+ 428
16	+ 32	+ 383	+ 541	+ 322	+ 209	- 274	+ 368	+ 173	+ 442	+ 185	+ 202	+ 232
17	+ 253	+ 463	+ 560	+ 350	+ 142	+ 283	+ 335	+ 325	+ 199	+ 240	+ 324	+ 375
18	+ 158	- 103	+ 615	+ 140	+ 52	+ 202	+ 269	+ 217	+ 278	+ 490	+ 594	+ 394
19	+ 320	+ 252	- 399	- 88	+ 80	+ 35	+ 185	+ 233	+ 328	+ 237	+ 372	+ 232
20	+ 205	+ 192	+ 213	+ 390	+ 83	+ 180	+ 231	+ 223	+ 195	+ 500	+ 352	+ 355
2 I	+ 247	+ 100	+ 185	+ 372	+ 217	- 177	- 128	+ 232	+ 189	+ 533	+ 418	+ 329
22	+ 294	+ 145	+ 261	+ 444	+ 228	+ 283	+ 136	+ 120	+ 155	+ 386	+ 364	+ 233
23	+ 668	+ 351	+ 495	+ 38	+ 184	+ 308	+ 313	+ 239	+ 272	+ 293	+ 386	+ 518
24	+ 545	+ 295	+ 473	+ 468	+ 444	+ 210	+ 127	+ 329	•••	+ 238	+ 208	+ 308
25	+ 324	+ 277	+ 701	+ 285	+ 372	+ 143	+ 215	+ 206	+ 159	+ 175	••	+ 134
26	+ 374	+ 328	+ 292	+ 454	+ 28	- 348	+ 233	+ 265		+ 347	+ 152	+ 234
27	+ 221	+ 318	+ 534	+ 316	+ 321	+ 248	+ 262	+ 137	+ 73	+ 350	+ 624	+ 255
28	+ 497	+ 254	+ 296	- 252	+ 368	+ 201	+ 300	+ 156		+ 353	+ 237	+ 145
29	+ 22		+ 520	+ 209	+ 343	+ 295	+ 389	+ 112		+ 185	+ 346	+ 284
30	+ 447		+ 197	+ 310	+ 257	+ 83		+ 264	- 150	+ 261	+ 179	+ 221
31	+ 540		+ 621	4 -	+ 269		+ 64	+ 137	an a	+ 404		+ 282
Ieans -	+ 293	+ 189	+ 387	+ 316	+ 221	+ 164	+ 225	+ 208	+ 194	+ 283	+ 383	+ 311

The mean of the twelve monthly values is + 264.

MONTHLY MEAN ELECTRICAL POTENTIAL of the ATMOSPHERE, from THOMSON'S ELECTROMETER, at every HOUR of the DAY. (The results depend on the Photographic Register, using all days of complete record. The scale employed is arbitrary : the sign + indicates positive potential.) Hour, Greenwich 1883. Yearly Mean Solar Means. Time (Civil October. November. December. reckoning). January. February March. April. May. June. July. August. September. + 314 + 258 Midnight + 367 + 374 + 318 + 475 + 249 + 366 + 341 + 263 + 245 + 241 + 320 + 259 + 313 310 256 1^h. a.m. 248 198 + 345 + 329 + 339+ 160 + + 292 ++ 291 + + +449 + 224 329 213 186 458 311 290 + 312 + 257 145 297 + 263 + 274 2 + + + + + + + + 1 99 + 258 + 267 188 301 + 280 + 341 + 263 183 + 248 3 ++152 + 447 + 301 ++ + 241 ,, + 347 + 249 135 ++ 231 + 256 167 + 305 + 260 + 181 + 412 + 273 + 221 + + 204 4 ,, 5 215 89 352 + 253 224 303 275 186 156 2 I 2 297 262 235 + + + +++ +++++ + ,, + 309 + 281 + 304 + 168 189 + 233 6 208 61 + 387 259 + 299 154 + + 238 + + + " + 289 213 + 62 + 387 + 265 + 280 + 363 + 237 + 160 + 174 + 258 + 250 + 245 7 + " 8 235 + 63 +416 + 297 + 272 + 246 + 395 + 295 + 146 + 226 + 362 + 238 + 266 +,, 273 + 353 169 191 + 285 + 257 137 + 258 + 404 + 251 + 261 ++77 + 472 + + + 9 ,, + 286 + 185 ++ 360 253 106 418 ++ 152 221 + 202 + 204 10 + + + 70 2 +. 199 ,, + 352 269 87 365 + 217 + 107 153 172 + + 176 + 300 + ++ 42 44 +94 + ╋ 11 ,, 355 137 335 + 169 57 55 114 142 + 160 + 392 299 + 180 Noon + + + + + +49 + +116 18 67 168 + + 426 + 312 + 187 1^h. p.m 394 + 176 + 290 + 154 +130 +++ 220 + 52 304 + 283 + 144 + 59 248 + 391 + 337 + 216 + ++ 396 + 245 94 147 2 + +..... 300 137 38 85 263 + 422 + 362 + 217 3 + 348 + 219 294 +40 + + +177 ╋ + + ,, + 214 31 + 268 + 465 + 379 + 357 242 219 106 + 24 105 + + 206 + 200 ++ 4 ,, 95 + 393 + 233 236 153 + 367 + 499 + 226 ++ + 5 398 + 251 +227 I 47 +,, + 152 204 136 201 370 + 528 + 371 + 285 332 + 350 + 233 + + 152 ++ 6 387 + + ,, 485 + 384 + 356 415 + 406 + 365 + + 284 + 198 + 266 +190 +220 + + 379 + 329 7 ,, + 353 + 464 + 475 + 408 + 365 300 353 + 466 +497 + 291 + 221 + 259 + 295 8 + + ,, + 285 + 533 + 386 + 348 + 375 360 + 390 301 + 489 + + 446 + 462 + 400 300 +9 " + 534 374 437 + 256 + 453 + 354 + 321 + 345 ++ 325 +, 429 + 424 + 381 321 +10 + " + 363 + 280 + 364 + 353 + 269 + 348 + 458 + 292 + 416 406 + 295 + 211 + 470 +11 ,, + 164 + 225 + 208 + 283 + 383 + 311 + 293 + 189 + 387 + 316 + 221 + 194 + 264 Means . Number of 30 31 26 30 30 29 29 27 Days em-31 28 27 29 .. ployed -

AT THE ROYAL OBSERVATORY, GREENWICH, IN THE YEAR 1883.

. . . .

(lxix)

MONTHLY MEAN ELECTRICAL POTENTIAL of the ATMOSPHERE, from THOMSON'S ELECTROMETER, on RAINY DAYS, at every HOUR of the DAY.

(The results depend on the Photographic Register, using all days on which the rainfall amounted to or exceeded oⁱⁿ 020. The scale employed is arbitrary: the sign + indicates positive potential.)

Hour, Greenwich Mean Solar						18	83.		,	•			Yearly
Fime (Civil reckoning).	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.	Means
`													
Midnight	+ 146	+ 158	+ 375	<u> </u>	+ 344	- 56	+ 255	+ 262	+ 252	+ 298	+ 368	- 30	+ 19
1 ^h . a.m.	+ 183	+ 90	+ 308	- 43	+ 377	- 50	+ 206	+ 298	+ 28	+ 275	+ 216	+ 56	+ 10
2 "	+ 112	+ 92	+ 318	- 13	+ 388	+ 61	+ 145	+ 106	+ 19	+ 283	+ 57	+ 152	+ 14
3 "	+ 77	+ 43	+ 280	+ 130	+ 391	+ `61	+ 275	+ 270	+ 158	+ 208	+ 114	+ 154	+ 1
4 "	+ 105	+ 22	+ 235	+ 83	+ 146	- 99	+ 305	+ 310	+ 148	+ 171	+ 227	+ 224	+ 1
5 "	+ 175	- 54	- 65	<u>→</u> 2	+ 121	+ 175	+ 135	- 84	+ 155	+ 211	+ 186	+ 260	, + 1
6 "	+ 153	- 74	+ 130	+ 77	+ 146	+ 204	+ 161	- 186	+ 158	+ 175	+ 209	+ 173	+ 1
7 "	+ 141	- 82	+ 237	- 33	+ 259	+ 239	+ 311	+ 188	+ 137	+ 145	+ 96	+ 237	+ 1
8 "	+ 177	- 122	+ 298	o	+ 1 99	+ 275	+ 414	+ 338	+ 74	+ 235	+ 261	+ 188	+ 1
9 "	+ 205	- 125	+ 317	+ 102	- 127	+ 221	+ 183	+ 318	+ 36	+ 285	+ 330	+ 239	+ 1
o "	+ 129	- 29	+ 235	+ 158	- 264	- 46	+ 108	+ 178	+ 88	+ 185	+ 319	+ 275	+ 1
ı "	+ 172	+ 15	+ 233	+ 160	- 338	- 165	- 64	- 26	+ 128	+ 112	+ 327	+ 294	+
Noon	+ 275	- 56	+ 192	- 123	- 336	- 285	- 8	+ 154	+ 115	+ 16	+ 348	+ 346	+
1 ^h . p.m.	+ 351	+ 49	+ 193	- 340	- 4	- 653	- 220	+ 130	+ 75	+ 95	+ 358	+ 334	+
2 ,,	+ 348	+ 79	+ 132	+ 110	- 160	- 291	+ 68	+ 104	+ 35	+ 116	+ 265	+ 358	+
3 "	+ 276	+ 52	- 93	+ 272	+ 47	- 447	- 123	+ 186	+ 88	+ 105	+ 283	+ 364	+
4 "	+ 263	+ 48	- 128	- 103	+ 68	- 199	- 439	+ 184	+ 182	+ 68	+ 399	+ 346	+
5 "	+ 349	+ 125	- 102	- 110	+ 266	- 169	403	+ 110	+ 11	+ 297	+ 457	+ 393	·+ 1
6"	+ 300	+ 228	+ 345	+ 48	- 137	+ 101	+ 53	+ 164	+ 202	+ 199	+ 524	+ 391	+ 2
7 "	+ 331	+ 231	+ 120	+ 388	+ 222	- 126	+ 288	- 76	+ 13	+ 212	+ 421	+ 334	+ 1
8 "	+ 224	+ 187	+ 83	+ 482	+ 114	- 149	+ 211	+ 366	+ 137	+ 418	+ 470	+ 389	+ 2
9 "	+ 215	+ 148	+ 122	+ 588	+ 20	+ 313	+ 351	+ 250	+ 287	+ 442	+ 502	+ 410	+ 3
10 "	+ 241	+ 18	+ 125	+ 592	+ 215	+ 157	+ 197	+ 256	+ 241	+ 434	+ 479	+ 441	+ 2
11 "	+ 237	- 27	+ 327	+ 388	+ 259	+ 43	+ 62	+ 314	+ 191	+ 356	+ 434	+ 370	+ 2
Ieans -	+ 216	+ 42	+ 176	+ 115	+ 92	- 37	+ 103	+ 171	+ 123	+ 223	+ 319	+ 279	+ 1
umber of Days em- ployed -	15	12	6	6	8	8	II	5	10	11	14	8	֥

(lxx)

MONTHLY MEAN ELECTRICAL POTENTIAL of the ATMOSPHERE, from THOMSON'S ELECTROMETER, on Non-Rainy Days, at every Hour of the Day.

,

(The results depend on the Photographic Register, using only those days on which no rainfall was recorded. The scale employed is arbitrary: the sign + indicates positive potential.)

