\mathcal{L}_{max} $\label{eq:2.1} \begin{split} \mathcal{L}_{\text{max}}(\mathcal{L}_{\text{max}}) = \mathcal{L}_{\text{max}}(\mathcal{L}_{\text{max}}) \mathcal{L}_{\text{max}}(\mathcal{L}_{\text{max}}) \\ = \mathcal{L}_{\text{max}}(\mathcal{L}_{\text{max}}) \mathcal{L}_{\text{max}}(\mathcal{L}_{\text{max}}) \mathcal{L}_{\text{max}}(\mathcal{L}_{\text{max}}) \mathcal{L}_{\text{max}}(\mathcal{L}_{\text{max}}) \end{split}$ $\label{eq:2} \frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1$ $\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{0}^{\infty}\frac{1}{\sqrt{2\pi}}\left(\frac{1}{\sqrt{2\pi}}\right)^{2}d\mu\,d\mu\,.$ $\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2.$

 $\label{eq:2.1} \frac{1}{\sqrt{2\pi}}\int_{0}^{\infty}\frac{1}{\sqrt{2\pi}}\left(\frac{1}{\sqrt{2\pi}}\right)^{2\alpha} \frac{1}{\sqrt{2\pi}}\int_{0}^{\infty}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\int_{0}^{\infty}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\$

 $\label{eq:2} \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{2} \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{2}$

RESULTS

OF THE

MAGNETICAL AND METEOROLOGICAL OBSERVATIONS

MADE AT

THE ROYAL OBSERVATORY, GREENWICH,

IN THE YEAR

1896:

UNDER THE DIRECTION OF

w. H. M. C H R 1ST I E, C.B., M.A., F.R.S.,

ASTRONOMER ROYAL.

PUBLISHED BY ORDER OF THE BOARD OF ADMIRALTY, IN OBEDIENCE TO HER MAJESTY'S COMMAND.

LONDON: PRINTED FOR HER MAJESTY'S STATIONERY OFFICE, BY DARLING & SON, LTD., 1-3, GREAT ST. THOMAS APOSTLE, E.C.

1898.

 $\label{eq:2.1} \frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2\pi}}\left(\frac{1}{\sqrt{2\pi}}\right)^2\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{$

 $\label{eq:2.1} \frac{1}{2} \sum_{i=1}^n \frac{1}{2} \sum_{j=1}^n \frac{$

 $\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2.$

 $\label{eq:2.1} \frac{1}{2} \int_{\mathbb{R}^3} \frac{1}{\sqrt{2}} \, \mathrm{d} \mu \,$

 $\overline{}$

 Δ

 \bar{z}

 \bar{z}

 $\mathcal{L}_{\mathcal{A}}$

PAGE:

 $\ddot{}$

k.

 $\overline{4}$

 \overline{a}

 \cdot

 \sim $\pm\pm$

 \mathbf{r}

 $\ddot{}$

7

 $\mathcal{A}^{\mathcal{A}}$

 $\frac{1}{\sqrt{2}}$

 \sim

 $\hat{\bullet}$

 \sim

 $\bar{\mathbf{v}}$

 $\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{\mathbb{R}^3} \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\left(\frac{1}{\sqrt{2}}\right)^2\left(\frac{1}{\sqrt{2}}\right)^2\left(\frac{1}{\sqrt{2}}\right)^2.$

 ~ 10

 \mathcal{A}

 $\hat{\mathbf{v}}$

 $\mathcal{L}_{\mathcal{L}}$

 \mathcal{L}^{max}

 $\bar{\mathbf{z}}$

 $\bar{\mathbf{r}}$

 \sim

 \sim α

ROYAL OBSERVATORY, GREENWICH.

•

RESULTS

OF

MAGNETICAL AND METEOROLOGICAL-OBSERV ATIONS.

1896.

GBEENWIOH MAGNETICAL AND METEOROLOGICAL OBSERVATIONS, 1896. *a a*

 $\label{eq:2.1} \frac{1}{\sqrt{2\pi}}\left(\frac{1}{\sqrt{2\pi}}\right)^{1/2}\left(\frac{1}{\sqrt{2\pi}}\right)^{1/2}\left(\frac{1}{\sqrt{2\pi}}\right)^{1/2}\left(\frac{1}{\sqrt{2\pi}}\right)^{1/2}\left(\frac{1}{\sqrt{2\pi}}\right)^{1/2}\left(\frac{1}{\sqrt{2\pi}}\right)^{1/2}\left(\frac{1}{\sqrt{2\pi}}\right)^{1/2}\left(\frac{1}{\sqrt{2\pi}}\right)^{1/2}\left(\frac{1}{\sqrt{2\pi}}\right)^{1/2}\left(\frac{1}{\sqrt{$

 $\label{eq:2.1} \frac{1}{\sqrt{2\pi}}\int_{0}^{\infty}\frac{1}{\sqrt{2\pi}}\left(\frac{1}{\sqrt{2\pi}}\right)^{2\alpha} \frac{1}{\sqrt{2\pi}}\int_{0}^{\infty}\frac{1}{\sqrt{2\pi}}\left(\frac{1}{\sqrt{2\pi}}\right)^{\alpha} \frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\int_{0}^{\infty}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\$ $\label{eq:2.1} \mathcal{L}(\mathcal{L}^{\mathcal{L}}_{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}_{\mathcal{L}})) \leq \mathcal{L}(\mathcal{L}^{\mathcal{L}}_{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}_{\mathcal{L}})) \leq \mathcal{L}(\mathcal{L}^{\mathcal{L}}_{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}_{\mathcal{L}}))$

 $\label{eq:2.1} \frac{1}{\sqrt{2\pi}}\int_{0}^{\infty}\frac{1}{\sqrt{2\pi}}\left(\frac{1}{\sqrt{2\pi}}\right)^{2\alpha} \frac{1}{\sqrt{2\pi}}\int_{0}^{\infty}\frac{1}{\sqrt{2\pi}}\left(\frac{1}{\sqrt{2\pi}}\right)^{\alpha} \frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\int_{0}^{\infty}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\$

 $\label{eq:2.1} \frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}^3}\frac{d\mu}{\sqrt{2\pi}}\left(\frac{d\mu}{\mu}\right)^2\frac{d\mu}{\sqrt{2\pi}}\int_{\mathbb{R}^3}\frac{d\mu}{\sqrt{2\pi}}\frac{d\mu}{\sqrt{2\pi}}\frac{d\mu}{\sqrt{2\pi}}\frac{d\mu}{\sqrt{2\pi}}\frac{d\mu}{\sqrt{2\pi}}\frac{d\mu}{\sqrt{2\pi}}\frac{d\mu}{\sqrt{2\pi}}\frac{d\mu}{\sqrt{2\pi}}\frac{d\mu}{\sqrt{2\pi}}\frac{d\mu}{\$

GREENWICH MAGNETICAL AND METEOROLOGICAL OBSERV ATIONS,

1896.

INTRODUCTION.

§ 1. *Personal Establishment and Arrangements.*

During the year 1896 the personal establishment in the Magnetical and Meteorological Department of the Royal Observatory consisted of William Carpenter· Nash, Superintendent, aided by one Established Computer, David J. R. Edney,. appointed on May 21, and four Computers. The Computers employed during the year were, David J. R. Edney, Albert Walter, Percival D. Beadle, Thomas Percy Marchant, and Cedric A. F. Davies.

Mr. Nash controls and superintends the whole of the work of the Department. The routine magnetical and meteorological observations are in general made by the Computers.

§ 2. *General Description of the Buildings and Instrurnents of the Magnetical and Meteorological Observatory.*

The Magnetical and Meteorological Observatory was erected in the year 1838. Its northern face is distant about 170 feet south-south-east from the nearest point of the South-East Dome, and about 35 feet south from the carpenters' workshop. On its east stands the New Library (erected at the end of the year 1881), in the construction of which non-magnetic bricks were used, and every care was taken to exclude iron. The Magnetical and Meteorological Observatory is based on concrete and built of wood, united for the most part by pegs of bamboo; no iron was intentionally admitted in its construction, or in subsequent alterations. Its form is that of a cross, the arms of the cross being nearly in the direction of the cardinal magnetic points as they were in 1838. The northern arm is longer than the others, and is separated from them by a partition, and used as a computing room; the stove which warms this room, and its fiue, are of copper. The remaining portion, consisting of the eastern, southern, and western arms, is known as the Upper Magnet Room. The upper declination magnet and its theodolite, for determination of absolute declination, are placed in the southern arm, an opening in the roof allowing circumpolar stars to be observed by the theodolite for determination of its reading for the astronomical *fl,* 2

1V INTRODUCTION TO GREENWICH MAGNETICAL OBSERVATIONS, 1896.

meridian. Both the magnet and its theodolite are supported on piers built from the .ground. In the eastern arm is placed the Thomson electrometer for photographic record of the variations of atmospheric electricity, its water cistern rests on four glass insulators supported by a platform fixed to the western side of the southern arm, near the ceiling. The Standard barometer is suspended near the junction of the southern and western arms. The sidereal clock, Grimalde and Johnson, is fixed at the junction of the eastern and southern arms, and there is in addition a mean solar chronometer, McCabe No. 649, for general use. A_i mean solar clock (Molyneux), transferred from the Astronomical Department, was set up in the northern arm -during the year 1883.

Until the year 1863 the horizontal and vertical force magnets were also located in the Upper Magnet Room, the upper declination magnet being up to that time .employed for photographic record of the variations of declination, as well as for .absolute measure of the element. But experience having shown that the horizontal and vertical force magnets were exposed in the upper room to large variations of temperature, a room known as the Magnet Basement (in which the variations of temperature are very much smaller) was excavated in the year 1864 below the Upper Magnet Room, and the horizontal and vertical force magnets, as well as a new ·declination magnet for photographic record of declination, were mounted therein. The Magnet Basement is of the same dimensions as the Upper Magnet Room. The lower ·declination magnet and the horizontal force and vertical force magnets, as now located in the Basement, are used entirely for record of the variations of the respective magnetic elements. The declination magnet is suspended in the southern arm, immediately under the upper declination magnet, to avoid mutual interference; the horizontal and vertical force magnets are placed in the eastern and western arms respectively, in positions nearly underneath those which they occupied when in the Upper Magnet Room. All are mounted on or suspended from supports carried by piers built from the ground. A photographic barometer is fixed to the northern wall -of the Basement, and an apparatus for photographic registration of earth currents is placed near the southern wall of the eastern arm. A mean solar clock of peculiar construction for interruption of the photographic traces at each hour is fixed to the pier which supports the upper declination theodolite. Another mean solar clock is attached to the western wall of the southern arm. For better ascertaining the variations of temperature of the Basement a Richard metallic thermograph was added in February, 1886. It is placed on the pier carrying the horizontal force tnagnet, and gives a continuous register of temperature on a scale of 5° to 1 inch, the scale for time. being 24 hours to $5\frac{1}{3}$ inches. On the northern wall, near the photographic barometer, is fixed the Sidereal Standard clock of the Astronomical Observatory, Dent 1906, eommunicating with the chronograph and with clocks of the Astronomical Department

by means of underground wires. This clock is placed in the Magnet Basement, because of its nearly uniform temperature.

The Basement is warmed when necessary by a gas stove (of copper), and ventilated by means of a large copper tube nearly two feet in diameter, which receives the flues from the stove and all gas-lights and passes through the Upper Magnet Room to a revolving cowl above the roof. In January 1889 two additional gas stoves were provided with the object of maintaining a higher temperature during the winter and so rendering the Basement temperature more uniform throughout the year. One of these stoves is placed in the northern corner of the eastern arm, and the other in the middle of the western' wall of the western arm. In December 1894 the eastern stove was removed to Magnetic Office, No.5. Each of the arms of the Basement has a well window facing the south, but these wells are usually closely stopped up with bags packed with straw or jute. In January 1886 a line of 9·inch pipes was laid underground from the Basement southward to a distance of about 155 feet, at which point there is an inlet from the atmosphere, for the purpose of ventilating the Basement by air which has acquired the temperature of the soil at a depth of several feet below the surface, and of thus obtaining greater uniformity of temperature. The depth of the line of pipes below the surface varies from 5 feet at the inlet in the south ground to 11 feet 6 inches at the entrance to the Basement.

A platform erected above the roof of the Magnet House is used for the observation of meteors. The sunshine instrument and a rain gauge are placed on a table on this .platform, and there are also thermometers (placed in a louvre-boarded shed or screen, with free circulation of air) for observation of the temperature of the air in an -exposed situation at a height of 20 feet above the ground. On 1896 February 6 the sunshine instrument was removed to the roof of the Octagon Room. *(See page liii.)*

An apparatus for naphthalizing the gas used for the photographic registration is mounted in a small detached zinc-built room adjacent to the computing room on its western side.

The Dip instrument and Deflexion apparatus are placed in the New Library. Each instrument rests on a heavy slate slab supported by strong wooden framework rising from brick work built into the ground.

To the south of the Magnet House, in what is known as the Magnet Ground, is an open shed, consisting principally of a roof supported on four posts, under which is placed the photographic dry-bulb and wet-bulb thermometer apparatus. On the roof of this shed there is fixed an ozone box and a rain gauge, and close to its northwestern corner are placed the earth thermometers, the upper portions of which, projecting above the ground, are protected by a small wooden hut. About 13 feet to the north of the photographic thermometers is situated the revolving stand carrying the thermometers

vi INTRODUCTION TO GREENWICH MAGNETICAL OBSERVATIONS, 1896.

used for ordinary eye observations, and adjacent to the thermometer stand are three rain gauges and a Stevenson screen containing dry bulb, wet bulb, and maximum and minimum thermometers. South-east of the Magnet House are placed the thermometers for solar and terrestrial radiation; they are laid on short grass, and freely exposed to. the sky.

Until 1894 November 5 the Magnet Ground was bounded on its south side by a range of seven rooms, known as the Magnetic Offices. On the aboye-mentioned date the Offices were shifted to the western side of the Magnet Ground, the original site being required for the North Wing of the new Physical Observatory.

Two Anemometers, Osler's, giving continuous record of direction and pressure of wind, and amount of rain, and Robinson's, giving continuous record of velocity, are fixed, the former above the north-western turret of the Octagon Room (the ancient part of the Observatory), the latter above the small building on the roof of the Octagon Room.

On 1883 March 3 the iron tube of the Lassell reflecting telescope was brought intothe South Ground, and on March 9 the iron supports of the same. On 1883 December 31 the iron work of the dome was brought into the same gtound, and on 1884 June 26 the iron gutter of the dome, in 16 pieces, weighing together about 2 tons 6 cwt. A careful examination of the magnetic registers on each of these occasions shows that no disturbance of the declination, horizontal force, or vertical force magnets was caused by the location of these masses of iron in the South Ground, at a distance of more than 100 feet from the magnets.

In order to determine the effect of a mass of iron on the magnets, experiments were made on 1884 July 2, with 4, 8, 12, and 16 pieces of the gutter respectively, placed at a distance of 25 feet from the declination magnet in a direction south -east (magnetic) from it, so that the maximum effect would be produced. The following are the results for the deflexions of the Upper Declination magnet :-

As the effect of a mass of iron on a magnet varies as the sine of twice its magnetic azimuth divided by the cube of its distance from the magnet, these experiments

)

 \mathbf{I}

show that the deflexion caused by the whole of the iron in the Lassell instrument and dome (which is at a distance of 100 feet and very nearly in the magnetic meridian of the declination magnet) would be quite insensible.

In the year 1891 the Central Octagon of the new Physical Observatory was erected in the South Ground, and in the year 1893 the South Wing was added to the building, considerable masses of iron being introduced, viz., 10 tons in the case of the Central Octagon, the centre of which is about 115 feet from the declination magnet on a bearing 12° East of South (magnetic), and 16 tons in the South Wing at a mean distance of about 145 feet on a bearing 5° East of South (magnetic) from the declination magnet. The principal masses of iron were brought into the South Ground as follows :- on 1891 March 24 and 25, 7 and 3 tons respectively, and on 1893 February 11 and 14, $3\frac{3}{4}$ and $5\frac{1}{2}$ tons respectively. In no case could any disturbance of the magnetic registers be detected. On 1894 November 8 work for the erection of the North Wing was commenced, and the erection of the new Altazimuth building on the north side of the Magnetical Observatory was also commenced about the same time. Both buildings were in progress during, the year 1895: further considerable masses of iron being introduced, viz., 12 tons on' January 16, $2\frac{1}{2}$ tons on April 2, $1\frac{1}{3}$ tons on December 16, for the new Physical Observatory, and 4 tons on March 29, 5 tons on May 2, 2 tons on June 7, $1\frac{1}{3}$ tons on ,June 21, for the new Altazimuth building. The principal masses of iron were placed in position in the North Wing of the Physical Observatory in July 1895, and this seems to haye produced the increase of declination shown from August 1895, the permanent effect being an increase of about 4'. On 1896 February 19 the iron base and other parts of the new Altazimuth instrument were received, and were subsequently mounted in the new Altazimuth Pavilion, the total weight of iron being about 8 cwt. On 1896 October 27 and following days the iron castings of the new Thompson Photographic Equatorial were received, and were subsequently mounted in the central dome of the Physical Observatory at a distance of about 115 feet from the declination magnet. Their total weight is about 10 tons.

Regular observation of the principal magnetical and meteorological elements was commenced in the autumn of the year 1840, and has been continued, with some additions to the subjects of observation, to the present time. Until the end of the year 1847 observations were in general made every two hours, but at the beginning of the year 1848 tbese were superseded by the introduction of the method of photographic registration, by which means a continuous record of the various elements is obtained.

For information on many particulars concerning the history of the Magnetical and Meteorological Observatory, especially in regard to alterations not recited in this volume, which have been made from time to time, the reader is referred to the

wiii INTRODUCTION TO GREENWICH MAGNETICAL OBSERVATIONS, 1896.

Introduction to the Magnetical and Meteorological Observations for the year 1880 and. previous years, and to the Descriptions of the Buildings and Grounds, with accompanying Plans, given in the Volumes of Astronomical Observations for the years 1845 and 1862.

§ 3. *Subjects of Observation in the year 1896.*

The observations comprise determinations of absolute magnetic declination, horizontal force, and dip; continuous photographic record of the variations of declination, horizontal force, and vertical force, and of the earth currents indicated in two distinct lines of wire; eye observations of the ordinary meteorological instruments, including the barometer, dry and wet bulb thermometers, and radiation and earth thermometers, and of thermometers placed on the roof of the Magnet House; continuous photographic record of the variations of the barometer, dry and wet bulb thermometers, and electrometer (for atmospheric electricity); continuous automatic record of the direction, pressure, and velocity of the wind, and of the amount of rain; registration of the duration of sunshine, and amount of ozone; observations of some of the principal meteor showers; general record of ordinary atmospheric changes of weather, including numerical estimation of the amount of cloud, and occasional phenomena.

From the beginning of the year 1885, Greenwich civil time, reckoning from midnight to midnight and counting from 0 to 24 hours, has been employed throughout the magnetical and meteorological sections. In previous years the time used throughout the magnetic section was Greenwich astronomical time, reckoning from noon to noon; and generally, in the meteorological section, Greenwich civil time, reckoning from midnight to midnight.

§ 4. *Magnetic Instruments.*

UPPER DECLINATION MAGNET AND ITS THEODOLITE.—The upper declination magnet, employed solely for the determination of absolute declination, is by Meyerstein of Göttingen: it is a bar of hard steel, 2 feet long, $1\frac{1}{2}$ inch broad, and about $\frac{1}{4}$ inch thick, attached by a pinching screw to the magnet carrier, also by Meyerstein, but since altered by Troughton and Simms. To a stalk extending upwards from the magnet carrier is attached the torsion circle, which consists of two circular brass discs, one turning independently of the other on their common vertical axis, the lower and graduated portion being firmly fixed to the stalk of the magnet carrier; to the upper portion carrying the vernier is attached, by a hook, the suspension skein. This is of silk, and consists of several fibres united by juxtaposition, without apparent twist; its length is about 6 feet.

The magnet, with its suspending skein, &c., is carried by a braced wooden tripod stand, whose feet, passing through holes cut in the floor, rest on slates covering brick piers, built from the ground and rising through the Magnet Basement nearly to its eeiling. The upper end of the suspension skein is attached to a short square wooden

UPPER DECLINATION MAGNET. *ix*

rod, sliding in the corresponding square hole of a fixed wooden bracket. To the upperend of the rod is fixed a leather strap, which passing over two brass pulleys carried by the upper portion of the tripod stand, is attached to a cord which passes down to a small windlass fixed to the stand. Thus in raising or lowering the magnet, an operation necessary in determinations of its collimation error, no alteration is made in the length of the suspension skein. The magnet is inclosed in a double rectangularwooden box (one box within another), both boxes being covered externally and internally with gilt paper, and having holes at their south and north ends, for illumination of the magnet-collimator and for viewing the collimator with the theodolite telescope respectively. The holes in the outer box are covered with glass. The magnet-collimator is formed by a diagonally placed cobweb-cross, and a lens of 13 inches focal length and nearly 2 inches aperture, carried by two sliding frames fixed by pinching screws to the south and north arms of the magnet respectively. . The cobweb-cross is in the principal focus of the lens, and its image in the theodolitetelescope is well seen. From the lower side of the magnet carrier a rod extends downwards, terminating below the magnet box in a horizontal brass bar immersed in water, for the purpose of checking small vibrations of the magnet.

The theodolite, by which the position of the upper declination magnet is observed, is. by Troughton and Simms. It is planted about 7 feet north of the magnet. Theradius of its horizontal circle is 8·3 inches, and the circle is divided to 5', and read, ^j by three verniers, to 5". The theodolite has three foot-screws, which rest in brasschannels let into the stone pier placed upon the brick pier which rises from the ground through the Magnet Basement. The length of the telescope is 21 inches, and the aperture of its object glass 2 inches: it is carried by a horizontal transit axis $10\frac{1}{2}$ inches long, supported on Y's carried by the central vertical axis of the theodolite. The eyepiece has one fixed horizontal wire and one vertical wire moved by a micrometer-screw, the field of view in the observation of stars being illuminated through the pivot of the transit-axis on that side of the telescope which carnes the micrometer-head. Early in 1893 the theodolite was thoroughly repaired by Messrs. Troughton and Simms, and a new striding level was applied. The value of one division of this level is 1 " \cdot 5. The opening in the roof of the Magnet House permits of observation of circumpolar stars as high as δ Ursæ Minoris above the pole and as low as β Cephei below the pole. A fixed mark, consisting of a small hole in a plate of metal, placed on one of the buildings of the Astronomical Observatory, at a distance of about 270 feet from the theodolite, affords an additional check on its continued steadiness.

The inequality of the pivots of the axis of the theodolite telescope was re-determined on 1893 February 7 and March 28, after the above-mentioned repairs, and it was δ BEENWICH MAGNETICAL AND METEOROLOGICAL OBSERVATIONS, 1896. δ

:£ INTRODUCTION TO GREENWICH MAGNETICAL OBSERVATIONS, 1896.

found that the correction required is -4^{div-5} equivalent to $-6'''75$, with illuminated pivot west, the position for observation of a circumpolar star.

The value in arc of one revolution of the telescope-micrometer is I'. 34*'1*'2.

The reading for the line of collimation of the theodolite telescope was found by ten double observations on 1896 February 25 to be 100^r'240; on 1896 May 1, 100^r'228; on 1896 September 1, 100^r212; on 1896 November 2, 100^r219; and on 1896 December 1, 100 r 240. The value used throughout the year 1896 was 100 r 200.

The effect of the plane glass in front of the outer box of the declination-magnet at that end of the box towards the theodolite was determined by ten double observations made on 1894 December 10, which showed that in the ordinary position of the glass the theodolite readings were diminished by $20^{\prime\prime}$. Two other sets of observations, made on 1895 December 12, and 1896 December 1, gave 20"-1 and 20"-9 respectively. The mean of these, 20"'6 has been added to all readings throughout the year 1896.

The error of collimation of the magnet collimator is found by observing the position of the magnet, first with its collhnator in the usual position (above the magnet), then with the collimator reversed (or with the magnet placed in its carrier with the collimator below), repeating the observations several times. The value used during the year 1896 was 26'. 5"'6, being the mean of determinations made on 1892 November 29, 1893 December 7, 1894 December 10, 1895 December 12, and 1896 December 2, giving respectively 26'. 7"'1, 26'. 6"'5, 26'. 1"'8, 26'. 8"·5, and $26'$. $4''$ 0 . With the collimator in its usual position, above the magnet, the quantity $26'$. $5''$ ⁶ has been subtracted from all readings.

The effect of torsion of the suspending skein is eliminated by turning the lower portion of the torsion-circle until the torsion bar (an oak bar of the same size as the magnet, and weighted with lead weights to be also of equal weight), inserted in place of the magnet, rests in the plane of the magnetic meridian. The bar is thus inserted usually about once a month, and whenever the adjustment is found not to have been sufficiently close, the observed positions of the magnet are corrected for displacement of the magnet from the meridian by the torsion of the skein. Such correction is determined experimentally, with the magnet in position, by changing the reading of the torsion-circle by a definite amount, usually 90°, thus giving the skein that amount of azimuthal twist, and observing, with the theodolite, the change in the position of the magnet thereby produced, from which is derived the ratio of the couple due to torsion of the skein

•

to the couple due to the earth's horizontal magnetic force. This ratio was found to be $\frac{1}{132}$ on 1894 December 10, $\frac{1}{133}$ on 1895 December 13, and $\frac{1}{140}$ on 1896 December 2. During the year 1896 the plane in which the suspension skein was free from torsion so nearly coincided with the magnetic meridian, that no correction of the absolute measures of magnetic declination for deviation of the plane of no torsion was required.

The time of vibration of the upper declination magnet under the influence of terrestrial magnetism was found on 1895 December 12 to be 30^s⁸0, on 1896 March 25, 30s'52, and on 1896 December 2, 30s·77.

The reading of the azimuthal circle of the theodolite corresponding to the astronomical meridian is determined about twice in each month by observation of the stars Polaris or δ Ursæ Minoris. The fixed mark is usually observed weekly. The concluded mean reading of the circle for the south astronomical meridian (deduced entirely from the observations of the polar stars), used from January 1 to June 5, was 27°. 2'. 50"'3, and from June 6 to December 31, 27°. 2'. 41"'8.