•••••••					·	<u></u>	<u></u>		· · · · · · · · · · · · · · · · · · ·				
Hour, Greenwich Mean Solar						18	83.	· .	,	·			Yearly Means.
Time (Civil reckoning).	January.	February.	March.	April.	May.	June	July.	August.	September.	October.	November.	December.	
							•						
Midnight	+ 312	+ 338	+ 473	+ 520	+ 337	+ 394	+ 428	+ 352	+ 316	+ 335	+ 344	+ 485	+ 386
1 ^h . a.m.	+ 281	+ 298	+ 458	+ 497	+ 334	+ 391	+ 399	+ 296	+ 295	+ 347	+ 356	+ 413	+ 364
2 ,,	+ 284	+ 285	+ 433	+ 452	+ 307	+ 394	+ 404	+ 256	+ 267	+ 324	+ 383	+ 405	+ 349
3 "	+ 269	+ 250	+ 423	+ 405	+ 289	+ 384	+ 386	+ 226	+ 242	+ 272	+ 383	+ 385	+ 326
4 "	+ 231	+ 225	+ 412	+ 377	+ 265	+ 365	+ 385	+ 228	+ 223	+ 229	+ 376	+ 346	+ 305
5 "	+ 232	+ 185	+ 417	+ 350	+ 279	+ 346	+ 369	+ 243	+ 192	+ 213	+ 401	+ 333	+ 297
6 "	+ 249	+ 146	+ 420	+ 366	+ 321	+ 329	+ 392	-+ 259	+ 186	+ 195	+ 420	+ 316	+ 300
7 "	+ 273	+ 158	+ 385	+ 368	+ 314	+ 291	+ 416	+ 264	+ 207	+ 189	+ 409	+ 309	+ 299
8 ".	+ 297	+ 197	+ 396	+ 418	+ 307	+ 227	+ 411	+ 305	+ 226	+ 218	+ 449	+ 310	+ 313
9 "	+ 349	+ 239	+ 491	+ 480	+ 286	+ 176	+ 354	+ 308	+ 241	+ 239	+ 514	+ 309	+ 332
10 ,,	+ 384	+ 223	+ 475	+ 375	+ 207	+ 11	+ 285	+ 261	+ 218	+ 238	+ 453	+ 165	+ 275
11 ,,	+ 446	+ 259	+ 396	+ 291	, + 2 04	+ 5	+ 228	+ 177	+ 173	+ 204	+ 446	+ 281	+ 25 g
Noon	+ 449	+ 273	+ 385	+ 309	+ 226	+ 72	+ 172	+ 111	+ 153	+ 237	+ 547	+ 321	+ 271
1 ^h . p.m.	+ 455	+ 305	+ 409	+ 309	+ 203	+ 103	+ `164	+ 137	+ 237	+ 284	+ 560	+ 384	+ 296
2 "	+ 470	+ 378	+ 450	+ 338	+ 209	+ 104	+ 202	+ 151	+ 265	+ 311	+ 576	+ 398	+ 321
3,,	+ 429	+ 385	+ 386	+ 286	+ 183	+ 104	+ 135	+ 104	+ 231	+ 352	+ 532	+ 412	+ 29
4 "	+ 464	+ 403	+ 342	+ 261	+ 123	+ 131	+ 83	+ 81	+ 211	+ 381	+ 543	+ 449	+ 28
5 "	+ 467	+ 345	+ 393	+ 313	+ 233	+ 166	+ 73	+ 71	+ 232	+ 401	+ 549	+ 439	+ 30
6 "	+ 506	+ 421	+ 430	+ 335	+ 265	+ 241	+ 235	+ 138	+ 160	+ 469	+ 562	+ 417	+ 34
7 "	+ 542	+ 470	+ 523	+ 442	+ 310	+ 321	+ 290	+ 214	+ 371	+ 487	+ 569	+ 449	+ 41
8,,	+ 515	+ 499	+ 554	+ 511	+ 364	+ 351	+ 338	+ 333	+ 439	+ 495	+ 531	+ 479	+ 45
9 »°	+ 505	+ 434	+ 584	+ 509	+ 397	+ 410	+ 440	+ 418	+ 448	+ 462	+ 453	+ 466	+ 46
10 "	+ 508	+ 448	+ 567	+ 498	+ 420	+ 409	+ 527	+ 432	+ 420	+ 449	+ 426	+ 465	+ 46
II "	+ 469	+ 422	+ 511	+ 524	+ 416	+ 352	+ 425	+ 409	+ 394	+ 371	+ 443	+ 479	+ 435
Means -	+ 391	+ 316	+ 446	+ 397	+ 283	+ 253	+ 314	+ 241	+ 264	+ 321	+ 468	÷ 384	+ 340
Number of Days em- ployed -	. 1 1	11	10	17	20	16	12	19	12	17	9	11	

(lxxi)

- -				Monthly	Amount of Rai	n collected in eac	ch Gauge.		
188 <i>3,</i> MONTH.	Number of Rainy Days.	Self- registering Gauge of Osler's Anemometer.	Second Gauge at Osler's Anemometer.	On the Roof of the Octagon Room.	On the Roof of the Magnetic Observatory.	On the Roof of the Photographic Thermometer Shed.	Gauges p	partly sunk in t	he ground.
		No. 1.	No. 2.	No. 3.	No. 4.	No. 5.	No. 6.	No. 7.	No. 8.
		in.	in.	in.	in.	in,	in.	in,	in.
January	19	o •8 90	0 * 882	1 .195	1 •364	1 .000	1 .693	1 .643	1 .202
February	15	I •656	1 . 666	2 .014	2 . 328	2 .718	2 .888	2 • 798	2 .883
March	14	0.316	0.323	0 • 49 2	0.287	o•757	o •783	o <i>•</i> 704	o ·7 46
April	10	1 •296	1 .312	I •499	1 • 564	1 ·665	1 . 702	1 .641	1.650
Мау	9	1 187	I *249	1 * 440	1.21	1.010	1 .707	1 .602	1 .634
June	13	o •978	o•954	1 143	1 • 242	1 .326	1 .343	1 .511	· 1 ·276
July	16	1 .422	1.404	1 ·688	818.1	- 1 •932	1 ·998	1.811	1.914
August	10	o ·347	o •353	o •532	0.612	o •669	0 .709	0 ·62 6	o •675
September	17	2.607	2 .737	3.234	3.566	3.740	3.812	3.678	3.684
October	14	o •870	0.804	1.171	1 •406	1 •521	1 •594	1 *492	1 •550
November	21	1 .633	ı · 568	2 .185	2 .404	2.670	2 .844	2.743	2 .791
December	15	o •366	o •355	0.544	o •663	o •796	o •833	0 • 784	0 *800
Sums	173	13 .568	13.607	17 131	19 .075	21 .004	21 '909	20 •733	21 .310
Height of ground.	}	ft. in. 50.8	ft. in. 50.8	ft. in. 38.4	ft. in. 21.9	ft. in. IO.O	ft. in. 0. 5	ft. in. 0. 5	ft. in. 0. 5
surface above mean sea level.	}	^{ft. in.} 205. 6	^{ft. in.} 205. 6	ft. in. 193. 2	ft. in. 176.7	ft. in. 164. 10	ft. in. 155.3	ft, in. 155.3	ft. in. 155.3

AMOUNT OF RAIN COLLECTED IN EACH MONTH OF THE YEAR 1883.

ROYAL OBSERVATORY, GREENWICH.

OBSERVATIONS

LUMINOUS METEORS.

OF

1883.

GREENWICH MAGNETICAL AND METEOROLOGICAL OBSERVATIONS, 1883.

(lxxiv)

OBSERVATIONS OF LUMINOUS METEORS,

.

r

Month and 1883.	Day,	Greenwich Mean Solar Time.	Observer.	Apparent Size of Meteor in Star-Magnitudes.	Colour of Meteor.	Duration of Meteor in Seconds of Time.	Appearance and Duration of Train.	Length of Meteor's Path in Degrees.	No. for Refer- ence.
		hm s	1			8	1	, o	
					Bluish-white	0.3	None	5	I
anuary	16	10. I. O 10. 20. O	G. G.	2	Bluish-white	0.0	Slight	10	2
	"	10.20. 0		•					
arch	3	9. 20. 32	F.	2	Bluish-white	0.2	None	12	3
	,,	9.36.31	F.	I	Yellow	1.0	Slight	15	4 5
	"	10. 2.50	F.	1	Bluish-white	1.2	Slight	10	
	,,	10.32. 1	F.	2.	Bluish-white	1,0	None	10	6
	-	-			Bluish-white	o•5	Slight	15	-
pril	25	10.25. 0	G.	1	Bluish-white	0.8	Fine	10	7
	,,	10.30. 0	G. G.	< 1 2	Bluish-white	0.2	Train	7	9
	"	10.40. 0	, G .	2	DIUISH-WIIIte			· · ·	9
pril	30	10.32. 4	М.	2	Bluish-white	o*5	Slight	12	10
r		10. 38. 19	M.	2	Bluish-white	0.4	None	10	11
	,, ,,	10.51.13	M .	· · · 2 · ·	Bluish-white	o 5	Slight	10	12
	»» »»	10.54.8	М.	3	Bluish-white	0.3	None	6	13
		•			DL.1.1.1.1	- 1	Train	-	
ugust	8	g. 13. o	G.	. 1	Bluish-white		Train	7	14
	"	9.30.0	G.	1	Bluish-white Bluish	0'7 0'6	Slight	5	15
	"	10. 25. 21	G.	2 Turritor	Bluish-white	1.2	Splendid	25 to 30	17
	"	10. 55. 50	G. G.	Jupiter	Bluish-white	0.8	Fine	10	18
	"	11.27.10	G.	1 2	Bluish-white	0.2	Train		19
	"	11.30.5 11.32.20	G.	2 I	Bluish-white	0.8	Train	7	20
	"	11. 32. 20 11. 40. 0	G.	2	Bluish-white	0.2	None	6	21
	"	··· _T o. o							ł
ugust	9	9. 59. 6	М.	2	Bluish-white	0.3	None	75	22
-	"	10. 15. 35	M.	3	Bluish-white	0.3	None	8	23
	"	10.23. 0	M.	. 2	Bluish-white	0.2 0.8	Slight	10	24 25
	,,	10. 36. 17	M.	I	Bluish-white		Slight Train	10	26
	"	10.40.5	H.	1	White Bluish-white	I 0'7	Slight	8	27
/	"	10. 47. 21	М. Н.	2	Bluish-white	0.2	, Singitt	2	28
	"	10. 49. 25	н. М.	2 3	Bluish-white	0.4	None	5	29
	,,	10. 53. 56 10. 55. 35	H.	3	Bluish-white	0.4	None	3	30
	"		H.	3	White	• •	None	5	31
	"	10. 59. 10 11. 5. 51	H. & M.	Ţ	Yellow	1.0	Slight	8	32
	,, ,,	11. 11. 55	H. & M.	2 increasing to	Bluish-white	2	Train	12	33
	"			> 1.			T7!		2.
	,,	11.17. 2	H.	1 <	Bluish-white	2	Fine Fine	20 12	34 35
	"	11.20. 3	<u>М</u> .	1	Bluish-white	1.0	None	12	36
	,,	11. 24. 10	H.	3 3	Bluish-white Bluish-white	0°5	Slight	5	37
	"	11.36.50	Н. Н.	3 2	Bluish-white	•	None	5	38
	"	11.39.34	н. М.	1	Bluish-white	1.2	Very fine (re-	25	39
	*2	11. 40. 49		•			mained visible	}	
							about 1.58).		.
	,,	11.45. 0	н.	2	White	1	Train	10	40
	,,	11.51.43	н.	2 3	Bluish-white	0.2	None	5	41
	"	11. 52. 35	H.	3	Bluish-white	0.2		5	42
	"	11.55. O	Н.	3	Bluish-white	0.2	None	3	43
	,,	11.55. 0	<u>M</u> .	2.	Bluish-white	0.7	Slight	8 10	44
	"	11.57.55	H.	I <	Bluish-white	I	Train Fine	25	45 46
	,,	12. 4. 5	H.	1	White Bluich unbits	2 0.5	None	3	40
	"	12. 14. 45	H.	2	Bluish-white	0.2	None		47
	"	12.15.19	M.	2 3	Bluish-white Bluish-white	0.2	None	73	49
	"	12.18.35	Н. Н.	3	Yellow	1	Fine	10	50
	"	12.21. 0	н. М.	1 1	Bluish-white	0.8	None	10	51
	"	12.22.9 12.24.35	H.	I I	Bluish-white	0.2	Train	3	52
	"	12. 24. 35	H.	2	Yellow	0.2	None		53
	"	12. 29. 25	H.	1	Yellow	0.2	Train	6	54
	,,	12.40.39	M.	1	Yellow	0.8	Slight	12	55

August 8. Clouds very variable between $9\frac{1}{2}^h$ and $10\frac{1}{4}^h$, afterwards until 11^h the sky was generally free from cloud. From 11^h until 13^h 20^m the amount of cloud was small, but after 11^h 40^m no further meteors were seen.

.