In regard to the manner of making observations with the upper declination magnet :--The observer on looking into the theodolite telescope sees the image of the diagonal cross of the magnet collimator vibrating alternately right and left. The time of vibration of the magnet being about 30 seconds, he first applies his eye to the telescope about one minute, or two vibrations, before the' prearranged time of observation, and, with the vertical wire carried by the telescopemicrometer, bisects the magnet-cross at its next extreme limit of vibration, reading the micrometer. He similarly observes the next following extreme vibration, in the opposite direction, and' so on, taking in all four readings. The mean of each pair of adjacent readings of the micrometer is taken, giving three means, and' the mean of these three is adopted. In practice this is done by adding the first and fourth readings to twice the second and third, and dividing the sum by 6. Should the magnet be nearly free from vibration, two bisections only of the cross are made, one at the vibration next before the pre-arranged time, the other at the vibration following. The verniers of the theodolite-circle are then read. The excess of the adopted micrometer-reading above the reading for the line of collimation of the telescope being converted into arc and applied to the mean circle-reading, and also the corrections for collimation of the magnet and for collimation of the plane glass in front of its box, the concluded circlereading corresponding to the position of the magnet is found. The difference b 2

xii INTRODUCTION TO GREENWICH MAGNETICAL OBSERVATIONS, 1896.

between this reading and the adopted reading of the circle for the south astronomical meridian gives, when, as is usually the case, no correction for torsion of the skein is necessary, the observed value of absolute declination, afterwards used for determining the value of the photographed base line on the photographic register ()f the lower declination magnet. The times of observation of the upper declination magnet are usually 9^h , 10^m , 13^h , 10^m , 15^h , 10^m , and 21^h , 10^m of Greenwich civil time, reckoning from midnight.

The accuracy of the measure of absolute declination by the upper declinationmagnet depends on the condition that this magnet should be vertically over the lower magnet. But the arrangements are such that with the gradual decrease of declination, the upper magnet has to be shifted more and more to the west in order that it may be viewed by its theodolite, the position of which on its pier cannot be altered. In order to determine whether the consequent change in the relative position of the two magnets 'bas in late years increased to such an extent that any measurable mutual influence would exist, the upper magnet has on two different occasions (once in the year 1887 and once in the year 1889) been temporarily removed to the ante-room, where its influence would be quite insensible. On both occasions the photographic register of the lower magnet showed no perceptible change of position. Conversely, the removal {)f the lower magnet would not influence the position of the upper one, which is used for absolute measure.

LOWER DECLINATION MAGNET.—The lower declination magnet is used simply for the purpose of obtaining photographic register of the variations of magnetic declination. It is by Troughton and Simms, and is of the same dimensions as the upper declination magnet, being 2 feet long, $1\frac{1}{2}$ inch broad, and $\frac{1}{4}$ inch thick. The magnet is suspended, in the Magnet Basement, immediately below the upper declination magnet, in order that the absolute measure of declination by the upper magnet should not be affected by the proximity of the lower magnet.

The manner of suspension of the magnet is in general similar to that of the upper declination magnet, the suspension pulleys being carried by a small pier built on one of the crossed slates resting on the brick piers rising from the ground. The length of free suspending skein is about 6 feet, but, unlike the arrangement adopted for the upper magnet, the skein is itself carried over the suspension pulleys. The position of the azimuthal plane in which the torsion bar rests, when substituted for the magnet, is examined from time to time, and adjustment made as necessary, to keep this plane in or near the magnetic meridian, such exact adjustment as is required for the upper declination-magnet not being necessary in this case.

LOWER DECLINATION MAGNET: PHOTOGRAPHIC ARRANGEMENTS. *xiii*

To destroy the small accidental vibrations to which the magnet would be otherwise liable, it is encircled by a damper consisting of a copper bar, about 1 inch square, which is bent into a long oval form, the plane of the oval being vertical; a lateral bend is made in the upper bar of the oval to avoid interference with the suspension piece of the magnet. The effect of the damper is to reduce the amplitude of the oscillation after every complete or double vibration of the magnet in the proportion of 5 : 2 nearly.

In regard to photographic arrangements, it may be convenient, before proceeding to speak of the details peculiar to each instrument, to remark that the general principle adopted for obtaining continuous photographic record is the same for all instruments. For the register of each indication a cylinder of ebonite is provided, the axis of the cylinder being placed parallel to the direction of the change of indication to be registered. If, as is usually the case, there are two indica- 'tions whose movements are in the same direction, both may be registered on the same cylinder: thus the movements in the case of magnetic declination and horizontal magnetic force, being both horizontal, can be registered on different parts of one cylinder with axis horizontal: so also can two different galvanic earth currents. The movements in the case of vertical magnetic force, and of the barometer, being both vertical, can similarly be registered on different parts of one cylinder having its axis vertical, as also can the indications of the dry-bulb and wet-bulb thermometers. In the electrometer the movement being horizontal, a horizontal cylinder is provided.

The cylinder is in each case driven by chronometer or accurate clock-work to ensure uniform motion. The pivots of the horizontal cylinders turn on anti-friction wheels: the vertical cylinders rest each on a circular plate turning on anti-friction wheels, the driving mechanism being placed below. A sheet of sensitized paper being wrapped round the cylinder, and held by a slender brass clip, the cylinder thus prepared is placed in position, and connected with the clock-movement: it is then rendy to receive the photographic record, the optical arrangements for producing which will be found explained in the special description of each particular instrument. The sheets are removed from the cylinders and fresh sheets supplied every day, usually at noon. On each sheet, a reference line is also photographed, the arrangements for which will be more particularly described in each special case. All parts of the apparatus and all parts of the paths of light are protected, as found necessary, by wood or zinc casings or tubes, blackened on the inside, in order to prevent stray light from reaching the photographic paper.

X2V INTRODUCTION TO GREENWICH MAGNETICAL OBSERVATIONS, 1896.

In June 1882 the photographic process employed for so many years was discarded, and a dry paper process introduced, the argentic-gelatino-bromide paper, as prepared by Messrs. Morgan and Kidd of Richmond (Surrey), being used with ferrous oxalate development. The greater sensitiveness of this paper permits diminution of the effective surface of the magnet mirrors, and allows also the use of smaller gas flames. In the case of the vertical force magnet the old and comparatively heavy mirror has been replaced by a small and light mirror with manifest advantage, as will be seen in the description of the vertical force magnet. The new paper acts equally well at all seasons of the year, and any loss of register on account of photographic failure is now extremely rare.

Referring now specially to the lower declination magnet, there is attached to the magnet carrier, for the purpose of obtaining photographic register of the motions of the magnet, a concave mirror of speculum metal, 5 inches in diameter (reduced by a stop, on the introduction of the new photographic paper, to an effective diameter ot about 1 inch), which thus partakes in all the angular movements of the magnet. The revolving ebonite cylinder is $11\frac{1}{2}$ inches long and $14\frac{1}{4}$ inches in circumference: it is supported, in an approximately east and west position, on brass uprights carried by a metal plate, the whole being planted on a firm wooden platform, the supports of which rest on blocks driven into the ground. The platform is placed midway between the declination and horizontal force magnets, in order that the variations of magnetic declination and horizontal force may both be registered on the same cylinder, which makes one complete revolution in 26 hours.

The light used for obtaining the photographic record is that given by a flame of coal gas, charged occasionally with the vapour of coal naphtha. A vertical slit about $0^{in.}3$ long and 0^{in} 01 wide, placed close to the light, is firmly supported on the pier which carries the magnet. It stands slightly out of the straight line joining the mirror of the magnet and the registering cylinder, and its distance from the mirror is about 25 inches. The distance of the axis of the registering cylinder .from the mirror is 134'4 inches. Immediately above the cylinder, and parallel to its axis, are placed two long reflecting prisms (each 11 inches in length) extending from end to end of the cylinder and facing opposite ways towards the mirrors carried by the declination and horizontal force magnets respectively. The front surface of each prism is convex, being a portion of a horizontal cylinder. The light of the declination lamp, after passing through the vertical slit, fulls on the concave mirror and is thence reflected as a converging beam to form an image of the slit on the convex surface of the reflecting prism, by the action of which it is reBected downwards to the paper on the cylinder as a small spot of light. The concave mirror

can be so adjusted in azimuth on the magnet that the spot shall fall not at the centre of the cylinder but rather towards its western side, in order that the declination trace shall not interfere with that of horizontal force, which is made to fall towards the eastern side of the cylinder. The special advantage of the arrangement here described is that the registers of both magnets are made at the same part of the circumference of the cylinder, a line joining the two spots being parallel to its axis, so that when the traces on the paper are developed, the parts of the two registers which appear in juxtaposition correspond to the same Greenwich time.

By means of a small prism, fixed near the registering cylinder, the light from another lamp is made to form a spot of light on the cylinder in a fixed position, so that, as the cylinder revolves, a reference or base line is traced out on the paper, from which, in the interpretation of the records, the ordinates are measured.

A clock of special construction, arranged by Messrs. E. Dent and Co., acting upon a small shutter placed near the declination slit, cuts off the light from the mirror two minutes before each hour, and admits it again two minutes after the hour, thus producing at each hour a visible interruption in the trace, and so ensuring accuracy as regards time scale. By means of another shutter the observer occasionally cuts off the light for a few minutes, registering the times at which it was cut off and admitted again. The visible interruptions thus made at definite times in the trace obviate any possibility of error being made by wrong numeration of the hourly breaks.

The usual hour ot changing the photographic sheet is noon, but on Sundays, and occasionally on other days, this rule is not strictly followed. To obviate any uncertainty that might arise on such occasions from the interference of the two ends of a trace slightly longer than 24 hours, it has been arranged that one revolution of the cylinder should be made in 26 hours. The actual length of 24 hours on the sheet is about 13·3 inches.

The scale for measurement of ordinates of the photographic curve is thus determined. The distance from the concave mirror carried by the magnet to the surface of the cylinder, in the actual path of the ray of light through the prism, is practically the same as the horizontal distance of the centre of the cylinder from the mirror, 134.4 inches. A movement of 1° of the mirror produces a movement of 2° in the reflected ray. From this it is found that 1° of movement of the mirror, representing a change of 1° of magnetic declination, is equal to 4·691 inches on the photographic paper. A small strip of cardboard is therefore prepared, graduated on this scale to degrees and minutes. The ordinates of the curve as referred to the base line being measured for the times at which absolute values of declination were determined by the upper declination magnet, usually four times

xvi INTRODUCTION TO GREENWICH MAGNETICAL OBSERVATIONS, 1896.

daily, the apparent value of the baseline, as inferred from each observation, is found. The process assumes that the movements of the upper and lower declination magnets are precisely similar. The separate base line values being divided into groups, usually monthly, a mean base line value is adopted for use through each group. This adopted base line value is written upon every sheet. Then, with the cardboard scale, there is laid down, conveniently near to the photographic trace, a new base line, whose ordinate represents some whole number of degrees or other convenient quantity. Thus every sheet carries its own scale of magnetic measure. From the new base line the hourly ordinates (see page *xxxii)* are measured.

HORIZONTAL FORCE MAGNET.-The horizontal force magnet, for measure of the variations of horizontal magnetic force, was made by Meyerstein of Gottingen, and like the two declination magnets, is 2 feet long, $1\frac{1}{2}$ inch broad, and about $\frac{1}{4}$ inch thick. For support of its suspension skein the back and sides of its brick pier rise through the eastern arm of the Magnet Basement to the upper Magnet Room, being there covered by a slate slab, to the top of which a brass plate is attached, carrying, immediately above the magnet, two brass pulleys, with their axes in the same east and west line; and at the back of the pier, and opposite to these pulleys, two others, with their axes similarly in an east and west line: these constitute the upper suspension piece, and support the upper portions of the two branches of the suspension skein. The two lower pulleys, having their axes in the same horizontal plane, and their grooves in the same vertical plane, are attached to a small horizontal bar which forms the upper portion of the torsion circle: it carries the verniers for reading the torsion circle, and can be turned independently of the lower and graduated portion of the torsion circle, below which, and in rigid connexion with it, is the magnet carrier.

The suspension skein is led under the two pulleys carried by the upper portion of the torsion circle, its two branches then rise up and pass over the front pulleys of the upper suspension piece, thence to and over the back pulleys, thence descending to a single pulley, round which the two branches are tied: from this pulley a cord goes to a small windlass fixed to the back of the pier. The effective length of each of the two branches of the suspension skein is about $7^{tt} 6ⁱⁿ$. The distance between the branches of the skein, where they pass over the upper pulleys, is $1ⁱⁿ·14$: at the lower pulleys the distance between the branches is $0ⁱⁿ·80$. The two branches are not intended to hang in one plane, but are to be so twisted that their torsion will maintain the magnet in a direction very nearly east and west magnetic, the marked end being west. In this state an increase of horizontal magnetic force draws the marked end of the magnet towards the north, whilst a diminution of horizontal force allows the marked end to recede towards the south under the influence of torsion. An oval copper bar, exactly

similar to that used with the lower declination magnet, is applied also to the horizontal force magnet, for the purpose of diminishing the small accidental vibrations.

Below the magnet carrier there is attached a small plane mirror to which is directed a small telescope for the purpose of observing by reflexion the graduations of a horizontal opal glass scale, attached to the southern wall of the eastern arm of the basement. The magnet, with its plane mirror, hangs within a double rectangular box, covered with gilt paper in the same way as was described for the upper declination magnet. The numbers of the fixed scale increase from east to west, so that when the magnet is inserted in its usual position, with its marked end towards the west, increasing readings of the scale, as seen in the telescope, denote increasing horizontal force. The normal to the scale that meets the centre of the plane mirror is situated at the division 51 of the scale nearly, the distance of the scale from the centre of the plane mirror being 90°84 inches. The angle between the normal to the scale, which coincides nearly with the normal to the axis of the magnet, and the axis of the fixed telescope is about 38°, the plane of the mirror being therefore inclined about 19° to the axis of the magnet.

To adjust the magnet so that it shall be truly transverse to the magnetic meridian, which position is necessary in order that the indications of the instrument may apply truly to changes in the magnitude of horizontal magnetic force, without regard to changes of direction, the time of vibration of the magnet and the reading of the fixed scale are determined for different readings of the torsion circle. In regard to the interpretation of such experiments the following explanation may be premised.

Suppose that the magnet is suspended in its carrier with its marked end in a magnetic westerly direction, not exactly west but in any westerly direction, and suppose that, by means of the fixed telescope, the reading of the scale is taken. The position of the axis of the magnet is thereby defined. Now let the magnet be taken out of its carrier, and replaced with its marked end easterly. The terrestrial magnetic force will now act, as regards torsion, in the direction opposite to that in which it acted before, and the magnet will take up a different position. But by turning the torsion-circle so as to reverse the direction of the torsion produced by the oblique tension of the two branches of the suspending skein, the magnet maybe made to take the same position as before but with poles reversed, which will be proved by the reading of the scale, as seen in the fixed telescope, being the same. We thus obtain two readings of the torsion circle corresponding to the same direction of the magnet axis, but with the marked end opposite ways, without however possessing any information as to whether the magnet axis is accurately transverse to the magnetic meridian, inasmuch as the same operation can be performed whether the magnet axis be transverse or not.

GREENWIOH MAGNETICAL AND METEOROLOGICAL OBSERVATIONS, 1896. *c*

$xvii$ INTRODUCTION TO GREENWICH MAGNETICAL OBSERVATIONS, 1896.

But there is another observation which will indicate whether the magnet axis is or is not accurately transverse. Let, in addition, the time of vibration be taken in each position of the magnet. Resolve the terrestrial magnetic forces acting on the poles of the magnet each into two parts, one transverse to the magnet, the other longitudinal. In the two positions of the magnet, marked end westerly and marked end easterly, the magnitude of the transversal force is the same, and the changes which the torsion undergoes in a vibration of given extent are the same, and, if there were no other force, the time of vibration would also be the same. But there is another force, the longitudinal force, and when the marked end is northerly this tends from the centre of the magnet's length, and when it is southerly it tends towards the centre of the magnet's length, and in a vibration of given extent this force, in one case increases that due to the torsion, and in the other case diminishes it. The times of vibration will therefore be different. There is only one exception to this, which is when the magnet axis is transverse to the magnetic meridian, in which case the longitudinal force vanishes, and the times of vibration in both positions of the magnet become the same.

The criterion then of the position truly transverse to the meridian is this. Find the readings of the torsion circle which, with the magnet in reversed positions, will give the same readings of the scale and the same time of vibration for the magnet. With such readings of the torsion circle the magnet is, in either position, transverse to the meridian, and the difference of circle-readings is the difference between the position in which the terrestrial magnetism acting on the magnet twists it one way and the position in which the same force twists it the opposite way, and is therefore double of the angle of torsion of the suspending lines for which, in either position, the force of terrestrial magnetism is neutralized by the torsion.

The present suspension' skein was mounted on 1880 December 30. On 1895 December 31 the following observations were made for determination of the angle of torsion :-

From these observations it appeared that the times of vibration and scale readings were sensibly the same when the torsion circle read 146°.53', marked end west, and 231°. 47', marked end east, the difference being 84°. 54'. Half this difference, or 42°. 27', is therefore the angle of torsion when the magnet is transverse to the meridian. The value adopted in the reduction of the observations during the year 1896 was 42° . $30'$.

The adopted reading of torsion-circle, for transverse position of the magnet, the marked end being west, was 147° throughout the year.

The angle through which the magnet turns to produce a change of one division of scale reading, and the corresponding variation of horizontal force in terms of the whole horizontal force, is thus found.

The length of $30^{di}y·85$ of the fixed scale is exactly 12 inches, and the distance of the centre of the face of the plane mirror from the scale 90·84 inches; consequently the angle at the mirror subtended by one division of the scale is 14'. 43"·2, or for change of one division of scale-reading the magnet is turned through an angle of 7'. 21"·6.

The variation of horizontal force, in terms of the whole horizontal force, producing angular motion of the magnet corresponding to change of one division of scale reading = cotan. angle of torsion \times value of one division in terms of radius. Using the numbers above given, the change of horizontal force corresponding to change of one division of scale-reading was found to be 0·002337, which value has been used throughout the year 1896 for conversion of the observed scale-readings into parts of the whole horizontal force.

In regard to the manner of making observations with the horizontal force magnet. A fine vertical wire is fixed in the field of view. of the observing telescope, across which the graduations of the fixed scale, as reflected by the plane mirror carried by the magnet, are seen to pass alternately right and left as the magnet oscillates, and the scale reading for the extreme points of vibration is easily taken. The hours of observation are usually $9^{\text{h}}5^{\text{m}}$, $13^{\text{h}}5^{\text{m}}$, $15^{\text{h}}5^{\text{m}}$, and $21^{\text{h}}5^{\text{m}}$ of Greenwich civil time (reckoning from midnight). Remarking- that the time of vibration of the magnet is about 20 seconds, and that the observer looks into the telescope about 40 seconds before the pre-arranged time, the manner of making the observation is generally similar to that already described for the upper declination magnet.

A thermometer, the bulb of which reaches considerably below the attached scale, is so planted in a nearly upright position on the outer magnet box that the bulb projects into. the interior of the inner box containing the magnet. Readings of this thermometer are usually taken at 9^h , 10^h , 11^h , 12^h , 13^h , 14^h , 15^h , and 21^h , Greenwich civil time. An index correction of $-0°3$, has been applied to all readings.

c 2

xx INTRODUCTION TO GREENWICH MAGNETICAL OBSERVATIONS, 1896.

The photographic record of the movements of the horizontal force magnet is made on the same revolving cylinder as is used for record *ot* the motions of the lower declination magnet. And, as described for that magnet, there is also attached to the carrier of the horizontal force magnet a concave mirror, 4 inches in diameter, reduced by a stop (on the introduction of the new photographic paper) to an effective diameter of about 1 inch. The arrangements as regards lamp, slit, and other parts are precisely similar to those for the lower declination magnet already described, and may be perfectly understood by reference to that description (pages *xiv* and *xv),* in which was incidentally included an explanation of some parts specially referring to register of horizontal force. The distance of the vertical slit from the concave mirror of the magnet is about 21 inches, and the distance of the axis of the registering cylinder from the concave mirror is 136-8 inches, the slit standing slightly out of the straight line joining the mirror and the registering cylinder. The same base line is used for measure of the horizontal force ordinates, and the register is similarly interrupted at each hour by the clock, and occasionally by the observer, for determination of time scale, the length of which is of course the same as that for declination.

The scale for measure of ordinates of the photographic curve is thus constructed. The distance from the concave mirror to the surface of the cylinder, in the actual path of the ray of light through the prism is (as for declination) practically the same as the horizontal distance of the centre of the cylinder from the mirror, or 136.8 inches. But, because of the reflexion at the concave mirror, the double of this measure, or 273-6 inches, is the distance that determines the extent of motion on the cylinder of the spot of light, which, in inches, for a change of 0.01 part of the whole horizontal force will therefore be $273.6 \times \tan$, angle of torsion $\times 0.01$. Taking for angle of torsion 42° . 30' the movement of the spot of light on the cylinder for a change of 0.01 of horizontal force is thus found to be 2·507 inches, and with this unit the cardboard scale for measure of the ordinates was prepared. The ordinates being measured for the times at which eye observations of the scale were made, combination of the measured ordinates with the observed scale readings converted into parts of the whole horizontal force, gives an apparent value of the base line for each observation. These being divided into groups, mean base line values are adopted, written on the sheets, and new base lines laid down, from which the hourly ordinates (see page *xxxii)* are measured, exactly in the same way as described for declination.

The indications of horizontal force are in a slight degree affected by the small changes of temperature to which the Magnet Basement is subject. The temperature coefficient of the magnet was determined by artificially heating the Magnet Basement to different temperatures, and observing the, change of position of the magnet thereby produced. This process seems preferable to others in which was observed the effect

HORIZONTAL FORCE MA.GNET: VERTICAL FORCE MAGNET. .1]3:'1,

which the magnet, when enclosed within a copper trough or box and artificially heated by hot water or hot air to different temperatures, produced on another suspended magnet, since the result obtained includes the entire effect of temperature upon all the various parts of the mounting of the magnet, as well as on the magnet itself. Referring to previous volumes for details, it is sufficient here to state that from a series of experiments made between January 3 and February 21 of the year 1868 on the principle mentioned, in temperatures ranging from 48° to 61° -5, it appeared that when the marked end of the horizontal force magnet was to the west (its ordinary position) a change of 1° of temperature (Fahrenheit) produced an apparent change of '000174 of the whole horizontal force, a smaller number of observations made with the marked end of the magnet east, in temperatures ranging from 49° to 60° 9, indicating that a change of 1° of temperature produced an apparent change of '000187 of horizontal force, increase of temperature in both cases being accompanied by decrease of magnetic force. It was concluded that an increase of 1° of temperature produces an apparent decrease of '00018 of horizontal force. In the years 1885 and 1886 further observations on the same general plan were made, with the result that the decrease of horizontal force for increase of 1° of temperature was found to be somewhat greater at the higher than at the lower temperatures. A discussion of all the observations taken in 1885 and 1886, details of which are given at the end of the Introduction for 1886, shows that the correction for reduction to temperature 32° (expressed in terms of the horizontal force) is $(t-32) \times 0.000936 + (t-32)^2 \times 0.00002074$ in which t is the temperature in degrees Fahrenheit. The decrease of horizontal force for an increase of 1° of temperature (Fahrenheit) would thus be '00021 at 60°, '00023 at 65°, and '00025 at 70°.

VERTICAL FORCE MAGNET.—The vertical force magnet, for measure of the variations of vertical magnetic force, is by Troughton and Simms. It is 1 ft. 6 in. long and lozenge shaped, being broad at the centre and pointed at the ends; it is mounted on a solid brick pier capped with stone, situated in the western arm of the basement, its position being nearly symmetrical with that of the horizontal force magnet in the eastern arm. The supporting frame consists of two pillars, connected at their bases, on whose tops are the agate planes upon which rest the extreme parts of the continuous steel knife edge, attached to the magnet carrier by clamps and pinching screws. The knife edge, eight inches long, passes through an aperture in the magnet. The axis of the magnet is approximately transverse to the magnetic meridian, its marked end being east; its axis of vibration is thus nearly north and south magnetic. The magnet carrier is of iron; at its southern end there is fixed a small plane mirror for use in eye observations, whose plane makes with the vertical plane through the magnet an angle of $52\frac{3}{2}$ nearly. A telescope fixed to the west side of the brick pier supporting the

xxii INTRODUCTION TO GREENWICH MAGNETICAL OBSERVATIONS, 1896.

theodolite of the upper declination magnet is directed to the mirror, for observation by reflexion of the divisions of a vertical opal glass scale fixed to the pier that carries the telescope, very near to the telescope itself. The numbers of this fixed scale increase downwards, so that when the magnet is placed in its usual position with the marked end east, increasing readings of the scale, as seen in the telescope, denote increasing vertical force.

The magnet is placed excentrically between the bearing parts of its knife edge, nearer to the southern side, leaving a space of about four inches in the northern part of the iron frame, in which the concave mirror used for the photographic register is planted. Two steel screw stalks, carrying adjustable screw weights, are fixed to the magnet carrier, near its northern side; one stalk is horizontal, and a change in the position of the weight affects the position of equilibrium of the magnet; the other stalk is vertical, and change in the position of its weight affects the delicacy of the balance, and so varies the magnitude of its change of position produced by a given change in the vertical force of terrestrial magnetism.

In the year 1882 Messrs. Troughton and Simms substituted for the old mirror of 4 inches diameter a much lighter mirror of 1 inch diameter, and also lowered the position of the knife-edge bar with respect to the magnet so as to permit of a diminution of the adjustable counterpoise weights which as well as the mirror appear to largely affect the temperature correction of this balance-magnet. The use of a smaller and much lighter mirror was rendered possible by the greater sensitiveness of the new photographic paper introduced in 1882 June.

The whole is enclosed in a rectangular box, resting upon the pier before mentioned, and having apertures, covered with glass, opposite to the two mirrors carried by the magnet.

The time of vibration of the magnet in the vertical plane is observed usually about once in each week. From 69 observations made during the course of the year this was found to be 18^{s} : 910.

The time of vibration of the magnet in the horizontal plane is determined by suspending the magnet with all its attached parts from a tripod stand, its broad side being in a plane parallel to the horizon, so that its moment of inertia is the same as when in observation. A telescope, with a wire in its focus, being directed to the plane mirror carried by the magnet, a scale of numbers is placed on the floor, at right angles to the long axis of the magnet, so as to be seen, by reflexion, in the fixed telescope. The magnet is observed only when swinging through a small arc. Observations made in the way described on 1893 December 29 gave for the time of vibration of the magnet in the horizontal plane, 16^{s} 685. This value has been used throughout for the year 1896.