13

lo. for Refer-	Path of Meteor through the Stars.			
ence.				
e i				
1 2	From near α Orionis moved towards γ Orionis. Appeared near Aldebaran, and shot across and disappeared a little below α Ceti.	•	:	:
3	From a few degrees above Aldebaran moved towards γ Persei.	•	i	
4 5 6	From ζ Ursæ Majoris shot across β Canum Venaticorum. From a little above Capella moved towards a point a few degrees above β Persei. From near Pollux moved towards Procyon.		н, 1	
7 8	From direction of Polaris passed midway between Capella and Castor. Passed between ϵ and δ Virginis from direction of ζ Boötis. Passed across ϵ and ρ Boötis.			
9	Appeared near δ Draconis and disappeared a little to the right of ι Cephei.			
10 11 12 13	From a point near β Lrsæ Majoris passed across and disappeared beyond β Ursæ Minoris. From a point near β Leonis passed between and disappeared beyond Regulus and η Leonis From a point near Polaris disappeared a little beyond γ Cephei.	•		
14	From direction of o Ursæ Majoris passed above µ Ursæ Majoris towards horizon.			
15 16 17	From direction of ϵ Cassiopeiæ moved towards α Ursæ Majoris. Passed across ζ Ursæ Majoris towards horizon nearly at right angles to line joining ζ and Appeared near γ Draconis passed across β Herculis towards horizon.	ε Ursæ Majoris.	•	
18	From near η Draconis disappeared near α Coron \mathfrak{B} . Appeared near β Ursæ Majoris passed between β and γ Boötis moving towards ϵ Boötis.			
19 20 21	Shot from a point near β Cassiopeiæ towards α Cygni. From direction of α Lyræ towards α Ophiuchi.	-		
22	From a point midway between β and γ Trianguli disappeared near α Trianguli.			
23 24	From near η Pegasi to β Pegasi. Appeared near β Cassiopeiæ disappeared near δ Cassiopeiæ.			
25 26	Appeared near α Pegasi disappeared near γ Aquarii. From direction of α Persei shot across θ Ursæ Majoris.		•	
27	From a point near β Pegasi to a point near α Pegasi.			
28 29	From β Camelopardali towards β Aurigæ. From near β Pegasi towards μ Pegasi.			
30 31	From a point 2° above β Arietis towards η Piscium. From a point about 3° above γ Pegasi towards α Trianguli.			
32	From direction of γ Persei across a point 3° below β Andromedæ.			
33	From direction of a point 1° below γ Persei passed midway between γ Andromedæ and β	Frianguli, curved	path.	
34 35	From λ Draconis passed 2° above η Ursæ Majoris. From direction of β Camelopardali disappeared a few degrees to right of o Ursæ Majoris.			
36	Appeared near i Ursæ Majoris disappeared 3° below β Ursæ Majoris. From a point 1° above γ Persei towards γ Andromedæ.	ÿ	•	
37 38	From direction of α Cassiopeiæ across β Pegasi.			
39	Appeared near β Ursæ Minoris passed across and disappeared a little below ϵ Ursæ Major	is.		
	From y Andromedæ towards a Trianguli.			
40 4 I	From direction of α Persei moved from the Pleiades towards horizon.			
12 13	From α Arietis towards β Andromedæ. From direction of α Persei across α Arietis.			
	Appeared near γ Persei disappeared about 4° below γ Andromedæ.			
	From direction of ϵ Cassiopeiæ across Polaris. Shot across β Persei and ϵ Arietis.			
T - 1	From a point 2° above α Persei towards γ Andromedæ.			
10	From direction of α Persei passed across β Persei. From direction of a point about 3° above α Ursæ Majoris across δ Ursæ Majoris.		•	
	From direction of a point midway between α and γ Pegasi across ψ^2 Aquarii.			
51 52	From direction of Capella moved towards and disappeared near , Aurigæ. From a point 2° above α Persei moved towards Polaris.			
53	From direction of a Persei across , Aurigæ.			
54	From direction of a point 2° above the Pleiades passed across \circ Tauri. From direction of α Persei passed across Capella.			
55	From differion of a x orber pubbed derobe expense			

(lxxv)

(lxxvi)

.

OBSERVATIONS OF LUMINOUS METEORS,

Month and 1883.	Day,	Greenwich Mean Solar Time.	Observer.	Apparent Size of Meteor in Star Magnitudes.	Colour of Meteor.	Duration of Meteor in Seconds of Time.	Appearance and Duration of Train.	Meteor's Path in Degrees.	No. for Refer- ence.
		h m s				8		0	
August	9	12.41.25	H.	2		0.2	Train	5	I
ragan	9 "	12. 43. 25	H.	1	Bluish-white	I	Train	10	2
	,, ,,	12.46. 5	H.	I	White	I	Train	10	3
	"	12.46.23	М.	2	Bluish-white	0.6	None	8	4 5
	"	12.47.1	M .	I	Bluish-white	0.2	Train	10	5
	>>	12.47.55	H.	> I	Yellow	· • •	None	1 .:	6
	>>	12.49.25	H .	2	Yellow	0.2	None	5	7
	"	12.50.5	H.	2	Bluish-white	0.3	Fine	15	
	**	12. 52. 30	<u>M</u> .	> 1	Yellow Bluish-white	,1.0	Train	10	9 10
	"	13. 6. 5	H.	I	Bluish-white	и 0°5	None	7	10
	"	13. 6.56	М. Н.	2	Diuisn-winte	I	TIONO	10	12
	"	13.11. 5	н. М.	1 1	Yellow	0.8	 Fine	10	13
	"	13. 11. 54 13. 13. 56	M. M.	I	Bluish-white	0.2	Slight	10	14
	"	13. 21. 35	H.	I	White	0.2	Train	5	15
	>> >>	13. 23. 49	M.	2	Bluish-white	0.2	None	8	16
August	IO	10. 54. 35	G.	1	Bluish-white	·0.6	Slight	7	17
august		10. 54. 55	G.	2	Bluish-white	0'7	Train	6	18
	"	10. 58. 25	G.	2	Bluish-white	0.8	Train	12	19
	* *	11. 5.25	Ğ.	1	Bluish-white	0'7	Slight	10	20
	,, ,,	11.16. 0	G.	3	Bluish-white	0.4	None	8	21
•	"	11.18. 5	G .	2	Bluish-white	0.6	Slight	7	22
	,, ,,	11.20. 0	G .	3	Bluish-white	. o•5	Slight	7	23
	"	11.30.5	G.	I	Bluish-white	0.0	Fine	12	24
	"	11.31.45	G .	I	Bluish-white	0.7	Train None	9	25 26
	,,	11.37. 5	G .	3	Bluish-white	o•5	Slight	5	
	"	11.38.15	G.	2	Bluish-white Bluish-white	°*4 °*5	Train	5	27 28
	"	11.45. 5	H.	I Tuniton	Bluish-white	1.2	Very Fine	45	29
	" "	11.46.20 11.50.5	G. G.	Jupiter 1	Bluish-white	0.8	Fine	30	30
A			G.	, I	Bluish-white	0.6	Train	25	31
August	11	9. 27. 21 9. 51. 16	G.	2	Bluish-white	I 0.8	Slight	15	32
	"	9. 58. 34	G.	3	Bluish-white	o*5	Slight	7.	33
	>7	10. 6. 2	Ğ.	3	Bluish-white	0.4	Slight	5	34
	"	10. 7.54	M .	2	Bluish-white	0.6	None	10	35
	"	10. 9. 6	G .	3	Bluish - white	ంట	Train	6	36
	\$ 9	10.12.13	M .	2	Bluish-white	0'7	Slight	12	37
	" "	10. 17. 43	M.	3	Bluish-white	0'4	None	8	38
	"	10. 22. 28	G.	> 1	Bluish-white	0.0	None	7	39
	"	10.59. 8	G .	Jupiter	Bluish-white	0.8	Fine Train		40
	"	11. 1. 0	M .	2	Bluish-white	0.8	Train	12	41
	"	11. 2.54	M.	1	Bluish-white Bluish-white	0'7 1'0	Fine	28	42 43
	,,	11. 6.36	G.	I	Bluisn-white	0.6	Slight	20	40
	"	11.11.25	G.	1	Bluish-white	0.6	Slight	10	45
	"	11.11.59	М. G.	2 2	Bluish-white	0.2	Train	20	46
	"	11.18.16	G. M.	2	Bluish-white	1.0	Train	15	47
	"	11. 19. 28 11. 22. 36	м. G.	1	Bluish-white	0'7	Train	15	48
	"	11. 22. 30 11. 23. 14	М.	2	Bluish-white	0.6	None	10	49
	**	11. 25. 34	M. M.	2	Bluish-white	o*5	None	8	50
	***	11. 25. 59	G.	2	Bluish-white	0.6	Train	8	51
	57 57	11.28.58	Ğ.	1	Bluish-white	0.8	Fine	20	52
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	11. 28. 58	M.	2	Bluish-white	0.8	Slight	15	53
	,, ,,	11. 32. 16	G.	1 I	Bluish-white	0.8	Fine	15	54 55
	,, ,,	11. 33. 35	М.	2	Bluish-white	0.6	None Train	10	50
	"	11.36.36	G.	2	Bluish-white	0.7	Slight	10	50
	"	11. 38. 25	M .	2	Bluish-white	o [•] 5 o•8	Fine	10	58
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	11. 40. 16	G.	I	Bluish-white Yellow	0'8 0'9	Train	15	59
	5 3	11.41.23	M.	1	Bluish-white	0.3	None		60
	"	11. 47. 0 11. 52. 56	M. M.	3	Bluish-white	0.5	Slight	12	61
	**	11. 52. 50		-		1	_	1	<u> </u>
						•			

No. for	
Refer-	Path of Meteor through the Stars.
ence.	
1 2	From direction of δ Persei across . Aurigæ. From direction of κ Draconis passed midway between β and γ Ursæ Majoris.
3	Appeared 1° above β Ursæ Majoris disappeared 2° below γ Ursæ Majoris.
	From direction of the Pleiades disappeared near Aldebaran.
4 5	From near Capella disappeared below θ Aurigæ. [Persei
6	From direction of a point 2° to left of Pleiades moved towards horizon on the prolongation of a line joining that point and a Path similar to that of preceding meteor.
78	From direction of a point midway between α and δ Persei across the Pleiades.
9	From direction of κ Draconis passed midway between β and γ Ursæ Majoris.
10	From direction of a point 1° above α Persei disappeared near β Ursæ Majoris.
11 12	From direction of ۲ Ürsæ Majoris disappeared about 3° about ۶ Ursæ Majoris. From direction of Polaris shot across ، Draconis.
13	From α Urs ∞ Majoris passed across β Urs ∞ Majoris.
14	From direction of ϵ Aurige passed midway between β and ν Aurige.
15	From direction of γ Persei across β Arietis.
16	From direction of the Pleiades disappeared near Aldebaran.
17	From near β Ursæ Minoris towards η Draconis.
18	Appeared near α Persei and disappeared near β Camelopardali.
19	From a point about midway between β and γ Ursæ Minoris towards β Boötis.
20 21	From near β Cephei towards γ Draconis. Appeared near δ Ursæ Majoris and disappeared a little above α Canum Venaticorum.
22	From near β Cassiopeiæ towards α Cephei.
23	From near « Draconis to , Draconis.
24	Shot from near α Draconis and disappeared at a point between β and γ Boötis. Shot from a point about midway betweeen β and γ Persei towards Polaris.
25 26	From β Persei towards Aries. Sky too misty to trace stars.
27	A bright meteor. From β Persei towards Aries, but the stars were not visible on account of mist.
28	Appeared near a point about 2° to left of α Aquilæ and passed between α and β Aquilæ.
29 30	Shot from Polaris and disappeared a little below and to west of α Lyræ. From γ Cygni to α Aquilæ.
30	riom / Ofen io m reduint
31	From near 7 Ursæ Majoris towards Arcturus.
32	Shot from a point about midway between γ and δ Ursæ Majoris towards α Canum Venaticorum. From near α Andromedæ to a point about midway between α and γ Pegasi.
.33 34	Shot from a point about midway between β and γ Ursæ Majoris and disappeared a little above χ Ursæ Majoris.
35	From direction of ζ Pegasi towards θ Pegasi.
36	From near 1 Ursæ Majoris towards 4 Ursæ Majoris.
37	Appeared near α Persei passed across and disappeared beyond δ Persei. Appeared near α Lyr α and moved towards 99 Herculis.
38 39	Appeared near Capelia and disappeared near β Aurigæ.
40	Shot from a point midway between Arcturus and e Boötis towards horizon.
4I	From direction of β Andromedæ moved towards α Arietis.
42	Appeared near α Andromedæ, moved towards and disappeared about 3° to left of γ Pegasi. From near γ Cassiopeiæ to Polaris.
43 44	Moved from a Sagittæ to 111 Herculis.
45	Appeared near α Ursæ Majoris and disappeared a little beyond β Ursæ Majoris.
46	Moved from a point about midway between α and γ Persei, towards Capella. From direction of α Persei disappeared below ϵ Persei.
47	From a Infection of a Persel disappeared below ϵ Persel. From a Andromedæ towards a Pegasi.
48 49	From direction of β Trianguli moved towards α Arietis.
49 50	Appeared near α Ursæ Majoris and passed midway between β and γ Ursæ Majoris. [Ursæ Majoris.]
51	Moved from a point about midway between α and β Urse Majoris and disappeared at a point about midway between γ and δ Shot from β Persei towards the Pleiades.
52 53	From direction of β Pegasi disappeared about 3° to left of 70 Pegasi.
54	Moved from a point about midway between α and γ Cassiopeiæ towards γ Persei.
55 56	From direction of β Ursæ Minoris moved towards κ Draconis.
56 57	Appeared near λ Draconis and disappeared near γ Ursæ Majoris. From near α Persei passed across β Persei.
57 58	Moved from a point midway between α Andromedæ and γ Pegasi towards a point about 5° to left of a Pegasi.
59 60	Appeared near ϵ Cassiopeiæ and disappeared about 2° to the left of γ Persei.
60 61	From direction of β Cassiopeiæ towards α Cassiopeiæ. Appeared near α Andromedæ and moved towards γ Pegasi.
D1	Appeared near a minimum and moved towards y r egast.