The length of the normal to the fixed vertical scale that meets the face of the plane mirror is 186.07 inches, and $30^{div}85$ of the scale correspond to 12 inches. Consequently the angle which one division of the scale subtends, as seen from the mirror, is $7'. 11''.2$, or the angular movement of the normal to the mirror, corresponding to a change of one division of scale reading, is 3'. 35".6.

But the angular movement of the normal to the mirror is equal to the angular movement of the magnet multiplied by the sine of the angle which the plane of the mirror makes with a vertical plane through the magnet. This angle, as already stated, is $52\frac{3}{4}$ °, therefore dividing the result just obtained, 3'. $35^{\prime\prime}$ °6, by Sin. $52\frac{3}{4}$ °, the angular motion of the magnet corresponding to a change of one division of scale reading is found to be $4'$. $30''·9$.

The variation of vertical force, in terms of the whole vertical force, producing angular motion of the magnet corresponding to a change of one division of scale reading = cotan. dip \times $(\frac{T'}{T})^2$ x value of one division in terms of radius, in which T' is the time of vibration of the magnet in the horizontal plane, and T that in the vertical plane. Assuming $T' = 16^{s} \cdot 685$, $T = 18^{s} \cdot 910$, and dip = 67°. 14′, the change of vertical force corresponding to change of one division of scale reading was found to be 0.0004291 , and this value has been used throughout the year 1896 for conversion of the observed scale readings into parts of the whole vertical force.

The hours of observation of the vertical force magnet are the same as those for the horizontal force magnet, and the method of observation is precisely similar, the time of vertical vibration being substituted for that of horizontal. The wire in the fixed telescope is here horizontal, and as the magnet oscillates the divisions of the scale are seen to pass upwards and downwards in the field of view.

As in the case of the horizontal force magnet a thermometer is provided whose bulb projects into the interior of the magnet box. Readings are taken usually at $9h$, $10h$, $11h$, $12h$, $13h$, $14h$, $15h$, $16h$, and $21h$, Greenwich civil time. An index correction of -0° 3, has been applied to all readings.

The photographic register of the movements of the vertical force magnet is made on a cylinder of the same size as that used for declination and horizontal force, driven also by chronometer movement. The cylinder is here placed vertical instead of horizontal, and the variations of the barometer are also registered on it. The slit is

xxiv INTRODUCTION TO GREENWICH MAGNETICAL OBSERVATIONS, 1896.

horizontal, and other arrangements are generally similar to those already described for declination and horizontal force. The concave mirror carried by the magnet is 1 inch in diameter, and the slit is distant from it about 22 inches, being placed a little out of the straight line joining the mirror and the registering cylinder. There is a slight deviation in the further optical arrangements. Instead of falling on a reflecting prism (as for declination and horizontal force) the converging horizontal beam from the concave mirror falls on a system of plano-convex cylindrical lenses, placed in front of the cylinder, with their axes parallel to that of the cylinder. The trace is made on the western side of the cylinder, the position of the magnet being so adjusted that the spot of light shall fall on the lower part of the sheet to avoid interference with the barometer trace. A base line is photographed, and the record is interrupted at each hour by the clock, and occasionally by the observer, for establishment of tirne scale, in the same way as for the other magnets. The length of the time scale is the same as that for the other magnetic registers.

The scale for measure of ordinates of the photographic curve is determined as follows : — The distance from the concave mirror of the magnet to the surface of the registering cylinder is 100.2 inches. But the double of this measure, or 200.4 inches, is the distance that detennines the extent of motion on the cylinder of the spot of light, which, in inches, for a change of 0'01 part of the whole vertical force, will therefore be = 200[.]4 x tan. dip x $(\frac{T}{T})^2 \times 0.01$. Using the values of *T*, *T'*, and of dip, before given, (page *xxiii),* the movement of the spot of light on the cylinder for a. change of 0'01 of vertical force is thus found to be, 6'134 inches, and with this unit the scale for measure of the ordinates was constructed for use throughout the year. Base line values were then determined, and written on the sheets, and new base lines laid down, from which the hourly ordinates (see page *xxxii)* were measured, exactly in the same way as was described for declination.

In regard to the temperature correction of the vertical force magnet, it is only necessary here to say that, according to a series of experiments made 1882 October 17 to 23, in a similar manner to those for the horizontal force magnet (page *xxi),* and in temperatures ranging from 59°³ to 64°⁹ it appeared that an increase of 1° of temperature (Fahrenheit) produced an apparent increase of 0'00020 of vertical force, a value which succeeding experiments have closely confirmed. The value of the coefficient is thus much less than was found in the old state of the magnet with the large mirror, although still not following the ordinary law of increase of temperature producing. loss of magnetic power. Further observations made in the years 1885 and 1886, of which particulars are given at the end of the Introduction for 1886, showed that through the range of temperature to which the magnet is usually exposed

VERTICAL FORCE MAGNET: DIP INSTRUMENT.

the increase of vertical force for increase of 1° of temperature is uniformly 0.000212, no term depending on the square of the temperature being here necessary, as in the case of horizontal force.

DIP INSTRUMENT.—The instrument with which the observations of magnetic dipare made is that which is known as Airy's instrument. It was constructed by Messrs. Troughton and Simms, and is mounted in the New Library on a slate slab supported by a braced wooden stand built up from the ground independently of the floor. The plan of the instrument was arranged by the late Sir G. B. Airy so that the points of the needles should be viewed by microscopes and if necessary observed whilst the needles were in a state of vibration; that there should be power of employing needles of different lengths; and that the field of view of each microscope' should be illuminated from the side opposite to the observer, in such way that the needle point should form a dark image in the bright field.

The instrument is adapted to the observation of needles of 9 inches, 6 inches, and 3 inches in length. The main portion of the instrument, that in which the needle· under observation is placed, consists of a square box made of gun metal (carefully selected to ensure freedom from iron), with back and front of glass. Six microscopes, so planted as to command the points of the three different lengths of needles, turn on a horizontal axis so as to follow the points of the needles in the different positions which in observation they take up. The needle pivots rest on agate bearings. The object glasses and field glasses of the microscopes are within the front glass plate, their eye glasses being outside, and turning with them on the same axis. Upon theplane side of each field glass (the side next the 0 bject glass and on which the image of the needle point is formed) a scale is etched by means of which the position of the needle points is noted. And on the inner side of the froht glass plate is etched the graduated circle, $9\frac{3}{2}$ inches in diameter, divided to 10', and read by two verniers to 10". The verniers (thin plates of metal, with notches instead 6f lines, for use with transmitted light) are carried by the horizontal axis, insidethe front glass plate, their reading lenses, attached to the same axis, being outside. A suitable clamp with slow motion is provided. The microscopes and verniers can be illuminated by one gas lamp, the light from which falling on eight corresponding prisms is thereby directed to each separate microscope and vernier. The prisms arecarried behind the back glass plate on a circular frame in such a way that, on reversion of the instrument in azimuth, the whole set of prisms can at one motion of the frame be shifted so as to bring each one again opposite to its proper microscope· or vernier.

GREENWICH MAGNETICAL AND METEOROLOGICAL OBSERVATIONS, 1896. *d*

xxvi INTRODUCTION TO GREENWICH MAGNETICAL OBSERVATIONS, 1896.

Since the instrument has been placed in the New Library artificial light has not been employed in making the observation.

The whole of the apparatus is planted upon a circular horizontal plate, admitting of rotation in azimuth: a graduated circle near the circumference of the plate is read by two fixed verniers.

A brass zenith point needle, having points corresponding in position to the three different lengths of dip needles, is used to determine the zenith point for each particular length of needle.

The instrument carries two levels, one parallel to the plane of the vertical circle, the other at right angles to that plane, by means of which the instrument is adjusted in level from time to time. The readings of the first-mentioned level are also regularly employed to correct the apparent value of dip for any small outstanding error of level: the correction seldom exceeds a very few seconds of arc.

Observations are made only in the plane of the magnetic meridian, and the following is a description of the method of proceeding. The needle to be used is first magnetised by double touch, giving it nine strokes on each of its sides: it is then placed in position in the instrument, the microscope scale readings are taken, and the verniers of the yertical graduated circle are read: the readings of the level parallel to the plane of this circle are also read. The instrument is then reversed in azimuth and a second observation made. The needle pivots are then reversed on the agate bearings, and two observations in reversed positions of the instrument again made. The needle is then removed from the instrument and re-magnetised so as to reverse the direction of its poles, and four more observations are made in the way just described. The mean of the eight partial values of dip thus found, corrected for error of level, gives the final value of dip which appears in the printed results.

The needles in regular use are of the ordinary construction; they are two 9-inch needles, B_1 and B_2 , two 6-inch needles, C_1 and C_2 , and two 3-inch needles, D_1 and D_2 .

The observed dip given by the 9-inch needles is as usual smaller than that given by the 6-inch needles, and that given by the 6-inch needles smaller than that given by the 3-inch needles. In the *Philosophical Magazine* for March 1891, Professor Schuster, referring to a remark of Dr. Joule's, that the flexure of a dip needle tends to diminish the apparent dip, has estimated the effect on the observed dip of the displacement of the centre of gravity by the flexure of the needle, for the Greenwich needles of 3 inches, 6 inches, and 9 inches in length, and finds that a great part of the difference observed at Greenwich could be thus accounted for. It would appear that for absolute determination of dip empirical corrections should be applied to the results found froni the longer needles, but there is at present much uncertainty as to the data for computing these corrections.

DIP INSTRUMENT: DEFLEXION INSTRUMENTS. *xxvii*

DEFLEXION INSTRUMENTS. - The observations of deflexion of a magnet in combination with observations of vibration of the deflecting magnet, for determination of the absolute measure of horizontal magnetic force, are made with a *Unifilar Instrument*, Gibson *No.3,* which, with the exception of some slight modification of the mechanical arrangements, is similar to those issued from the Kew Observatory. The instrument is adapted to the determination of horizontal force in British (foot-grain-second) measure. It is mounted in the New Library on a slate slab in the same way as the Dip instrument.

The deflected magnet, used merely to ascertain the ratio which the power of the deflecting magnet at a given distance bears to the power of terrestrial magnetism, is 3 inches long, and carries a small plane mirror, to which is directed a telescope fixed to and rotating with the frame that carries also the suspension piece of the deflected magnet: a scale fixed to the telescope is seen by reflexion at the plane mirror. The deflecting magnet is a hollow cylinder 4 inches long, containing in its internal tube a collimator, by means of which in another apparatus its time of vibration is observed. In observations of deflexion the deflecting magnet is placed on the transverse deflexion rod, carried by the rotating frame, at the distances 1·0 foot and 1·3 foot of the engraved scale from the deflected magnet, and with one end towards the deflected magnet. Observations are made at the two distances mentioned, with the deflecting magnet both east and west of the deflected magnet, and also with its poles in reversed positions. The fixed horizontal circle is 10 inches in diameter: it is graduated to 10', and read by two verniers to 10".

It will be convenient in this case to include with the description of the instrument an account of the method of reduction employed, in which the Kew precepts and generally the Kew notation are followed. Previous to the establishment of the instrument at the Royal Observatory the values of the various instrumental constants, as determined at the Kew Observatory, were kindly communicated by the late Professor Balfour Stewart, and these have been since used in the reduction of all observations made with the instrument at Greenwich.

The instrumental constants as thus furnished are as follows $:$

- The increase in the magnetic moment of the deflecting magnet produced by the inductive action of unit magnetic force in the English system of absolute measurement = $\mu = 0.00015587$.
- The correction for decrease of the magnetic moment of the deflecting magnet required in order to reduce to the temperature 35° Fahrenheit $=c=0.00013126$ $(t-35)$ + 0.000000259 $(t-35)^2$; *t* representing the temperature (in degrees Fahrenheit) at which the observation is made.
- Moment of inertia of the deflecting magnet $= K$. At temperature 30°, log. $K = 0.66643$: at temperature 90°, log. $K = 0.66679$.
xxviii INTRODUCTION TO GREENWICH MAGNETICAL OBSERVATIONS, 1896.

The distance on the deflexion rod from $1^{ft}·0$ east to $1^{ft}·0$ west of the engraved scale, at temperature 62° , is too long by 0.0034 inch, and the distance from $1^{ft}·3$ east to $1th$ 3 west is too long by 0.0053 inch. The coefficient of expansion of the scale for 1° is $\cdot 00001$.

The adopted value of K was confirmed in the year 1878 by a new and entirely independent determination made at the Royal Observatory, giving log. *K* at temperature $30^{\circ} = 0.66727$.

Let $m =$ Magnetic moment of deflecting or vibrating magnet.

 $X =$ Horizontal component of Earth's magnetic force.