(lxxvii)

(lxxviii)

OBSERVATIONS OF LUMINOUS METEORS,

Month and 1883.	Day,	Greenwich Mean Solar Time.	Observer.	Apparent Size of Meteor in Star-Magnitudes.	Colour of Meteor.	Duration of Meteor in Seconds of Time.	Appearance and Duration of Train.	Length of Meteor's Path in Degrees.	No. fo Refer- ence.
		1				• 8		0	
		h m s			Bluish-white	0.6	Train	7.,	1
August	11	11.55.51	G. M.	2 . > 1	Bluish-white	1.0	Fine: 2 ⁸	20	2
	"	11. 56. 49 11. 57. 59	G.	1	Bluish-white	0.1	None	10	3
	"	11.59.5	G.	I	Bluish-white	0.6	Train	12	4
	"	12. 4.13	<u>М</u> .	I	Bluish-white	0.2	Train	10	4 5
	"	12. 5. 6	G.	I	Bluish-white	0.8	Train	10	6
	>> >>	12. 23. 49	G .	2	Bluish-white	,0.6	Slight	10	7
	,,	12. 24. 22	M .	2	Bluish-white	0.6	Train	10	8
	"	12.26.36	G .	I	Bluish-white	0.2	Fine	7	9
	"	12. 27. 20	M .	2	Bluish-white	0.6	Slight	10 6	IO
	"	12.27.41	G.	· I	Bluish-white	0.6 0.2	None Train	5	II 12
	"	12.29.11	G.	I	Bluish-white	0°5 1°2	Fine	18	13
	"	12.30. I	M .	I	Yellow Bluish-white	0.8	Fine; 1 ^s	10	14
	"	12.32.12	G.	I	Bluish-white	0.7	Train	7	15
	"	12.36. 1	G. G.	I	Bluish-white	0.8	Fine	10	16
	"	12.38.58	М.	I	Blue	0.8	Train	12	17
	"	12. 40. 2 2 12. 42. 41	G.	I	Bluish-white	0.7	None	15	18
	"	12. 42. 41	<u>м</u> .	2	Bluish-white	o•5	Slight	10	19
	"	12. 53. 24	M.	2	Bluish-white	0.2	None	. 8	20
	"	12, 55, 26	G.	2	Bluish-white	0.8	Train	•••	21
	"	12.57.6	G.	2	Bluish-white	0.2	Train	8	22
	"	12. 57. 11	G.	2	Bluish-white	0.1	None	6	23
	"	12. 57. 58	M .	2	Bluish-white	0.2	None	8	24
	"	12.58.12	M .	3	Bluish-white	0.4	None Train	15	25 26
	,,	12. 58. 40	M .	I	Bluish-white	1.0	Splendid; 10°	25	
	,,	13. 2. 1	G.	> 1	Bluish-white	1.2	visible for 2 ^s .	20	27
		~ ~ ~		_	Bluish-white	0.8	Fine	12	28
	"	13. 4. 52	M.	I	Bluish-white	0.2	Slight	8	29
	"	13.10.1	M. G.	2 I	Bluish-white	0.8	Fine		30
	"	13. 13. 21 13. 16. 20	G.	1 2	Bluish-white	0.2	None	96	31
	"	13. 16. 20	M.	3	Bluish-white	0.3	None	6	32
	"	13. 17. 59	G.	Ĩ	Bluish-white	· 0•7	Train	15	33
	"	13. 22. 22	G.	2	Bluish-white	0.7	Train	75	34
	"	13. 22. 45	M.	3	Bluish-white	0.5	None		35
	>>	13. 25. 10	M.	I	Blue	1.0	• Fine	25	36
	,	13. 25. 56	G.	2	Bluish-white	0.6	None	7	37
	"	13. 26. 46	G.	2	Bluish-white	0.2	Train	20	38
	,,	13. 29. 8	G.	I	Bluish-white	0.8	Train	15	39
	,,	13. 29. 10	M .	2	Bluish-white	0.8	Train Fine	12	40
	"	13. 35. 29	M.	s; I	Blue Dhich	1·3 0·6	Train	20 10	41
	,,	13.35.55	G.	2	Bluish-white		None	8	42 43
	"	13. 37. 36	G.	2	Bluish-white Bluish-white	0°7 1°5	Fine	25	40
	"	13. 38. 47	M. M.	> I 2	Bluish-white	0.7	Slight	IÓ	44
	" "	13. 38. 59 13. 3 9. 23	G.	Z I	Bluish-white	0.8	Train		46
					Bluish-white	0.6			47
August	13	9. 45. 35	G.	3	Bluish-white	0.2		12	47
	"	11.29.5	M.	2	Bluish-white	0.2	Train	14	49
	,	11. 30. 51	G. M.	2 3	Bluish-white	0.4		8	50
	"	11. 37. 25 11. 39. 20	H.	2	Bluish-white	0.2	None	10	51
	"	11. 39. 20	н. Н.	23	Bluish-white	0.5	None	5	52
	? ?	11. 53. 4	G.	2	Bluish-white	0.6	Slight	' 8	53
	>> •1	11. 53. 37	M.	2	Bluish-white	0.6		10	54
	>> >>	11. 57. 21	M.	3	Bluish-white	o [.] 5	AR .	8	55
October	6	9. 3. 29	N.	> Venus	Brilliant white	3 to 4	Magnificent	60	56
0.00000		9. 45. 7	G.	J Venus	Bluish-white	I	Train	8	57
	>> >>	10. 19. 34	G.	I	Bluish-white	0.8	Slight	40	58
	.,	10. 39. 37	G.	i	Bluish-white	0.6	Train	10	59

August 11. The meteors were numerous. The observers judged that there were as many more meteors seen as were noted, the paths of which, from the rapidity of their appearance, could not be observed.