Then, if in the two deflexion observations, r_1 , r_2 , be the apparent distances of centre of deflecting magnet from deflected magnet, corrected for scale error and temperature (about 1.0 and 1.3 foot).

 u_1, u_2 the observed angles of deflexion.

$$
A_1 = \frac{1}{2} r_1^3 \sin \frac{u_1}{1 + \frac{2\mu}{r_1^3} + c}
$$

$$
A_2 = \frac{1}{2} r_2^3 \sin \frac{u_2}{1 + \frac{2\mu}{r_2^3} + c}
$$

 $P = \frac{A_1 - A_2}{A_1}$ [P being a constant depending on the distribution of magnetism in the deflecting and deflected magnets], $\frac{A_1}{r_1^2} - \frac{A_2}{r_2^2}$ deflecting and deflected magnets],
we have, using for reduction of the observations a mean value of P :—

$$
\frac{m}{X} = A_1 \left(1 - \frac{P}{r_1^2} \right), \text{ from observation at distance } r_1.
$$
\n
$$
\frac{m}{X} = A_2 \left(1 - \frac{P}{r_2^2} \right), \text{ from observation at distance } r_2.
$$

The mean of these is adopted as the true value of $\frac{m}{\overline{X}}$

In calculating the value of P as well as the values of the four factors within brackets, the distances r_1 and r_2 are taken as being equal to 1^{.0} ft. and 1^{.3} ft. respectively. The expression for P is not convenient for logarithmic computation, and, in practice, its value for each observation has, since the year 1877, been calculated from the expression Log. $A_1 - \text{Log. } A_2 \times \frac{r_1^2 \times r_2^2}{r_2^2 - r_1^2} = (\text{Log. } A_1 - \text{Log. } A_2) \times 5.64.$

For determination, from the observed vibrations, of the value of mX :-let T_1 = time of vibration of the deflecting magnet, corrected for rate of chronometer and arc of vibration,

 $\frac{H}{F}$ = ratio of the couple due to torsion of the suspending thread to the couple due to the Earth's magnetic force. [This is obtained from the formula $\frac{H}{F} = \frac{\theta}{90^{\circ} - \theta}$, where θ = the angle through which the magnet is deflected by a twist of 90° in the thread.]

Then
$$
T^2 = T_1^2 \left\{ 1 + \frac{H}{F} + \mu \frac{X}{m} - c \right\}
$$

and $mX = \frac{\pi^2 K}{T^2}$.

The corrected time of vibration of the deflecting magnet, printed in the tables of results, is the mean of 100 vibrations observed immediately before, and of 100 vibrations .,observed immediately after the observations of deflexion, corrected for temperature, rate -of chronometer, semi-arc of vibration, induction, and torsion force.

From the combination of the values of $\frac{m}{X}$ and mX , m and X are immediately found. The computation is made with reference to English measure, taking as units of length and weight the foot and grain, but it is desirable to express X also in metric measure. If the English foot be supposed equal to α times the millimetre, and the grain equal to β times the milligramme, then for reduction to metric measure $\frac{m}{\overline{X}}$ and mX must be multiplied by a^3 and $a^2\beta$ respectively, or X must be multiplied by $\sqrt{\frac{\beta}{a}}$. Taking the metre as equal to 39·37079 inches, and the gramme as equal to 15·43249 grains, the factor by which X is to be multiplied in order to obtain X in metric (millimetremilligramme-second) measure is $0.46108 = \frac{1}{2.1689}$. The values of *X* in metric measure thus derived from those in English measure are given in the proper table. Values of X in terms of the centimetre and gramme, known as the C.G.S. unit (centimetre-. gramme-second unit), are readily obtained by dividing those referred to the millimetre and milligramme by 10.

. In the year 1891 an additional *Unifilar Instrument,* Elliott No. 75, fitted also as a *Declinorneter,* was obtained. The instrument is adapted to the determination of horizontal force in C.G.S. measure: it is of portable character, and, when employed, is mounted on the tripod stand furnished with it. The deflecting and deflected magnets, 75 A and 75 C, respectively, are generally similar in dimension and construction to those of the Gibson instrument. In obseryations of deflexion the deflecting magnet is placed on the transverse rod at the distances of 30 and 40 centimetres of the engraved scale from the deflected magnet, the observations being otherwise made as with the Gibson instrument. The horizontal circle is 6 inches in diameter: it is graduated to 20', and read by two verniers to 20".

The instrumental constants of Elliott No. 75, kindly determined, as for the Gibson instrument, at the Kew Observatory, are as follows: $-$

The increase in the magnetic moment of the deflecting magnet produced by the inductive action of unit magnetic force in the C.G.S. system of absolute measurement = μ . Log. $\mu = 0.77768$.

xxx INTRODUCTION TO GREENWICH MAGNETICAL OBSERVATIONS, 1896.

- The correction for decrease of the magnetic moment of the deflecting magnet required in order to reduce to the temperature 0° centigrade = $c = 0.000433$ (t - 0) $+ 0.00000148$ $(t - 0)^2$; t representing the temperature (in degrees centigrade) at which the observation is made.
- Moment of inertia of the deflecting magnet = K . At temperature 0° centigrade, log. $K = 2.44750$: at temperature $30^{\circ} = 2.44782$.
- A new determination of *K* was made in 1897, the value found for log. K at temperature-10° centigrade being 2·44215. This value has been used from 1896 June.
- The distance on the deflexion rod, from 30^{cms.} east to 30^{cms.} west, and from 40^{cms} east to 40^{cms} west of the engraved scale, at temperature 0^o centigrade, is in each case too short by $0^{\text{cms}} \cdot 020$. The coefficient of expansion of the scale for 1° centigrade is ·000018.

The value of *P* is calculated from the expression $P = (\text{Log. } A_1 - \text{Log. } A_2) \times 4737$. In other respects the formulæ, as before given, are employed.

Additional observations were made with the Elliott instrument during the months of July to October in the Astronomer Royal's Garden (at a considerable distance from the new buildings) and in Greenwich Park in order to obtain determinations of Horizontal Magnetic Force sensibly free from any effect of the iron in the Observatory buildings.

EARTH CURRENT APPARATUS.—For observation of the spontaneous galvanic currents which in some measure are almost always discoverable in the earth, and which are occasionally very powerful, two insulated wires having earth connexions at Angerstein Wharf (on the bank of the River Thames near Charlton) and Lady Well for one circuit; and at the Morden College end of the Blackheath Tunnel and the North Kent East Junction of the South-Eastern Railway for the other circuit, have been employed. The connecting wires, which are special and used for no other purpose,. pass from the Royal Observatory to the Greenwich Station of the South-Eastern Railway, and thence, by kind permission of the Directors of the South-Eastern Railway Company, along the lines of the Railway to the respective earths, in each case a copper plate. The direct distance between the earth plates of the Angerstein Wharf—Lady Well circuit is 3 miles, and the azimuth of the line, reckoning from magnetic north towards east, 49° ; in the Blackheath-North Kent East Junction circuit the direct distance is $2\frac{1}{2}$ miles, and the azimuth, from magnetic north towards west, 47°. The actual lengths of wire in the circuitous courses which the wires necessarily take in order to reach the Observatory registering apparatus are about $7\frac{1}{2}$ miles and 5 miles respectively. The identity of the four branches is tested from time to time as appears necessary.

In each circuit at the Royal Observatory there is placed a horizontal galvanometer, having its magnet suspended by a hair. Each galvanometer coil contains 150 turns.

EARTH CURRENTS.

of No. 29 copper wire, or the double coil of each instrument consists of 300 turns of wire, the resistance as found by direct measurement being 7'3 ohms. For registration of the larger earth currents, a portion only of the current is allowed to pass through the galvanometer, while the greater part flows through a shunt, consisting of a short coil of fine copper wire, the resistance of which is 1'33 ohms. The amplitude of the movement, having regard to the diminution of resistance in the circuit due to the shunt, is by this reduced in the ratio of 6'3 to 1 nearly in both circuits. On a few days in each month registers on a large scale, for determination of the small diurnal inequality in earth currents, are obtained by removing the shunts, but no discussion of these registers has yet been made, on account of the difficulty of eliminating the effect of certain small dislocations of the Angerstein Wharf-Lady Well register, which occur usually shortly after sunset and before sunrise. It is suspected that these are due to electric lighting in the neighbourhood of the Angerstein Wharf earth-plate. The galvanometers are placed on opposite sides of the registering cylinder which is horizontal. One galvanometer stands towards one end of the cylinder, and the other towards the other end, and each carries, ona light stalk extending downwards from its magnet, a small plane mirror. Immediately above the cylinder are placed two long reflecting prisms which, except that they are each but half the length of the cylinder, and are placed end to end, are generally similar to those used for magnetic declination and horizontal force, the front convex surfaces facing opposite ways, each towards the mirror of its respective galvanometer. In each case the light of a gas lamp, passing through a vertical slit and a cylindrical lens having its axis vertical, falls upon the galvanometer mirror, which reflects the converging beam to the convex surface of the reflecting prism, by whose action it is made to form on the paper on the cylinder a small spot of light; thus all the azimuthal motions of the galvanometer magnet are registered. The extent of trace for each galvanometer is thus confined to half the length of the cylinder, which is of the same size as those used for the magnetic registers. The arrangements for turning the cylinder, automatically determining the time scale, and forming a base line, are similar to those which have been before described. When the traces on the paper are developed the parts of the registers which appear in juxtaposition correspond, as for declination and horizontal force, to the same Greenwich time, and the scale of time is of the same length as for the magnetic registers.

Towards the end of the year 1890 serious disturbances began to be experienced in both earth current registers. These interruptions were found in the early part of the year 1891 to be due to the passage of trains on the new City and South London. Electric Railway, distant about $2\frac{1}{2}$ miles from the nearest earth plate (at the North Kent East Junction of the South-Eastern Railway), and about $4\frac{1}{2}$ miles from the

 xxx

\$/X:JJii INTRODUCTION TO GREENWICH MAGNETICAL OBSERVATIONS, 1896.

Observatory. The abnormal excursions recorded indicate frequent changes of' potential, varying from a small fraction of a volt to one-third of a volt or more, and the amount of change is approximately the same both in the Blackheath-North Kent East Junction circuit, which is perpendicular to the course of the electric railway, and in the Angerstein Wharf—Lady Well circuit, which is parallel to the line of railway, with one earth plate (Angerstein Wharf) near the river. At night when the trains. are not running, the interruptions entirely cease.

§ 5. *Magnetic Reductions.*

The results given in the Magnetic Section refer to the civil day, commencing at midnight.

Before the photographic records of magnetic declination, horizontal force, and vertical' force are discussed, they are divided into two groups; one including all days on which the traces show no particular disturbance, and which therefore are suitable for the determination of diurnal inequality; the other comprising days of unusual and violent disturbance, when the traces are so irregular that it appears impossible to treat them except by the exhibition of every motion of each magnet through the day. Following the principle of 8eparation hitherto adopted, there are no days in the year 1896 which are classed as days of great disturbance. Other days of lesser disturbance are January 3,4,5, 31, February 1, 4-5, 28, 29, March 4-5, 26-27, May 2-3,3-4, 17-18, July 11-12, 23-24, August 1-2, 6-7, 29-30, September 18, 20, October] 1-12, 12-13, November 7-8, December 3-4, 4-5. When two days are mentioned it is to be, understood that the reference is usually to one set of photographic sheets extending from noon to noon and including the last half and the first half respectively of two consecutive civil days.

Through each photographic trace including those on days of lesser disturbance, a pencil line was drawn, representing the general form of the curve, without its petty irregularities. The ordinates of these pencil curves were then measured, with the proper pasteboard scales, at every hour, the measures being entered in a form having double argument, the vertical argument ranging through the 24 hours of the civil day $(0^h$ to $23^h)$, and the horizontal argument through the days of a calendar month, the means of the numbers standing in the vertical columns giving the mean daily value of the element, and the means of the numbers in the horizontal columns the mean monthly value at each hour of the day. Tables I. and II. contain the results for declination, Tables III. to VI. those for horizontal force, with corresponding tables of' temperature, and Tables VII. to X. those for vertical force, with corresponding tables of temperature. In the formation of diurnal inequalities it is unimportant whether a

MAGNETIC REDUCTIONS.

day omitted be a complete civil day, or the parts of two successive civil days making together a whole day, although in the latter case the results are not available for daily values. No omissions have been made on account of disturbed days, in the formation of Tables I. and II. for declination, Tables III. to VI. for horizontal force, and in Tables VII. to X. for vertical force, but on account of the magnet being under adjustment, December 31, is omitted in Tables VII to X .

Table XI. gives the collected monthly values for declination, horizontal force, and vertical force, and Table XII. the mean diurnal inequalities for the year.

The temperature of the horizontal and, vertical force magnets was maintained so nearly uniform through each day that the determination of the diurnal inequalities of horizontal and vertical force should possess great exactitude. By means of the additional stove placed in the western arm of the basement, as mentioned on page *v,* the temperature of the basement has also been kept nearly constant throughout the year, the endeavour being to keep the temperature as near to 67° as possible. In years preceding 1883 the results for horizontal and vertical force were given uncorrected for temperature, leaving the correction to be applied when the results for series of years are collected for discussion ; but from the beginning of the year 1883 it has been considered desirable to add also, in Tables III., V., VII., and IX., results corrected for temperature, in order to render them more immediately available. In Tables XI. and XII., only results corrected for temperature are given. The corrected mean daily and mean hourly values of horizontal force given in Tables III. and *'T.* respectively are obtained by applying to the uncorrected values the correction $(t-32) \times 0.000936 + (t-32)^2 \times 0.000002074$ (page *x.xi)* where *t* is the temperature in degrees Fahrenheit, and to those of vertical force, Tables VII. and IX., the correction $-(t-32) \times 0.00212$ (page *xxv*). The corrections applied are founded on the daily and hourly values of temperature given in Tables IV., *VI.*, *VIII.*, and X.

In regard to the formation of the tables of temperature, the hourly readings of the Richard thermograph were entered into a form having double arguments, as for the magnets, the mean hourly values deduced therefrom giving for each month the variation through the day, and the mean daily values the variation through the month. To adapt these to represent the temperature within the horizontal and vertical force magnet boxes respectively, the monthly means of the thermograph readings at $9ⁿ$, $10ⁿ$, 11^h , 12^h , 13^h , 14^h , 15^h , 16^h , and 21^h , were compared with the corresponding means of the eye readings of the thermometers whose bulbs are within the respective magnet boxes, giving corrections to the thermograph readings at these hours, which were very accordant, and from which by interpolation corrections were obtained for the remaining

GREENWICH MAGNETICAL AND METEOROLOGICAL OBSERVATIONS, 1896. **EXECUTA**

xxxiii

 \mathbf{I}

xxiv INTRODUCTION TO GREENWICH MAGNETICAL OBSERVATIONS, 1896.

hours. The nine daily observations gave also the means of reducing the daily thermograph values to the temperature of the interior of the respective magnet boxes. The results are given in Tables IV., VI., VIII., and X.

In order to economise space the daily values as exhibited in Tables III. and VII., both uncorrected and corrected, have been diminished by constants. The division \equiv in these Tables and in Table XI. indicates that the instrument has been disturbed for experiment or adjustment, or that for some reason the continuity of the values has been broken, the constants deducted being different before and after each break. In the interval between two breaks the values of *u* and *c* are each comparable throughout, remarking only that in certain cases it is to be understood that the values are to be taken 1000 greater or less for comparison with adjacent values. See, for example, *c* in Table III. on April 20, which should be taken as 1005 for comparison with preceding and following values, and similarly in other cases. The excess of the value of *c* above that of *u* on any day (supposing *c,* when the smaller value, to be increased by 1000) shows the correction for temperature that has been actually applied. In Tables II., V., IX., and XII. the separate hourly values of the different elements have been simply diminished by the smallest hourly value.

The variations of declination are given in the sexagesimal division of the circle, and those of horizontal and vertical force in terms of '00001 of the whole horizontal and vertical forces respectively taken as units. In Tables XI. and XII. they have been also expressed in terms of '00001 of Gauss's absolute unit, as referred to the metrical system of the millimetre-milligramme-second.

The factors for conversion from the former to the latter system of measures are as follows: $-$

For variation of declination, expressed in minutes, the factor is

H.F. in metrical measure \times sin $1' = 1.8358 \times \sin 1' = 0.0005340$.

For variation of horizontal force, the factor is

H.F. in metrical measure $= 1.8358$,

and for variation of vertical force

V. F. in metrical measure $=$ H. F. in metrical measure \times tan dip, $= 1.8358 \times \tan 67^\circ$. 14' $= 4.3743$.

The measures as referred to the millimetre-milligramme-second system are readily convertible into measures on the centimetre-gramme-second (C. G. S.) system by dividing by 10.

Table XIII. exhibits the diurnal range of declination and horizontal force on each separate day, as determined from the 24 hourly ordinates of each element measured from the photographic register (as explained on page *xxxii),* and the monthly means

MAGNETIC REDUCTIONS; HARMONIC ANALYSIS OF MAGNETIC DIURNAL $\frac{d}{dx}$ $\frac{d}{dx}$ $\frac{d}{dx}$

of these num hers, the results for horizontal force being corrected for temperature. The first portion of Table XIV. contains the difference between the greatest and least hourly mean values in each month, for declination, horizontal force, and vertical force, as extracted from Table II., and columns *c* of Tables V. and IX. In the second portion of the table there are given for each month the numerical sums of the deviations of the 24 hourly values from the mean, taken without regard to sign.

The magnetic diurnal inequalities of declination, horizontal force, and vertical force, for each month and for the year, as given in Tables II., V. and IX., have been treated by the method of harmonic analysis, and the results are given in Tables XV. and XVI. The values of the coefficients contained in Table XV. have been thus computed, 0 representing the value at 0^h (midnight), 1 that at 1^h , and so on.

 $m = \frac{1}{24} (0+1+2 \ldots 22+23)$. 12 $a_1 = 0 - 12 + \{(1+23) - (11+13)\}\cos 15^\circ + \{(2+22) - (10+14)\}\cos 30^\circ$ + $\{(3+21) - (9+15)\}\cos 45^\circ + \{(4+20) - (8+16)\}\cos 60^\circ$ $+ \{ (5+19) - (7+17) \} \cos 75^\circ.$ 12 $b_1 = 6 - 18 + \{(5 + 7) - (17 + 19)\}\sin 75^\circ + \{(4 + 8) - (16 + 20)\}\sin 60^\circ$ + { $(3+9)$ - $(15+21)$ } sin 45° + { $(2+10)$ - $(14+22)$ } sin 30° + $\{(1+11) - (13+23)\}\sin 15^\circ$. $12 a_2 = (0+12) - (6+18) + \{(1+11+13+23) - (5+7+17+19)\}\cos 30^\circ$ + $\{(2+10+14+22) - (4+8+16+20)\}\cos 60^\circ$. 12 $b_2 = (3+15) - (9+21) + \{(2+4+14+16) - (8+10+20+22)\}\sin 60^\circ$ + $\{(1+5+13+17) - (7+11+19+23)\}\sin 30^\circ$. $12 \alpha_3 = (0+8+16)-(4+12+20)+(1+7+9+15+17+23)-(3+5+11+13+19+21) \cos 45^\circ.$ 12 $b_3 = (2+10+18)-(6+14+22)+{(1+3+9+11+17+19)-(5+7+13+15+21+23)}$ sin 45°. $12 a_4 = (0+6+12+18) - (3+9+15+21)$ $+ \{ (1+5+7+11+13+17+19+23) - (2+4+8+10+14+16+20+22) \} \cos 60^\circ.$ $12 b₁ = \{(1+2+7+8+13+14+19+20) - (4+5+10+11+16+17+22+23)\}\sin 60^\circ.$

The values of the coefficients c_1 , and of the constant angles α contained in Table XVI , are then determined by means of the following relations :-

$$
\frac{a_1}{b_1} = \tan a \qquad \qquad c_1 = \frac{a_1}{\sin a} = \frac{b_1}{\cos a}.
$$

Similarly for c_3 , β , &c.

Finally, the values of the angles α' , β' , &c. were thus found. Calling the Sun's hour angle east at mean midnight $= h$, then--

$$
\begin{array}{l}\n a' = a + h \\
\beta' = \beta + 2h \\
\& c = \& c.,\n\end{array}
$$

a mean value of h for the month being employed.

e 2

INTRODUCTION TO GREENWICH MAGNETICAL OBSERVATIONS, 1896. xxxvi

The values of a_5 and b_5 for the diurnal inequalities for the year were also calculated, but could not be conveniently included in Table XV .; they are as follows :-

In order to give some indication of the accuracy with which the results of observation are represented by the harmonic formula, the sums of squares of residuals remaining after the introduction of m and of each successive pair of terms of the expression on page (xii), corresponding to the single terms of the expressions on page (xiii), have been calculated for the mean diurnal inequalities for the year (columns 1, 2, and 3 of Table XII.). The respective sums of squares of residuals are as follows :-

SUMS OF SQUARES OF RESIDUALS OF DIURNAL INEQUALITIES.

The unit in the case of horizontal and vertical force being '00001 of the wh'ole horizontal and vertical forces respectively, it thus appears that there would be no advantage in carrying the approximation (Table XV.) beyond the determination of a_4, b_4

As regards Magnetic Dip, the result of each complete observation of dip with each of the six needles in ordinary use is given in Table X VII., and in Table X VIII. the concluded monthly and yearly values for each needle.

HARMONIC ANALYSIS OF MAGNETIC DIURNAL INEQUALITIES. *xxxvii*

The results of the observations for Absolute Measure of Horizontal Force contained in Table XIX. require no special remark, the method of reduction and all necessary explanation having been given with the description of the instruments employed. The observed result in each month has been also given as reduced to the mean value for the month, by application of the difference between the horizontal force ordinate at the time of observation and the mean value for the month, as obtained from the photographic register.

•

In order to facilitate the comparison of the diurnal inequalities of magnetism at the different British and other magnetic observatories an arrangement has been made with the Sub-Committee of the Kew Committee of the Royal Society by which five quiet days are to be selected at Greenwich in each month of every year, for adoption 'at all these observatories for determination of the monthly diurnal inequalities of declination, horizontal force, and vertical force; thus providing for further discussion results which should be strictly comparable. The particular days selected are given on page (xix), and the results found fur Greenwich are contained in Tables XX., XXI., and XXII., which it is interesting to compare with the values found from the records of all days, as given in Tables II., V., IX. and XII.

No numerical discussion of Earth Current records is contained in the present volume.

In the treatment of disturbed days it was formerly the custom to measure out for each element all salient points of the curves and to print the numerical values. But, since the year 1882, it has been considered preferable to give instead of these tables reduced copies of the actual photographic curves (reproduced by photo-lithography from full-sized tracings of the original photographs), adding thereto copies of the corresponding earth-current curves. In the present year no copies of earthcurrent curves have been given because of the interruption produced by the trains running on the City and South London Electric Railway. The registers thus exhibited are those for the days of lesser disturbance mentioned on page *xxxii*.

The list of these days since the year 1889 has been selected in concert with M. Mascart, so that the two Observatories of the Parc Saint Maur and Greenwich should publish the magnetic registers for'the same days of disturbance with a view to the comparison of the results. It is proposed to follow this plan in future years, and if other magnetic observatories should eventually join in the scheme for concerted action, in regard to the publication of their registers, the discussion of magnetic perturbations would be much facilitated.

xxxviii INTRODUCTION TO GREENWICH MAGNETICAL OBSERVATIONS, 1896.

The plates are preceded by a brief description of *all* other significant magnetic motions (superposed on the ordinary diurnal movement) recorded throughout the year. These, in combination with the plates, give very complete information on magnetic disturbances during the year 1896, affording thereby, it is hoped, facilities for making comparison with solar phenomena.

•

In regard to the plates, it may be remarked that on each day three distinct registers are usually given, viz.: declination, horizontal force and vertical force; all necessary information for proper understanding of the plates being added in the notes on page (xxxvi).

An additional plate $(X.)$ exhibits the registers of declination, horizontal force, and vertical force on four quiet days, which may be taken as types of the ordinary diurnal movement at four seasons of the year. These are given for the civil day as exhibiting more clearly the character of the diurnal movement. The earth currents on these days are very small.

The indications of horizontal and vertical force are given precisely as registered; they are therefore affected, slightly as compared with the amount of motion on disturbed days, by the small recorded changes of temperature of the magnets. The recorded hourly temperatures being inserted on the plates, reference to the temperature correction of the magnets, given at page *xxxiii,* will show the effect produced. Briefly, an increase of about $4\frac{1}{2}$ of temperature throws the horizontal force curve upward by 0.001 of the whole horizontal force; an increase of about 5° of temperature throws the vertical force curve downward by 0°001 of the whole vertical force.

The original photographs have been reduced in the proportion of 20 to 11 on the plates, and the corresponding scale values are :—

PLATES OF MAGNETIC DISTURBANCES; SCALE VALUES OF MAGNETIC ELEMENTS. xxxix

The scales actually attached to the plates are, however, so arranged as to correspond with the tables of the magnetic section, that is to say, the units for horizontal force and vertical force are ·00001 of the whole horizontal and vertical forces respectively, the numbers being in some cases increased by 1000 to avoid negative quantities. At the foot of each plate equivalent scales, in C. G. S. measure, are given for each of the magnetic registers. (See page *xl).*

Since the preceding scale values are not immediately comparable for the different elements, it therefore becomes desirable to refer them all to the same unit, say 0·01 of the horizontal force.

Now, the transverse force represented by a variation of 1° of Declination $= 0175$ of Horizontal Force

and Vertical Force = Horizontal Force \times tan. dip [adopted dip = 67°. 14'] $=$ Horizontal Force \times 2.3828

whence we have the following equivalent scale values for the different elements $:$

It may be convenient to give also comparative scale values for the different systems of absolute measurement, viz. :-

Dividing therefore the scale values last given by 3.9815, 1.8358, and 0.18358 respectively, the following comparative scale values for each of the elements on the

zt INTRODUCTION TO GREENWICH METEOROLOGICAL OBSERVATIONS, 1896.

photographs and on the plates as referred to 0.01 of these units respectively are $found :=$

Slight interruptions in the traces on the plates are due to various causes. In the originals there are breaks at each hour for time scale, so slight however that, in the copies, the traces could usually be made continuous without fear of error : in a few cases, however, this could not be done. Further, to check the numeration of hours, the observer interrupts the register at definite times for about five minutes, usually at or near 9^h . 30^m , 13^h . 30^m , and 20^h . 30^m , Greenwich civil time, and at somewhat different times on Sundays. A weekly clearing of the gas pipes also causes a somewhat longer interruption, usually at about 10^h .

The original photographic records were first traced on thin paper, the separate records on each day being arranged one under another on the same sheet, and great attention being paid to accuracy as regards the scale of time. Each sheet containing the records for one or more days was then reduced by photo-lithography, in the proportion of 20 to 11, to bring it to a convenient size for insertion in the printed volume.