3 From near β Persei to α Arietis. 4 Moved from γ Andromedæ and diss 5 From direction of ε Persei passed r 6 From β to γ Ursæ Majoris. 7 From near β Arietis to ε Piscium. 8 From near β Arietis to ε Piscium. 9 Moved from Capella to β Aurigæ. 10 From direction of β Andromedæ pa 11 From β Trianguli to α Arietis. 12 Moved from α to β Persei. 13 Appeared near ε Persei and disappe 14 Moved from a point midway between 15 Moved from a bout midway between 16 From α Aquilæ towards 2 Aquilæ. 17 From direction of the Pleiades tow 18 From a little below ζ Persei to Sat 19 From a point about 2° to right of α 20 From capella to a little below β Aurigæ. 21 From Capella to a little below β Aurigæ 22 From Capella to a little below β Aurigæ 23 From Capella to a little below β Aurigæ 24 Shot from Capella to a little below β Aurigæ 25 From direction of α Persei towardæ 26 From near the Pleiades passed across 27 From a point midway between β A	Path of Meteor through the Stars.	
2 Appeared near Capella and passed 3 From near β Persei to α Arietis. 4 Moved from γ Andromedæ and diss 5 From direction of ϵ Persei passed 1 6 From β to γ Ursæ Majoris. 7 From near β Arietis to ϵ Piscium. 8 From near β Arietis to ϵ Piscium. 9 Moved from Capella to β Aurigæ. 10 From β Trianguli moved tow; 9 Moved from α to β Persei. 13 Appeared near ϵ Persei and disapped 14 Moved from a point midway between 15 Moved from a point midway between 16 From α Aquilæ towards 2 Aquilæ. 17 From direction of β Cygni towards 19 From a little below ζ Persei to Sat 19 From a little below ζ Persei to Sat 10 From a point about 2° to right of α 20 From direction of β Cygni towards 21 From capella to a little below β Aurigg 25 From direction of α Persei towards 26 From capella to a little below β Aurigg 25 From direction of ζ Ursæ Majoris 26 From a point about midway between 27 From a point about midway between 28 From direction of ζ Ursæ Majoris 29 From a point about midway between 30 From a point about midway between 31 From a point about midway between 32 From direction of α Persei towards 33 From a cont about midway between 34 From near β Aquilæ to δ Aquilæ. 35 From a noint about midway between 36 From α Andromedæ to α Pegasi. 37 From a little below γ Ursæ Majoris 38 From near β Aquilæ to δ Aquilæ. 39 From a cont about midway between 30 From a cont about midway between 31 From direction of α Pegasi towards 32 From direction of α Pegasi. 33 From near β Aquilæ to δ Aquilæ. 34 From near β Aquilæ to δ Aquilæ. 35 From capella to horizon. 36 From direction of β Pegasi towards 47 From direction of α Presei towards 40 Appeared near β Aurigæ and move 47 From direction of α Ursæ Majoris 51 From direction of α Ursæ Majoris 52 From direction of α Ursæ Majoris 53 Moved from direction of α Ursæ Majoris 54 Moved from direction of α Persei moved is 55 From direction of α Persei moved is 5	•	
2 Appeared near Capella and passed 3 From near β Persei to α Arietis. 4 Moved from γ Andromedæ and diss 5 From direction of ϵ Persei passed 1 6 From β to γ Ursæ Majoris. 7 From near β Arietis to ϵ Piscium. 8 From near β Arietis to ϵ Piscium. 9 Moved from Capella to β Aurigæ. 10 From β Trianguli moved tow; 9 Moved from α to β Persei. 13 Appeared near ϵ Persei and disapped 14 Moved from a point midway between 15 Moved from a point midway between 16 From α Aquilæ towards 2 Aquilæ. 17 From direction of β Cygni towards 19 From a little below ζ Persei to Sat 19 From a little below ζ Persei to Sat 10 From a point about 2° to right of α 20 From direction of β Cygni towards 21 From capella to a little below β Aurigg 25 From direction of α Persei towards 26 From capella to a little below β Aurigg 25 From direction of ζ Ursæ Majoris 26 From a point about midway between 27 From a point about midway between 28 From direction of ζ Ursæ Majoris 29 From a point about midway between 30 From a point about midway between 31 From a point about midway between 32 From direction of α Persei towards 33 From a cont about midway between 34 From near β Aquilæ to δ Aquilæ. 35 From a noint about midway between 36 From α Andromedæ to α Pegasi. 37 From a little below γ Ursæ Majoris 38 From near β Aquilæ to δ Aquilæ. 39 From a cont about midway between 30 From a cont about midway between 31 From direction of α Pegasi towards 32 From direction of α Pegasi. 33 From near β Aquilæ to δ Aquilæ. 34 From near β Aquilæ to δ Aquilæ. 35 From capella to horizon. 36 From direction of β Pegasi towards 47 From direction of α Presei towards 40 Appeared near β Aurigæ and move 47 From direction of α Ursæ Majoris 51 From direction of α Ursæ Majoris 52 From direction of α Ursæ Majoris 53 Moved from direction of α Ursæ Majoris 54 Moved from direction of α Persei moved is 55 From direction of α Persei moved is 5	β Ursæ Majoris.	
3From near β Persei to α Arietis.4Moved from γ Andromedæ and diss5From direction of ε Persei passed r6From β to γ Ursæ Majoris.7From near β Arietis to ε Piscium.8From near β Arietis to ε Piscium.9Moved from Capella to β Aurigæ.10From direction of β Andromedæ pa11From β Trianguli to α Arietis.12Moved from a to β Persei.13Appeared near ε Persei and disappe14Moved from a point midway betwee15From direction of the Pleiades tow16From a point about z° to right of α17From a point about 2° to right of α18From a point about 2° to right of α20From a Persei to γ Andromedæ.21From capella to a little below β Au22From Capella to a little below β Au23From Capella to a little below β Au24Shot from Capella towards β Aurig25From a point about midway betwee26From a point about midway betwee27From a point about midway betwee28From a point about midway betwee29From a point about midway betwee31From a a Andromedæ to a Pegasi.35From a cat β Aquilæ to a Aquilæ.36From a cat β Aquilæ to a Aquilæ.37From a cat β Aquilæ to a Aquilæ.38From care β Aquilæ to a Aquilæ.39From a cat β Aquilæ to a Aquilæ.31From a cat bræ to wards κ Lyræ32From nea	across and disappeared below θ Aurigæ.	
5From direction of ε Persei passed π6From β to γ Ursæ Majoris.7From near β Arietis to ε Piscium.8From near β Trianguli moved tow.9Moved from Capella to β Aurigæ.10From β Trianguli to α Arietis.11From β Trianguli to α Arietis.12Moved from a to β Persei.13Appeared near ε Persei and disappe14Moved from about midway between15Moved from about midway between16From α Aquilæ towards 2 Aquilæ.17From direction of the Pleiades tow18From a point about 2° to right of α20From a point about 2° to right of α21From a Persei to γ Andromedæ.23From Capella to a little below β Au24Shot from Capella to a little below β Au25From larection of α Persei towards26From capella to al little below β Au27From a point midway between28From direction of ζ Ursæ Majoris29From a point about midway between20From a point about midway between21From a point about midway between22From a point about midway between23From a point about midway between24Shot from Capella to a little below β Au25From a point about midway between26From a direction of ζ Ursæ Majoris27From a point about midway between28From direction of ζ Pegasi towards29From near β Aquilæ30<		
6 From β to γ Ursæ Majoris. 7 From near β Arietis to ε Piscium. 8 From near β Trianguli moved town 9 Moved from Capella to β Auriges. 10 From direction of β Andromedæ pi 11 From β Trianguli to α Arietis. 12 Moved from α to β Persei. 13 Appeared near ε Persei and disappe 14 Moved from a point midway between 15 Moved from about midway between 16 From α Aquilæ towards 2 Aquilæ. 17 From direction of the Pleiades tow 18 From a little below ζ Persei to Sat 19 From a point about 2° to right of α 20 From direction of β Cygni towards 21 From a point about 2° to right of α 22 From direction of β Cygni towards 23 From Capella to a little below β Aurig 24 Shot from Capella to a little below β Aurig 25 From direction of α Persei towards 26 From direction of α Persei towards 27 From a point midway between β A 28 From direction of ζ Ursæ Majoris 29 From direction of ζ Ursæ Majoris 20 From a point midway between 30 From a point about midway between 31 From a point about midway between 32 From a point about midway between 33 From a zout midway between 34 From direction of α Pegasi towards 35 From near α Lyræ towards horizon. 36 From near β Aquilæ to δ Aquilæ. 37 From near β Aquilæ to δ Aquilæ. 38 From near β Aquilæ to δ Aquilæ. 39 From near β Drianguli to γ Pegasi. 40 From α to δ Aquilæ. 41 From direction of β Pegasi towards 42 From direction of β Pegasi passed it 43 From direction of β Pegasi passed it 44 Appeared near β Andromedæ and des 45 From direction of α Ursæ Majoris 46 From direction of α Ursæ Majoris 51 From direction of α Ursæ Majoris 52 From direction of α Ursæ Majoris 53 From direction of α Ursæ Majoris 54 Appeared near β Andromedæ and des 55 From direction of α Drase Majoris 56 From direction of α Drase Majoris 57 From direction of α Drase Majoris 58 From direction of α Drase i moved 59 Moved from direction of α Ursæ Majoris 50 From direction of α Drase i moved 51 Moved from direction of α	ppeared near α Arietis.	
7From near β Arietis to ε Piscium.8From near β Trianguli moved town9Moved from Capella to β Aurigæ.10From β Trianguli to α Arietis.11From β Trianguli to α Arietis.12Moved from α to β Persei.13Appeared near ε Persei and disapped14Moved from about midway between15Moved from about midway between16From α Aquilæ towards 2 Aquilæ.17From direction of the Pleiades tow18From a point about 2° to right of α19From a point about 2° to right of α20From direction of β Cygni towards21From capella to a little below β Aurigg25From Capella to a little below β Aurigg26From capella to a little below β Aurigg27From a point about midway between28From capella to a little below β Aurigg29From direction of α Persei towards20From a point about midway between21From direction of ζ Ursæ Majoris22From a point about midway between23From a point about midway between24Shot from capella to a little below γ Ursæ Majoris25From a point about midway between26From a and the pleiades moved tow27From a co f α Persei towards28From direction of α Pegasi towards29From a co f α Aquilæ29From a co f α Aquilæ29From a co f α Aquilæ30From a co f α Aquilæ31From	aldway between \circ and ζ Persei.	
8From near β Trianguli moved town9Moved from Capella to β Aurigæ.10From direction of β Andromedæ pr11From β Trianguli to α Arietis.12Moved from α to β Persei.13Appeared near ε Persei and disappel14Moved from about midway between15Moved from about midway between16From α Aquilæ towards 2 Aquilæ.17From direction of the Pleiades tow18From a point about 2° to right of α19From a point about 2° to right of α20From Capella to a little below β Aries21From Capella to a little below β Aries22From Capella to a little below β Aries23From Capella to a little below β Aries24Shot from Capella to a little below β Aries25From direction of α Persei towards26From a point midway between β A27From a point about midway between28From direction of ζ Ursæ Majoris29From a point about midway between31From a andromedæ to α Pegasi.35From direction of α Pegasi towards36From a andromedæ to α Pegasi.37From a a the Pleiades moved tow38From near β Aquilæ.39From a co δ Aquilæ.30From a co δ Aquilæ.31From a co δ Aquilæ.35From near β Aquilæ.36From near β Aquilæ.37From a co δ Aquilæ.38From near β Aquilæ.39From a co δ Aquilæ		
9 Moved from Capella to β Aurige. 10 From direction of β Andromedæ priferom β Trianguli to α Arietis. 11 From β Trianguli to α Arietis. 12 Moved from α to β Persei. 13 Appeared near ϵ Persei and disapper 14 Moved from about midway between 15 Moved from about midway between 16 From α Aquilæ towards 2 Aquilæ. 17 From direction of the Pleiades tow 18 From a little below ζ Persei to Sat 19 From a point about 2° to right of α 20 From direction of β Cygni towards 21 From near β Tauri to horizon. 22 From Capella to a little below β Aurig 25 From Capella to a little below β Aurig 26 From direction of α Persei towards 27 From a point about midway between 28 From direction of α Persei towards 29 From direction of ζ Ursæ Majoris 29 From a point midway between β A 28 From direction of ζ Ursæ Majoris 29 From a point about midway betweed 30 From a little below γ Ursæ Majoris 31 From a little below γ Ursæ Majoris 32 From a little below γ Ursæ Majoris 33 From α Andromedæ to α Pegasi. 34 From near β Aquilæ to δ Aquilæ. 35 From near α Lyræ towards κ Lyræ 36 From near β Aquilæ to δ Aquilæ. 37 From a to δ Aquilæ. 38 From near α Lyræ towards κ Lyræ 39 From near β Aquilæ. 39 From near β Pegasi towards 41 From direction of α Pegasi towards 42 From direction of α Persei towards 43 From direction of α Persei towards 44 Appeared near β Andromedæ and to 45 From direction of α Persei towards 46 Appeared near β Andromedæ and to 47 From direction of α Ursæ Minoris 48 Moved from direction of α Ursæ Minoris 49 Moved from direction of α Ursæ Minoris 50 From direction of α Persei and move 51 From direction of α Andromedæ pegasi 52 From direction of α Persei and disapp 53 From direction of α Trianguli mov 54 Appeared near γ Persei and disapp 55 From direction of α Trianguli mov 56 Approximately from direction of C 57 From β Cephei to κ Draconis. 58 From a few degrees above ζ Ursæ	ards α Arietis.	
10From direction of β Andromedæ pa11From β Trianguli to α Arietis.12Moved from a to β Persei.13Appeared near ε Persei and disappe14Moved from about midway between15Moved from about midway between16From a Aquilæ towards 2 Aquilæ.17From direction of the Pleiades tow18From a little below ζ Persei to Sat19From a point about 2° to right of a20From direction of β Cygni towards21From capella to a little below β Au22From Capella to a little below β Au23From direction of a Persei towards24Shot from Capella towards β Aurig25From direction of a Persei towards26From direction of ζ Ursæ Majoris27From a point about midway between β A28From direction of ζ Ursæ Majoris29From a little below γ Ursæ Majoris29From a to a Aquilæ30From a co δ Aquilæ31From near β Aquilæ to δ Aquilæ.35From near β Aquilæ to δ Aquilæ.36From near β Aquilæ37From near β Aquilæ38From near β Aquilæ.39From near β Aquilæ.30From near β Aquilæ.31From near β Aquilæ.32From near β Aquilæ. <td></td> <td></td>		
12Moved from a to β Persei.13Appeared near ε Persei and disappe14Moved from a point midway between16From a Aquilæ towards 2 Aquilæ.17From direction of the Pleiades tow18From a point about 2° to right of a19From a point about 2° to right of a20From near β Tauri to horizon.21From capella to a little below β Aurig23From Capella to a little below β Aurig24Shot from Capella to a little below β Aurig25From direction of a Persei towards26From near the Pleiades passed acr27From a point about midway between β A28From direction of ζ Ursæ Majoris29From a point about midway between30From a point about midway between31From a point about midway between32From near β Aquilæ to δ Aquilæ.33From near β Aquilæ to δ Aquilæ.34From near β Aquilæ.35From near β Aquilæ.36From near β Aquilæ.37From a to δ Aquilæ.38From direction of α Persei towards41From direction of α Persei towards42From direction of α Persei towards43From a to δ Aquilæ.44From direction of α Persei towards45From direction of α Persei towards46From direction of α Persei towards47From direction of α Persei towards48From direction of α Persei towards49From direction of α P	ssed midway between α and β Trianguli.	
13Appeared near ϵ Persei and disapped14Moved from a point midway betweed15Moved from about midway betweed16From α Aquilæ towards 2 Aquilæ.17From direction of the Pleiades tow18From a point about 2° to right of α 20From direction of β Cygni towards21From capella to a little below β Aurig22From Capella to a little below β Aurig23From Capella to a little below β Aurig24Shot from Capella towards β Aurig25From direction of α Persei towards26From direction of α Persei towards27From a point about midway between28From direction of ζ Ursæ Majoris29From a point about midway betweed30From a point about midway betweed31From a little below γ Ursæ Majoris32From a little below γ Ursæ Majoris33From a Andromedæ to α Pegasi.34From near β Aquilæ to δ Aquilæ.35From near β Aquilæ to δ Aquilæ.36From near β Aquilæ.37From a to δ Aquilæ.38From γ Draconis to ϵ Herculis.39From direction of β Pegasi towards41From direction of β Pegasi towards42From direction of β Pegasi towards43From γ Draconis to ϵ Herculis.44From direction of β Pegasi towards45From direction of α Persei towards46Appeared near β Andromedæ and α <t< td=""><td></td><td></td></t<>		
14Moved from a point midway between15Moved from about midway between16From a Aquilæ towards 2 Aquilæ.17From direction of the Pleiades tow18From a little below ζ Persei to Sati19From a point about 2° to right of a20From direction of β Cygni towards21From a Persei to γ Andromedæ.23From Capella to a little below β Aurig24Shot from Capella to a little below β Aurig25From direction of a Persei towards26From near the Pleiades passed acros27From a point about midway between β A28From direction of ζ Ursæ Majoris29From a point about midway between30From a point about midway between31From a point about midway between35From a little below γ Ursæ Majoris36From a Andromedæ to a Pegasi.37From near β Aquilæ to δ Aquilæ.38From near β Aquilæ to δ Aquilæ.39From near β Aquilæ to δ Aquilæ.30From near β Aquilæ to δ Aquilæ.31From a to δ Aquilæ.35From near β Trianguli to γ Pegasi.36From direction of β Pegasi towards39From direction of β Pegasi towards30From a co δ Aquilæ.31From near β Andromedæ and α 35From capella to horizon.46Appeared near β Aurigæ and move47From Capella to horizon.48From direction of β Ursæ	and near the Plaindag	
15Moved from about midway between16From a Aquilæ towards 2 Aquilæ.17From direction of the Pleiades tow18From a point about 2° to right of a20From direction of β Cygni towards21From capella to a little below β Au23From Capella to a little below β Au24Shot from Capella to a little below β Au25From direction of a Persei towards26From near the Pleiades passed acrophone27From a point about midway between β A28From direction of ζ Ursæ Majoris29From a point about midway between30From a point about midway between31From a little below γ Ursæ Majoris32From a near the Pleiades moved towards33From a little below γ Ursæ Majoris34From near β Aquilæ to ð Aquilæ.35From near β Aquilæ to ð Aquilæ.36From near β Aquilæ to ð Aquilæ.37From near β Aquilæ to ð Aquilæ.38From near β Aquilæ to ð Aquilæ.39From near β Aquilæ to ð Aquilæ.30From a to ð Aquilæ.31From a co ð Aquilæ.32From near β Aquilæ to ð Aquilæ.33From a co ð Aquilæ.34From near β Aquilæ to ð Aquilæ.35From near β Aquilæ.36From near β Aquilæ.37From a co ð Aquilæ.38From γ Draconis to ε Herculis.39From direction of β Pegasi towards40From direction of β Ursæ Minoris	en α and β Trianguli towards \sim Peossi	
16From a Aquilæ towards 2 Aquilæ.17From direction of the Pleiades tow18From a little below ζ Persei to Sat19From a point about 2° to right of a20From car β Tauri to horizon.21From capella to a little below β Au23From Capella to a little below β Au24Shot from Capella towards β Aurig25From direction of a Persei towards26From a point about midway between27From a point about midway between28From direction of ζ Ursæ Majoris29From a point about midway between30From a point about midway between31From a point about midway between32From direction of a Pegasi towards33From a Little below γ Ursæ Majoris34From a Little below γ Ursæ Majoris35From near β Aquilæ to δ Aquilæ.36From a Andromedæ to a Pegasi.37From near β Aquilæ to δ Aquilæ.38From near β Drianguli to γ Pegasi.39From a to δ Aquilæ.30From direction of a Persei towards41From direction of a Persei towards42From direction of a Persei towards43From direction of a Persei towards44Appeared near β Andromedæ and to45From direction of a Persei towards46Appeared near β Andromedæ and to47From Capella to horizon.48From direction of a Persei moved49From direction of a Ursæ Majoris40 <td>α and γ Ceti towards η Eridani.</td> <td>· · · · · · · · · · · · · · · · · · ·</td>	α and γ Ceti towards η Eridani.	· · · · · · · · · · · · · · · · · · ·
17From direction of the Pleiades tow18From a little below ζ Persei to Sat19From a point about 2° to right of a20From direction of β Cygni towards21From near β Tauri to horizon.22From capella to a little below β An23From Capella to a little below β An24Shot from Capella to a little below β An25From direction of α Persei towards26From a point about midway between β A27From a point about midway between28From direction of ζ Ursæ Majoris29From a point about midway between30From a point about midway between31From a point about midway between32From a point about midway between33From a little below γ Ursæ Majoris34From a little below γ Ursæ Majoris35From near β Aquilæ to δ Aquilæ.36From near β Aquilæ to δ Aquilæ.37From near β Aquilæ to δ Aquilæ.38From γ Draconis to ε Herculis.39From direction of α Persei towards41From direction of β Pegasi towards42From direction of α Persei towards43From direction of α Persei towards44Appeared near β Andromedæ and α45From direction of α Persei towards46From direction of α Persei towards47From direction of η Pegasi passed48From direction of α Persei towards49From direction of η Pegasi passed41From direction of	•	
19From a point about 2° to right of a20From direction of β Cygni towards21From near β Tauri to horizon.22From a Persei to γ Andromedæ.23From Capella to a little below β Au24Shot from Capella towards β Aurig25From direction of a Persei towards26From a point midway between β A27From a point about midway between β A28From direction of ζ Ursæ Majoris29From a point about midway between30From a little below γ Ursæ Majoris31From a little below γ Ursæ Majoris32From a Andromedæ to a Pegasi.33From near β Aquilæ to δ Aquilæ.35From near β Aquilæ to δ Aquilæ.36From near α Lyræ towards × Lyræ36From a to δ Aquilæ.37From direction of β Pegasi towards38From a to δ Aquilæ.39From direction of β Pegasi towards40From direction of β Pegasi towards41From direction of β Pegasi towards42From direction of β Pegasi towards43From direction of β Pegasi towards44Appeared near β Andromedæ and of45From direction of β Ursæ Majoris46Appeared near β Andromedæ and of47From direction of α Ursæ Majoris48From direction of α Ursæ Majoris49From direction of α Ursæ Majoris40From direction of α Ursæ Majoris41From direction of α Ursæ Majoris42From dire	ards Saturn.	
20From direction of β Cygni towards21From near β Tauri to horizon.22From α Persei to γ Andromedæ.23From Capella to a little below β Au24Shot from Capella to a little below β Au25From direction of α Persei towards26From near the Pleiades passed acro27From a point midway between β A28From direction of ζ Ursæ Majoris29From a point about midway between30From a little below γ Ursæ Majoris31From a little below γ Ursæ Majoris32From a little below γ Ursæ Majoris33From a Andromedæ to α Pegasi.34From near β Aquilæ to δ Aquilæ.35From near β Aquilæ to δ Aquilæ.36From a to δ Aquilæ.37From direction of β Pegasi towards38From a to δ Aquilæ.39From direction of β Pegasi towards40From direction of β Pegasi towards41From direction of β Pegasi towards42From direction of β Pegasi towards43From direction of β Pegasi towards44Appeared near β Andromedæ and G45From direction of β Ursæ Minoris46Appeared near β Aurigæ and move47From direction of α Ursæ Majoris48From direction of α Ursæ Majoris49From direction of α Ursæ Majoris40From direction of α Ursæ Majoris41From direction of α Ursæ Majoris42From direction of α Ursæ Majoris43From dire	urn. Description of midway between Y and Them Majoria	
21From near β Tauri to horizon.22From α Persei to γ Andromedæ.23From Capella to a little below β Andromedæ.24Shot from Capella to a little below β Andromedæ.25From direction of α Persei towards26From near the Pleiades passed across27From a point midway between β A28From direction of ζ Ursæ Majoris29From a point about midway between30From Aldebaran towards horizon.31From a little below γ Ursæ Majoris32From direction of α Pegasi towards33From a Andromedæ to α Pegasi.34From near β Aquilæ to δ Aquilæ.35From near α Lyræ towards × Lyræ36From a to δ Aquilæ.37From a to δ Aquilæ.38From Aldebaran towards horizon.39From a to δ Aquilæ.39From a to δ Aquilæ.39From direction of β Pegasi towards40From direction of β Pegasi towards41From direction of β Pegasi towards42From direction of β Pegasi towards43From direction of β Pegasi passed a44Appeared near β Andromedæ and of45From direction of α Ursæ Majoris46Appeared near β Aurigæ and move47From direction of α Ursæ Majoris40From direction of α Ursæ Majoris41From direction of α Ursæ Majoris42From direction of α Ursæ Majoris43From direction of α Ursæ Majoris44Appeared near β Aurigæ	Vulneeulm	
22From α Persei to γ Andromedæ.23From Capella to a little below β An24Shot from Capella to a little below β An25From direction of α Persei towards26From near the Pleiades passed acro27From a point midway between β A28From direction of ζ Ursæ Majoris29From a point about midway between30From a point about midway between31From a little below γ Ursæ Majoris32From direction of α Pegasi towards33From a Andromedæ to α Pegasi.34From near β Aquilæ to δ Aquilæ.35From near α Lyræ towards κ Lyræ36From near β Aquilæ.37From a to δ Aquilæ.38From γ Draconis to ε Herculis.39From a to δ Aquilæ.39From direction of β Pegasi towards40From direction of β Pegasi towards41From direction of β Pegasi towards42From direction of β Pegasi passed at44Appeared near β Andromedæ and to45From direction of α Ursæ Majoris46Appeared near β Aurigæ and move47From direction of α Ursæ Majoris50From direction of α Ursæ Majoris51From direction of α Ursæ Majoris52 </td <td>I Vulpecula.</td> <td></td>	I Vulpecula.	
23From Capella to a little below β Au24Shot from Capella towards β Aurig25From direction of α Persei towards26From near the Pleiades passed acre27From a point midway between β A28From direction of ζ Ursæ Majoris29From a point about midway between30From Aldebaran towards horizon.31From a little below γ Ursæ Majoris32From a little below γ Ursæ Majoris33From a Andromedæ to α Pegasi towards34From near β Aquilæ to δ Aquilæ.35From near α Lyræ towards × Lyræ36From a to δ Aquilæ.37From a to δ Aquilæ.38From α to δ Aquilæ.39From near β Trianguli to γ Pegasi.40From direction of α Persei towards41From direction of α Persei towards42From direction of α Persei towards43From δ Persei to Capella.44Appeared near β Aurigæ and move45From direction of α Ursæ Minoris46Appeared near β Aurigæ and move47From direction of α Ursæ Majoris50From direction of α Persei moved a51From direction of α Ursæ Majoris52From direction of α Ursæ Majoris53From direction of α Ursæ Majoris54Appeared near γ Persei and disapp55From direction of α Trianguli mov56Approximately from direction of α Ursæ58From a few degrees above ζ Ursæ <td></td> <td></td>		
24Shot from Capella towards β Aurig25From direction of α Persei towards26From near the Pleiades passed acre27From a point midway between β A28From direction of ζ Ursæ Majoris29From a point about midway between30From Aldebaran towards horizon.31From a little below γ Ursæ Majoris32From a little below γ Ursæ Majoris33From a Andromedæ to α Pegasi towards34From near β Aquilæ to δ Aquilæ.35From near β Aquilæ to δ Aquilæ.36From near α Lyræ towards × Lyræ36From a to δ Aquilæ.37From a to δ Aquilæ.38From a to δ Aquilæ.39From near β Trianguli to γ Pegasi.40From direction of α Persei towards41From direction of α Persei towards42From direction of α Persei towards43From δ Persei to Capella.44Appeared near β Andromedæ and the form direction of α Ursæ Minoris45From direction of α Ursæ Minoris46Appeared near β Aurigæ and move47From direction of α Ursæ Majoris51From direction of α Ursæ Majoris52From direction of α Ursæ Majoris53Moved from direction of α Ursæ Majoris54Appeared near γ Persei and disapp55From direction of α Trianguli mov56Approximately from direction of α Ursæ58From a few degrees above ζ Ursæ	irigæ.	
25From direction of α Persei towards26From near the Pleiades passed acre27From a point midway between β A28From direction of ζ Ursæ Majoris29From a point about midway between30From Aldebaran towards horizon.31From a little below γ Ursæ Majoris32From a little below γ Ursæ Majoris33From a Andromedæ to α Pegasi towards34From near β Aquilæ to ð Aquilæ.35From near β Aquilæ to ð Aquilæ.36From near α Lyræ towards × Lyræ36From near β Aquilæ.37From a to ð Aquilæ.38From a to ð Aquilæ.39From direction of β Pegasi towards40From direction of β Pegasi towards41From direction of β Pegasi towards42From direction of α Persei towards43From δ Persei to Capella.44Appeared near β Andromedæ and to45From direction of α Ursæ Minoris46Appeared near β Aurigæ and move47From direction of α Ursæ Majoris50From direction of α Ursæ Majoris51From direction of α Ursæ Majoris52From direction of α Ursæ Majoris53Moved from direction of α Ursæ Majoris54Appeared near γ Persei and disapp <tr< td=""><td>æ.</td><td></td></tr<>	æ.	
27From a point midway between β A28From direction of ζ Ursæ Majoris29From a point about midway betweet30From Aldebaran towards horizon.31From a little below γ Ursæ Majori32From a little below γ Ursæ Majori33From a little below γ Ursæ Majori34From direction of α Pegasi towards35From mear β Aquilæ to δ Aquilæ.36From near α Lyræ towards κ Lyræ37From near β Aquilæ.38From γ Draconis to ϵ Herculis.39From near β Trianguli to γ Pegasi.40From direction of β Pegasi towards41From direction of α Persei towards42From direction of α Persei towards43From direction of α Persei towards44Appeared near β Andromedæ and α 45From direction of γ Pegasi passed i46Appeared near β Andromedæ and α 47From direction of α Ursæ Majoris51From direction of α Ursæ Majoris52From direction of α Ursæ Majoris53Moved from direction of α Ursæ Majoris54Appeared near γ Persei and disapp55From direction of α Trianguli mov56Approximately from direction of α Ursæ58From a few degrees above ζ Ursæ	δ Persei.	· · ·
28From direction of ζ Ursæ Majoris29From a point about midway betweet30From Aldebaran towards horizon.31From a little below γ Ursæ Majoris32From a little below γ Ursæ Majoris33From a little below γ Ursæ Majoris34From direction of α Pegasi towards35From near β Aquilæ to δ Aquilæ.36From near α Lyræ towards κ Lyræ37From near α Lyræ towards κ Lyræ38From near β Aquilæ.39From α to δ Aquilæ.39From direction of β Pegasi towards40From direction of α Persei towards41From direction of α Persei towards42From direction of α Persei towards43From direction of α Persei towards44Appeared near β Andromedæ and α 45From direction of γ Pegasi passed i46Appeared near β Andromedæ and move47From Capella to horizon.48From direction of β Ursæ Minoris49Moved from direction of α Andromedæ passi51From direction of α Crsæ Majoris52From direction of α Persei moved i53Moved from direction of α Ursæ Majoris54Appeared near γ Persei and disapp55From direction of α Trianguli mov56Approximately from direction of C57From a few degrees above ζ Ursæ	nss Aldebaran.	
28From direction of ζ Ursæ Majoris29From a point about midway betwee30From Aldebaran towards horizon.31From a little below γ Ursæ Majoris32From a little below γ Ursæ Majoris33From a little below γ Ursæ Majoris34From direction of α Pegasi towards35From near β Aquilæ to δ Aquilæ.36From near α Lyræ towards × Lyræ36From near α Lyræ towards × Lyræ37From near α Lyræ towards × Lyræ38From near β Aquilæ.39From a to δ Aquilæ.39From a to δ Aquilæ.39From a to δ Aquilæ.39From direction of β Pegasi towards40From direction of α Persei towards41From direction of α Persei towards42From Aldebaran towards horizon.43From Aldebaran towards horizon.44Appeared near β Andromedæ and the form direction of α Pegasi passed and the form direction of α Ursæ Majoris45From direction of α Ursæ Majoris46Appeared near β Aurigæ and move47From direction of α Ursæ Majoris51From direction of α Ursæ Majoris52From direction of α Persei moved and the form direction of α Ursæ Majoris53Moved from direction of α Ursæ Majoris54Appeared near γ Persei and disapp55From direction of α Trianguli mov56Approximately from direction of α Ursæ58From a few degrees above ζ Ursæ <td>nuromenae and a rinangun towards y rogan.</td> <td></td>	nuromenae and a rinangun towards y rogan.	
29From a point about midway betwee30From Aldebaran towards horizon.31From a little below γ Ursæ Majori.32From direction of α Pegasi towards33From α Andromedæ to α Pegasi.34From near β Aquilæ to δ Aquilæ.35From near α Lyræ towards κ Lyræ36From near α Lyræ towards κ Lyræ37From near α Lyræ towards κ Lyræ38From α to δ Aquilæ.39From near the Pleiades moved tow39From a to δ Aquilæ.39From direction of β Pegasi towards40From direction of α Persei towards41From direction of α Persei towards42From direction of α Persei towards43From direction of α Persei towards44Appeared near β Andromedæ and α 45From direction of γ Pegasi passed α 46Appeared near β Andromedæ and α 47From Capella to horizon.48From direction of α Ursæ Minoris49Moved from direction of α Lyræ Majoris51From direction of α Lyræ Majoris52From direction of α Lyræ Majoris53Moved from direction of α Ursæ Majoris54Appeared near γ Persei and disapp55From direction of α Trianguli mov56Approximately from direction of α Ursæ58From a few degrees above ζ Ursæ	towards v Ursæ Majoris.	
30From Aldebaran towards horizon.31From a little below γ Ursæ Majori.32From a little below γ Ursæ Majori.33From direction of α Pegasi towards34From near β Aquilæ to δ Aquilæ.35From near α Lyræ towards κ Lyræ36From near α Lyræ towards κ Lyræ37From near the Pleiades moved tow38From γ Draconis to ϵ Herculis.39From near β Trianguli to γ Pegasi.40From direction of β Pegasi towards41From direction of α Persei towards42From direction of α Persei towards43From direction of α Persei towards44Appeared near β Andromedæ and α 45From direction of γ Pegasi passed α 46Appeared near β Aurigæ and move47From direction of α Ursæ Minoris48From direction of α Ursæ Majoris51From direction of α Ursæ Majoris52From direction of α Persei moved α 53Moved from direction of α Ursæ Majoris54Appeared near γ Persei and disapp55From direction of α Trianguli mov56Approximately from direction of α Ursæ58From a few degrees above ζ Ursæ	n α and β Ursæ Majoris towards γ Ursæ Majoris.	
32From direction of α Pegasi towards33From α Andromedæ to α Pegasi.34From near β Aquilæ to δ Aquilæ.35From near α Lyræ towards κ Lyræ36From near α Lyræ towards κ Lyræ36From near the Pleiades moved tow37From α to δ Aquilæ.38From γ Draconis to ϵ Herculis.39From α to δ Aquilæ.39From near β Trianguli to γ Pegasi.40From direction of β Pegasi towards41From direction of α Persei towards42From Aldebaran towards horizon.43From δ Persei to Capella.44Appeared near β Andromedæ and α 45From direction of η Pegasi passed a46Appeared near β Aurigæ and move47From Capella to horizon.48From direction of α Ursæ Majoris50From direction of α Ursæ Majoris51From direction of α Andromedæ pa52From direction of α Persei moved a53Moved from direction of α Ursæ Majoris54Appeared near γ Persei and disapp55From direction of α Trianguli mov56Approximately from direction of C 57From a few degrees above ζ Ursæ		
33From α Andromedæ to α Pegasi.34From near β Aquilæ to δ Aquilæ.35From near α Lyræ towards κ Lyræ36From near the Pleiades moved tow37From α to δ Aquilæ.38From γ Draconis to ϵ Herculis.39From γ Draconis to ϵ Herculis.40From direction of β Pegasi towards41From direction of α Persei towards42From Aldebaran towards horizon.43From δ Persei to Capella.44Appeared near β Andromedæ and α 45From direction of α Persei passed i46Appeared near β Andromedæ and move47From Capella to horizon.48From direction of α Ursæ Minoris49Moved from direction of β Androm50From direction of α Ursæ Majoris51From direction of α Persei moved i53Moved from direction of α Ursæ Majoris54Appeared near γ Persei and disapp55From direction of α Trianguli mov56Approximately from direction of C57From β Cephei to κ Draconis.58From a few degrees above ζ Ursæ	s vertically downwards.	
34From near β Aquilæ to δ Aquilæ.35From near α Lyræ towards κ Lyræ36From near the Pleiades moved tow37From α to δ Aquilæ.38From γ Draconis to ϵ Herculis.39From near β Trianguli to γ Pegasi.40From direction of β Pegasi towards41From direction of α Persei towards42From Aldebaran towards horizon.43From δ Persei to Capella.44Appeared near β Andromedæ and of45From direction of η Pegasi passed if46Appeared near β Andromedæ and move47From Capella to horizon.48From direction of β Ursæ Minoris49Moved from direction of β Androm50From direction of α Ursæ Majoris51From direction of α Persei moved if52From direction of α Persei and disapp53Moved from direction of α Ursæ M54Appeared near γ Persei and disapp55From direction of α Trianguli mov56Approximately from direction of C57From a few degrees above ζ Ursæ	ξ Pegası.	,
35From near α Lyræ towards κ Lyræ36From near the Pleiades moved tow37From α to δ Aquilæ.38From γ Draconis to ϵ Herculis.39From near β Trianguli to γ Pegasi.40From direction of β Pegasi towards41From direction of α Persei towards42From Aldebaran towards horizon.43From δ Persei to Capella.44Appeared near β Andromedæ and the form direction of η Pegasi passed is46Appeared near β Aurigæ and move47From Capella to horizon.48From direction of β Ursæ Minoris49Moved from direction of β Androm50From direction of α Ursæ Majoris51From direction of α Persei moved is52From direction of α Persei and disapp53Moved from direction of α Ursæ M54Appeared near γ Persei and disapp55From direction of α Trianguli mov56Approximately from direction of C57From β Cephei to κ Draconis.58From a few degrees above ζ Ursæ		
 From near the Pleiades moved tow From α to δ Aquilæ. From γ Draconis to ε Herculis. From near β Trianguli to γ Pegasi. From direction of β Pegasi towards From direction of α Persei towards From δ Persei to Capella. Appeared near β Andromedæ and α From direction of α Ursæ Minoris Moved from direction of α Ursæ Majoris From direction of α Persei moved a Moved from direction of α Ursæ Majoris From direction of α Persei moved a Moved from direction of α Ursæ Majoris From direction of α Persei moved a Moved from direction of α Ursæ Majoris From direction of α Persei moved a Moved from direction of α Ursæ Majoris From direction of α Persei moved a Moved from direction of α Ursæ Majoris From direction of α Persei moved a Moved from direction of α Ursæ Majoris From direction of α Persei moved a Moved from direction of α Ursæ Majoris From direction of α Diræ Majoris From direction of α Diræ Majoris From direction of α Ursæ Majoris From direction of α Diræ Majoris From direction of α Ursæ Majoris 		
37From α to δ Aquilæ.38From γ Draconis to ϵ Herculis.39From near β Trianguli to γ Pegasi.40From direction of β Pegasi towards41From direction of α Persei towards42From Aldebaran towards horizon.43From δ Persei to Capella.44Appeared near β Andromedæ and α 45From direction of η Pegasi passed i46Appeared near β Aurigæ and move47From Capella to horizon.48From direction of β Ursæ Minoris49Moved from direction of α Andromedæ pa51From direction of α Majoris51From direction of α Persei moved i53Moved from direction of α Ursæ Majoris54Appeared near γ Persei and disapp55From direction of α Trianguli mov56Approximately from direction of C57From β Cephei to κ Draconis.58From a few degrees above ζ Ursæ	ards β Tauri.	
38From γ Draconis to ε Herculis.39From near β Trianguli to γ Pegasi.40From direction of β Pegasi towards41From direction of α Persei towards42From Aldebaran towards horizon.43From & Persei to Capella.44Appeared near β Andromedæ and α45From direction of η Pegasi passed a46Appeared near β Andromedæ and α47From direction of η Pegasi passed a48From direction of β Ursæ Minoris49Moved from direction of β Androm50From direction of α Ursæ Majoris51From direction of α Ursæ Majoris52From direction of α Ursæ Majoris53Moved from direction of α Ursæ Majoris54Appeared near γ Persei and disapp55From direction of α Trianguli mov56Approximately from direction of C57From β Cephei to κ Draconis.58From a few degrees above ζ Ursæ		
40From direction of β Pegasi towards41From direction of α Persei towards42From Aldebaran towards horizon.43From δ Persei to Capella.44Appeared near β Andromedæ and 045From direction of η Pegasi passed 346Appeared near β Aurigæ and move47From Capella to horizon.48From direction of β Ursæ Minoris49Moved from direction of β Androm50From direction of α Ursæ Majoris51From direction of α Ursæ Majoris52From direction of α Ursæ Majoris53Moved from direction of α Ursæ Majoris54Appeared near γ Persei and disapp55From direction of α Trianguli mov56Approximately from direction of C57From a few degrees above ζ Ursæ		
 From direction of α Persei towards From Aldebaran towards horizon. From δ Persei to Capella. Appeared near β Andromedæ and α From direction of η Pegasi passed a Appeared near β Aurigæ and move From Capella to horizon. From direction of β Ursæ Minoris Moved from direction of β Androm From direction of α Ursæ Majoris From direction of α Persei moved a From direction of α Ursæ Majoris 	Demori	
 From Aldebaran towards horizon. From δ Persei to Capella. Appeared near β Andromedæ and α From direction of η Pegasi passed a Appeared near β Aurigæ and move From Capella to horizon. From direction of β Ursæ Minoris Moved from direction of β Androm From direction of α Ursæ Majoris From direction of α Ursæ Majoris From direction of α Persei moved a Moved from direction of α Ursæ Majoris From direction of α Ursæ Majoris 	Canella	
 From δ Persei to Capella. Appeared near β Andromedæ and c From direction of η Pegasi passed a Appeared near β Aurigæ and move From Capella to horizon. From direction of β Ursæ Minoris Moved from direction of β Androm From direction of α Ursæ Majoris From direction of α Ursæ Majoris From direction of α Persei moved a Moved from direction of α Ursæ Majoris From direction of α Ursæ Majoris 	Capona.	
44Appeared near β Andromedæ and α 45From direction of η Pegasi passed a46Appeared near β Aurigæ and move47From Capella to horizon.48From direction of β Ursæ Minoris49Moved from direction of β Androm50From direction of α Ursæ Majoris51From direction of α Andromedæ pa52From direction of α Persei moved a53Moved from direction of α Ursæ Majoris54Appeared near γ Persei and disapp55From direction of α Trianguli mov56Approximately from direction of C57From β Cephei to κ Draconis.58From a few degrees above ζ Ursæ		
 From direction of η Pegasi passed i Appeared near β Aurigæ and move From Capella to horizon. From direction of β Ursæ Minoris Moved from direction of β Androm From direction of α Ursæ Majoris From direction of α Ursæ Majoris From direction of α Andromedæ pa From direction of α Persei moved i Moved from direction of α Ursæ Majoris From direction of α Persei and disapp From direction of α Trianguli mov Approximately from direction of C From β Cephei to κ Draconis. From a few degrees above ζ Ursæ 	lisappeared near a Arietis.	÷ .
 46 Appeared near β Aurigæ and move 47 From Capella to horizon. 48 From direction of β Ursæ Minoris 49 Moved from direction of β Androm 50 From direction of α Ursæ Majoris 51 From direction of α Andromedæ pa 52 From direction of α Persei moved a 53 Moved from direction of α Ursæ Majoris 54 Appeared near γ Persei and disapp 55 From direction of α Trianguli mov 56 Approximately from direction of C 57 From β Cephei to κ Draconis. 58 From a few degrees above ζ Ursæ 	icross & regasi.	
 From direction of β Ursæ Minoris Moved from direction of β Androm From direction of α Ursæ Majoris From direction of α Ursæ Majoris From direction of α Andromedæ pæ From direction of α Persei moved a Moved from direction of α Ursæ M Appeared near γ Persei and disapp From direction of α Trianguli mov Approximately from direction of C From β Cephei to κ Draconis. From a few degrees above ζ Ursæ 	towards normon.	•
48From direction of β Ursæ Minoris49Moved from direction of β Androm50From direction of α Ursæ Majoris51From direction of α Andromedæ pa52From direction of α Persei moved a53Moved from direction of α Ursæ M54Appeared near γ Persei and disapp55From direction of α Trianguli mov56Approximately from direction of C57From β Cephei to κ Draconis.58From a few degrees above ζ Ursæ		
 48 From direction of β Ursæ Minoris 49 Moved from direction of β Androm 50 From direction of α Ursæ Majoris 51 From direction of α Andromedæ pa 52 From direction of α Persei moved a 53 Moved from direction of α Ursæ M 54 Appeared near γ Persei and disapp 55 From direction of α Trianguli mov 56 Approximately from direction of C 57 From β Cephei to κ Draconis. 58 From a few degrees above ζ Ursæ 	towards " Draconia	
From direction of α Ursæ Majoris From direction of α Andromedæ pæ From direction of α Persei moved i Moved from direction of α Ursæ M Appeared near γ Persei and disapp From direction of α Trianguli mov Approximately from direction of C From β Cephei to κ Draconis. From a few degrees above ζ Ursæ	edge to v Pegasi.	
 51 From direction of α Andromedæ pa 52 From direction of α Persei moved a 53 Moved from direction of α Ursæ M 54 Appeared near γ Persei and disapp 55 From direction of α Trianguli mov 56 Approximately from direction of C 57 From β Cephei to κ Draconis. 58 From a few degrees above ζ Ursæ 		
 52 From direction of α Persei moved in Moved from direction of α Ursæ M 53 Appeared near γ Persei and disapp 55 From direction of α Trianguli mov 56 Approximately from direction of C 57 From β Cephei to κ Draconis. 58 From a few degrees above ζ Ursæ 	ssed midway between a and a z ogoos.	
 53 Moved from direction of α Urse M Appeared near γ Persei and disapp 55 From direction of α Trianguli mov 56 Approximately from direction of C 57 From β Cephei to κ Draconis. 58 From a few degrees above ζ Urse 		,
54 Appeared near γ Persei and disapp 55 From direction of α Trianguli mov 56 Approximately from direction of C 57 From β Cephei to κ Draconis. 58 From a few degrees above ζ Ursee	ajoris towards y Olsa majoris.	
55 From direction of α Trianguli mov 56 Approximately from direction of C 57 From β Cephei to κ Draconis. 58 From a few degrees above ζ Ursæ	eared near of croot.	
57 From β Cephei to κ Draconis. 58 From a few degrees above ζ Urse	ed mwarus a tritons.	
57 From β Cephei to κ Draconis. 58 From a few degrees above ζ Urse	11. marging gamage " and " Dreconis to a cluster of si	mall stars in Hercules. Increased
58 From a few degrees above ζ Ursæ		[brilliancy about centre of pa
	Majoris fell towards left, at an inclination of about 40°.	
JA Tasser about a to tot of t orallas	noving towards y Ursæ Minoris.	
	~	

(lxxix)

(lxxx)

OBSERVATIONS OF LUMINOUS METEORS,

Month and] 1883.	Day,	Greenwich Mean Solar Time.	Observer.	Apparent Size of Meteor in Star-Magnitudes.	Colour of Meteor.	Duration of Meteor in Seconds of Time.	Appearance and Duration of Train.	Length of Meteor's Path in Degrees.	No. for Refer- ence.
		h m s				8		o	
October	16 "	9. 47. 42 10. 3. 22	Н. Н.	I 2	White Yellow	и о*5	None Slight	10 5	1 2
October	2 2 ,,	8. 27. 13 8. 43. 13	н. н.	2 > 1	Bluish-white Red	I 2	Train Train	10 20	3 4
October	28	7. 16. <u>+</u>	H.	1 <	Bluish-white	2	• • •	30	5
October	29	9. 27. <u>+</u>	H.	1 <	Bluish-white	3	•••	4 ^c	6
November	4	10.11. 5	N.	> Jupiter	Metallic Bluish-white	2	Brilliant	25	7
November	6	11. 47. 30	N.	2 increasing to > 1	Greenish-blue	1.2	Train	12	- 8
November	13	13. 1. 0	N. G.	. 2	White Bluish-white	°'4 °'6	Train	4	9
	" "	13. 3.43 13. 5.40	G.	1 1	Bluish-white	0.1	Fine	17	10 11
	19	13.28. 7	N.	Saturn	Yellowish	-1.2	Train	15	12
	,,	14. 11. 54	G.	> 1	White	0.0	Fine; 2 ⁸	15	13
	,	14. 16. 1	G .	I	Bluish-white	1.2	Train	10	14
	"	I4.40. I	G.	> I	White	1.2	Fine	30	15
	33 -	15.30.11	G.	Jupiter × 2	Bluish-white	2	Long and Brilliant; 3 ^s	18	16
	"	15.45. 1	G.	2	White	0.8	•••	10	17
November	20	11.24. ±	н.	2 increasing to Jupiter \times 2	White	2	Fine	Length of visible	18
								path, 30°	
								· .	

	No. for Refer-	Páth of Meteor through the Stars.	
 From direction of a Lyræ passed about 2° below a Aquilæ. From direction of δ Persei shot towards a point about 3° below a Arietis. Passed across a point 2° below Saturn and disappeared about 5° below β Aurigæ. Appeared 30° above and moved towards horizon in prolongation of line joining points 2° to right of. a Andromedæ and midwa between a and γ Pegasi. Moved from a point about 2° below a Andromedæ and shot across the constellation Cygnus. Passed across β Ceti at angle of 45°. Moving from near θ Ceti [β Ceti near centre of track]. The meteor cast a strong light. Passed nearly midway between δ Ursæ Majoris and β Ursæ Minoris crossing « and « Draconis. Burst and threw off sparks. Described a short path about 3° to right of Jupiter moving to left at angle of 45°. Appeared near Jupiter moving in direction of Procyon. From direction of Procyon towards Sirius. Passed 5° above γ Geminorum moving directly towards Jupiter. Moved from a point a bittle below δ Leonis and disappeared a few degrees below Regulus. Shot from near Regulus and disappeared about 10° below, its path being a prolongation of a line joining Regulus and δ Leonis Shot from a point about midway between Jupiter and Mars moving in direction of Sirius. Appeared near Jupiter and moved towards and disappeared a little below Procyon. Shot from a point about midway between Jupiter and Mars moving in direction of Sirius. Appeared near Jupiter and moved towards and disappeared a little below Procyon. Shot downwards from Mars at an angle of about 45° to the right (stars invisible, thin cloud prevalent). Appeared about 2° to left of Aldebaran and shot across η Orionis. The meteor appeared to attain greater velocity after reaching the strong appeared about 2° to left of Aldebaran and shot across η Orionis. 	ence.		
 From direction of a Lyræ passed about 2° below a Aquilæ. From direction of δ Persei shot towards a point about 3° below a Arietis. Passed across a point 2° below Saturn and disappeared about 5° below β Aurigæ. Appeared 30° above and moved towards horizon in prolongation of line joining points 2° to right of. a Andromedæ and midwa between a and γ Pegasi. Moved from a point about 2° below a Andromedæ and shot across the constellation Cygnus. Passed across β Ceti at angle of 45°. Moving from near θ Ceti [β Ceti near centre of track]. The meteor cast a strong light. Passed nearly midway between δ Ursæ Majoris and β Ursæ Minoris crossing « and « Draconis. Burst and threw off sparks. Described a short path about 3° to right of Jupiter moving to left at angle of 45°. Appeared near Jupiter moving in direction of Procyon. From direction of Procyon towards Sirius. Passed 5° above γ Geminorum moving directly towards Jupiter. Moved from a point a bittle below δ Leonis and disappeared a few degrees below Regulus. Shot from near Regulus and disappeared about 10° below, its path being a prolongation of a line joining Regulus and δ Leonis Shot from a point about midway between Jupiter and Mars moving in direction of Sirius. Appeared near Jupiter and moved towards and disappeared a little below Procyon. Shot from a point about midway between Jupiter and Mars moving in direction of Sirius. Appeared near Jupiter and moved towards and disappeared a little below Procyon. Shot downwards from Mars at an angle of about 45° to the right (stars invisible, thin cloud prevalent). Appeared about 2° to left of Aldebaran and shot across η Orionis. The meteor appeared to attain greater velocity after reaching the strong appeared about 2° to left of Aldebaran and shot across η Orionis. 	- <u>`</u>		
 Passed across a point 2° below Saturn and disappeared about 5° below β Aurigæ. Appeared 30° above and moved towards horizon in prolongation of line joining points 2° to right of α Andromedæ and midwards horizon in prolongation of line joining points 2° to right of α Andromedæ and midwards horizon a point about 2° below α Andromedæ and shot across the constellation Cygnus. Passed across β Ceti at angle of 45°. Moving from near θ Ceti [β Ceti near centre of track]. The meteor cast a strong light. Passed nearly midway between δ Ursæ Majoris and β Ursæ Minoris crossing κ and α Draconis. Burst and threw off sparks. Described a short path about 3° to right of Jupiter moving to left at angle of 45°. Appeared near Jupiter moving in direction of Procyon. From direction of Procyon towards Sirius. Passed 5° above γ Geminorum moving directly towards Jupiter. Moved from a point a little below δ Leonis and disappeared a few degrees below Regulus. Shot from near Regulus and disappeared about 10° below, its path being a prolongation of a line joining Regulus and δ Leonis Shot from a point about midway between Jupiter and Mars moving in direction of Sirius. Appeared near Jupiter and moved towards and disappeared a little below Procyon. Shot downwards from Murs at an angle of about 45° to the right (stars invisible, thin cloud prevalent). Appeared about 2° to left of Aldebaran and shot across y Orionis. The meteor appeared to attain greater velocity after reaching the meteor appeared to attain greater velocity after reaching the start appeared about 2° to left of Aldebaran and shot across y Orionis. 		From direction of β Cygni shot across ζ Cygni. From direction of α Lyr α passed about 2° below α Aquil α .	
 between α and γ Pegasi. Moved from a point about 2° below α Andromedæ and shot across the constellation Cygnus. Passed across β Ceti at angle of 45°. Moving from near θ Ceti [β Ceti near centre of track]. The meteor cast a strong light. Passed nearly midway between δ Ursæ Majoris and β Ursæ Minoris crossing κ and α Draconis. Burst and threw off sparks. Described a short path about 3° to right of Jupiter moving to left at angle of 45°. Appeared near Jupiter moving in direction of Procyon. From direction of Procyon towards Sirius. Passed 5° above γ Geminorum moving directly towards Jupiter. Moved from a point a little below δ Leonis and disappeared a few degrees below Regulus. Shot from near Regulus and disappeared about 10° below, its path being a prolongation of a line joining Regulus and δ Leonis Shot from a point about moved towards and disappeared a little below Procyon. Shot downwards from Murs at an angle of about 45° to the right (stars invisible, thin cloud prevalent). Appeared about 2° to left of Aldebaran and shot across η Orionis. The meteor appeared to attain greater velocity after reachi 		From direction of δ Persei shot towards a point about 3° below α Arietis. Passed across a point 2° below Saturn and disappeared about 5° below β Aurigæ.	
 Passed across β Ceti at angle of 45°. Moving from near θ Ceti [β Ceti near centre of track]. The meteor cast a strong light. Passed nearly midway between δ Ursæ Majoris and β Ursæ Minoris crossing « and « Draconis. Burst and threw off sparks. Described a short path about 3° to right of Jupiter moving to left at angle of 45°. Appeared near Jupiter moving in direction of Procyon. From direction of Procyon towards Sirius. Passed 5° above γ Geminorum moving directly towards Jupiter. Moved from a point a little below δ Leonis and disappeared a few degrees below Regulus. Shot from near Regulus and disappeared about 10° below, its path being a prolongation of a line joining Regulus and δ Leonis Shot from a point about midway between Jupiter and Mars moving in direction of Sirius. Appeared near Jupiter and moved towards and disappeared a little below Procyon. Shot downwards from Murs at an angle of about 45° to the right (stars invisible, thin cloud prevalent). Appeared about 2° to left of Aldebaran and shot across γ Orionis. The meteor appeared to attain greater velocity after reaching 		between α and γ Pegasi.	idwa
 Passed nearly midway between δ Ursæ Majoris and β Ursæ Minoris crossing κ and α Draconis. Burst and threw off sparks. Described a short path about 3° to right of Jupiter moving to left at angle of 45°. Appeared near Jupiter moving in direction of Procyon. From direction of Procyon towards Sirius. Passed 5° above γ Geminorum moving directly towards Jupiter. Moved from a point a little below δ Leonis and disappeared a few degrees below Regulus. Shot from near Regulus and disappeared about 10° below, its path being a prolongation of a line joining Regulus and δ Leonis Shot from a point about midway between Jupiter and Mars moving in direction of Sirius. Appeared near Jupiter and moved towards and disappeared a little below Procyon. Shot downwards from Mars at an angle of about 45° to the right (stars invisible, thin cloud prevalent). Appeared about 2° to left of Aldebaran and shot across η Orionis. The meteor appeared to attain greater velocity after reaching 			ght.
 9 Described a short path about 3° to right of Jupiter moving to left at angle of 45°. Appeared near Jupiter moving in direction of Procyon. From direction of Procyon towards Sirius. Passed 5° above y Geminorum moving directly towards Jupiter. 13 Moved from a point a little below b Leonis and disappeared a few degrees below Regulus. Shot from near Regulus and disappeared about 10° below, its path being a prolongation of a line joining Regulus and b Leonis Shot from a point about midway between Jupiter and Mars moving in direction of Sirius. Appeared near Jupiter and moved towards and disappeared a little below Procyon. Shot downwards from Murs at an angle of about 45° to the right (stars invisible, thin cloud prevalent). Appeared about 2° to left of Aldebaran and shot across y Orionis. The meteor appeared to attain greater velocity after reaching 		Passed nearly midway between δ Ursæ Majoris and β Ursæ Minoris crossing κ and α Draconis. Burst and threw off sparks	s.
Appeared about 2° to left of Aldebaran and shot across η Orionis. The meteor appeared to attain greater velocity after reaching the statemeter velocity after reaching	10 11 12 13 14 15	Appeared near Jupiter moving in direction of Procyon. From direction of Procyon towards Sirius. Passed 5° above γ Geminorum moving directly towards Jupiter. Moved from a point a little below δ Leonis and disappeared a few degrees below Regulus. Shot from near Regulus and disappeared about 10° below, its path being a prolongation of a line joining Regulus and δ Leonis Shot from a point about midway between Jupiter and Mars moving in direction of Sirius.	onis
18 Appeared about 2° to left of Aldebaran and shot across y Orionis. The meteor appeared to attain greater velocity after reaching maximum size. The complete path could not be seen on account of intervening objects.	17	Shot downwards from Mars at an angle of about 45° to the right (stars invisible, thin cloud prevalent).	
	18	Appeared about 2° to left of Aldebaran and shot across η Orionis. The meteor appeared to attain greater velocity after resists maximum size. The complete path could not be seen on account of intervening objects.	achi
	. 1		
	. *		·
	•		. <u></u>
			7

(lxxxi)

٠ . • • • •