§ 6. *Meteorological Instruments.*

STANDARD BAROMETER.-The standard barometer, mounted in 1840 on the southern wall of the western arm of the upper magnet room, is Newman No. 64. Its tube is $0^{in.565}$ in diameter and the depression of the mercury due to capillary action is $0^{in.002}$, but no correction is applied on this account. The cistern is of glass, and the graduated scale and attached rod are of brass; at its lower end the rod terminates in a point of ivory, which in observation is made just to meet the reflected image of the point as seen in the mercury. The scale is divided to $0^{in}05$, sub-divided by vernier to $0^{in}002$.

STANDARD BAROMETER; PHOTOGRAPHIC BAROMETER. xli

The readings of this barometer until 1866 August 20 are considered to be coincident with those of the Royal Society's flint-glass standard barometer. It then becamenecessary to remove the sliding rod, for repair of its slow motion screw, which was completed on August 30. Before the removal of the rod the barometer had been compared with three other barometers, one of which, during repair of the rod, was used for the daily readings. After restoration of the rod a comparison was again madewith the same three barometers, from which it appeared that the readings of the standard, in its new state, required a correction of $-0ⁱⁿ006$, all three auxiliary barometers giving accordant results. This correction has been applied to every· observation since 1866 August 30.

An elaborate comparison of the standard barometers of the Greenwich and Kew Observatories, made in the spring of the year 1877 , under the direction of the Kew Committee, by the late Mr. Whipple, showed that the difference between the two barometers (after applying to the Greenwich barometer readings the correction $-0^{in.006}$) did not exceed $0^{in}001$. *(Proceedings of the Royal Society*, vol. 27, page 76.)

The height of the barometer cistern above the mean level of the sea is 159 feet, being *5it•* 2in. above Mr. Lloyd's reference mark in the then transit room, now the. Astronomer Royal's official room.. *(Philosophical Transactions,* 1831.)

The barometer is read at 9^h , 12^h (noon), 15^h , 21^h (civil reckoning) on week days, and at 10^h , noon and 20^h on Sundays. Each reading is corrected by application of the index correction above mentioned, and reduced to the temperature 32° by means of Table II. of the "Report of the Committee of Physics" of the Royal Society. The readings thus found are used to determine the value of the instrumental base lineon the photographic record.

PHOTOGRAPHIC BAROMETER.-The barometric record is made on the same cylinder as is used for magnetic vertical force, the register being arranged to fall on the upperhalf of the cylinder, on its eastern side. A siphon barometer fixed to the northern wall of the Magnet Basement is employed, the bore of the upper and lower extremities of the tube being about 1.1 inch, and that of the intermediate portion 0.3 inch. A metallic plunger, floating on the mercury in the shorter arm of the siphon is partly supported by a counterpoise acting on a light lever, leaving a definite part of its weight to be supported by the mercury. The lever carries at its other end a vertical plate of blackened mica, having a small horizontal slit, whose distance from the fulcrum isabout eight times that of the point of connexion with the float, and whose vertical movement is therefore about four times that of the ordinary barometric column. Thelight of a gas lamp, passing through this slit and falling on a cylindrical lens, forms a

GREENWICH MAGNETICAL AND METEOROLOGICAL OBSERVATIONS, 1896. f

xlii INTROLUCTION TO GREENWICH METEOROLOGICAL OBSERVATIONS, 1896.

spot of light on the paper. The barometer can, by screw action, be raised or lowered so as to keep the photographic trace in a convenient part of the sheet. A base line is traced on the sheet, and the record is interrupted at each hour by the clock and occasionally by the observer in the same way as for the magnetic registers. The length of the time scale is also the same.

The barometric scale is determined by experimentally comparing the measured movement on the paper with the observed movement of the standard barometer; one inch of barometric movement is thus found $= 4^{in}39$ on the paper. Ordinates measured for the times of observation of the standard harometer, combined with the corrected readings of the standard barometer, give apparent values of the base line, from which mean values for each day are formed; these are written on the sheets and new base lines drawn, from which the hourly ordinates (see page *liv)* are measured as for the magnetic registers. As the diurnal change of temperature in the basement is very small, no appreciable differential effect is produced on the photographic register by the expansion of the column of mercury.

DRY AND WET BULB THERMOMETERS.—The dry and wet bulb thermometers and maximum and minimum self-registering thermometers, both dry and wet, are mounted on a revolving frame planned by the late Sir G. B. Airy. A vertical axis fixed in the ground, in a position about 14 feet south of the southern arm of the Magnetic Observatory, carries the frame, which consists of a horizontal board as base, of a vertical board projecting upwards from it and connected with one edge of the horizontal board, and of two parallel inclined boards (separated about 3 inches) connected at the top with the vertical board and at the bottom with the other edge of the horizontal board: the outer inclined board is covered with zinc, and the air passes freely between all the boards. The dry and wet bulb thermometers are mounted near the centre of the vertical board, with their bulbs about 4 feet from the ground; the maximum and minimum thermometers for air temperature are placed towards one side of the vertical board, and those for evaporation temperature towards the other side, with their bulbs at about the same level as those of the dry and wet bulb thermometers. A small roof projecting from the frame protects the thermometers from rain. The frame is turned in azimuth several times during the day (whether cloudy or clear) so as to keep the inclined side always towards the sun. In 1878 September, a circular board 3 feet in diameter was fixed, below the frame, round the supporting post, at a height of 2 feet 6 inches above the ground, with the object of protecting the thermometers from radiation from the ground. In the summer of 1886 experiments were made on days of extreme heat with the view of determining the effect of the circular board in this respect, an

account of which will be found at the end of the Introduction to the volume for theyear 1887. The effect of radiation with the circular board removed was found to be insensi ble.

The corrections to be applied to the thermometers in ordinary use are determined usually once each year for the whole extent of scale actually employed, by comparison with the standard thermometer, *No.* 515, kindly supplied to the Royal Observatory' by the Kew Committee of the Royal Society.

The dry and wet bulb thermometers are Negretti and Zambra, 'Nos. 45354 and 45355 respectively. The correction $-0°3$ has been applied to the dry bulb and wet. bulb readings throughout the year.

The self-registering thermometers for temperature of air and evaporation are all by-Negretti and Zambra. The maximum thermometers are on Negretti and Zambra's, principle, the minimum thermometers are of Rutherford's construction. To thereadings of Negretti and Zambra, *No.* 8527, used till December 14, for maximum temperature of the air a correction of $-1^{\circ}0$ has been applied, and to those of Negretti and Zambra, No. 83760 (used subsequently) no correction has been applied. To the readings of Negretti and Zambra, No. 38338, for minimum temperature of the air, a correction of $+ 0°2$ has been applied throughout. The readings of Negretti and Zambra, No. 79224, for maximum temperature of evaporation, and those of Negretti and Zambra, *No.* 2048, for minimum temperature of evaporation, required no correction.

The dry and wet bulb thermometers are read at 9^h , 12^h (noon), 15^h , 21^h (civil reckoning) on week days, and at 10^h , noon, and 20^h on Sundays. Readings of themaximum and minimum thermometers are taken at 9h and 21h on week days, and at 10^h and 20^h on Sundays. Those of the dry and wet bulb thermometers are employed to correct the indications of the photographic dry and wet bulb thermometers.

In January 1887, three thermometers, a dry-bulb, a maximum, and a minimum, towhich a wet-bulb thermometer was added in February, were mounted in a Stevenson screen, with double louvre-boarded sides, of the pattern adopted by the Royal Meteorological Society, which is fully described in the *'Quarterly Journal* of the-Society, Vol. X, page 92. The screen is planted 6 feet to the eastward of the revolving frame carrying the ordinary dry-bulb and wet-bulb thermometers, and its internal dimensions are, length 18 inches, width 11 inches, and height 15 inches, the· bulbs of the thermometers placed in it being at a height of about 4 feet above the ground. The dry-bulb thermometer is Hicks *No.* 262495, to the readings of which a correction of 0° -2 has been applied. The wet-bulb is Hicks No. 268525, to the readings of which a correction of $+ 0$ °·1 has been applied. The maximum thermometer is Negretti and Zambra, No. 68725, which requires no correction. The

.:.cliv INTRODUCTION TO GREENWICH METEOROLOGICAL OBSERVATIONS, 1896.

minimum thermometer used till 1896 May 7 was Hicks No. 262739, to the readings ·of which the following corrections have been applied: below 34° 0°·0, 34° to 39° + 0° -1, 39° to 43° + 0° -2, 43° to 49° + 0° -3, 49° to 54° + 0° -4, 54° to 60° + $0°5$, $60°$ to $65°$ + $0°6$, and above $65°$ + $0°7$. To the readings of Negretti and Zambra No. 68873 , introduced on 1896 May 8th, a correction of $+ 0^{\circ}$ e has been applied. The observation of the dry and wet bulb thermometers is omitted on Sundays and a few other days.

Experiments were made in the summer of the year 1887 on days of extreme heat to -determine whether, with the door of the screen open, the thermometers were in any way influenced by radiation from external objects, an account of which will be found at the end of the Introduction to the Volume for 1887. The effect of radiation with the door of the screen open was found to be insensible.

At the beginning of the year 1886 three thermometers were mounted on the platform above the Magnet House, in a louvre-boarded shed or screen, so constructed as to give free circulation of air with protection from radiation. No. 45356, by Negretti and Zambra, is for eye observation of the temperature of the air, and required a correction of $-0°3$. No. 37467, also by Negretti and Zambra, is a self-registering maximum thermometer, and required a correction of $-0°$ ⁵. No. 342663, by Hicks, is a self-registering minimum thermometer, and required correction as follows: below 35° 0° \cdot 0, between 35° and 45° + 0° \cdot 1, between 45° and 55° + 0° \cdot 2, and above 55° + 0° 3. The bulbs of all these thermometers are 4 feet above the platform, .and about 20 feet above the ground. The observation of the thermometer *No. 45356* is omitted on Sundays and a few other days.

The order of reading the thermometers in the Stevenson screen and on the roof of the Magnet House is reversed on successive days, the readings being taken alternately before and after those of the thermometers on the revolving stand, in order that the diurnal change may not produce any systematic difference in the comparison of the results.

PHOTOGRAPHIC DRY-BULB AND WET-BULB THERMOMETERS.—The apparatus now in use was constructed in the year 1884 by Messrs. Negretti & Zambra from designs furnished by me, and was mounted in the year 1885, but from various causes it was not brought into regular use until 1887 January 1. Until February 1891 it 'stood nearly in the centre of the South Ground: it was then removed to the Magnet Ground, being placed in the position formerly occupied by the old apparatus, which had been previously dismantled. It is placed under a shed 8 feet square standing upon posts about 8 feet high. This shed is open to the north and is generally similar to that provided for the old apparatus, excepting that the

PHOTOGRAPHIC DRY AND WET BULB THERMOMETERS. xlv

roof inclines somewhat towards the south and that the protecting boards (fixed as far as necessary on the eastern, southern and western sides) are double, with spaces between to ensure a free circulation of air while screening the thermometers from the direct rays of the sun. The thermometers are further protected from sky and ,ground radiation by boards on the thermometer stand as described below. The photographic register is received on paper placed on a vertical ebonite cylinder $11\frac{1}{2}$ inches high and $14\frac{1}{4}$ inches in circumference, and I have arranged that the dry and wet bulb traces shall fall on the same part of the cylinder, as regards time-scale, . a long air bubble in the wet-bulb thermometer column giving the means of registering the indications of the wet bulb (as well as of such degrees and decades of its scale as fall within the bubble), just below the trace of the dry-bulb thermometer, without any interference of the two records, an arrangement which admits of the time-scale being made equal to that of all the other registers. The stems of the thermometers are placed close together, each being covered by a vertical metal plate having a fine vertical slit, so that light passes through only at such parts of the bore of the tube as do not contain mercury. Two gas lamps, each at a distance of 21 inches, are placed at such an angle that the light from each after passing through its corresponding slit and thermometer tube falls on the photographic paper in -one and the same vertical line. Degree lines etched upon the thermometer stems, and painted, interrupt the light sufficiently to produce a clear and sharp indication on the photographic sheet, the line at each tenth degree being thicker than the others as well as those at 32 $^{\circ}$, 52 $^{\circ}$, 72 $^{\circ}$, &c. The length of scale is from 0° to 120 $^{\circ}$ for each thermometer, the length of 1° being about 0.1 inch, and the air bubble in the wet-bulb thermometer is about 12° in length so that it will always include one of the ten-degree lines. The bulbs, which are 2 inches long and of about $\frac{1}{2}$ an inch in internal bore, are separated horizontally by 5 inches, the tubes of the thermometers having a double bend above the bulbs, which are placed about 4 feet above the ground. The thermometers are carried by a vertical frame with independent vertical adjustment for each thermometer so that the register in summer or winter can be brought to a convenient part of the photographic sheet. The revolving cylinder is driven by a pendulum clock -contained within the brass case covering the whole apparatus, excepting the thermometer bulbs which project below. It makes one revolution in 26 hours, and the time-scale is the same as that for all the other registers. As the cylinder revolves the light passing through the portion of the thermometer tubes not occupied by mercury imprints on the paper a broad band of photographic trace, corresponding to the dry bulb register, whose breadth in the vertical direction varies with the height of the mercury in the tube, and a narrower band below, corresponding to the wet bulb. When these are developed the traces are seen to be crossed hy thin white lines, the .horizontal lines corresponding to degrees and the vertical lines to hours, the lower

•

:clvi INTRODUCTION TO GREENWICH METEOROLOGICAL OBSERVATIONS, 1896.

boundary of each trace indicating the thermometric record corresponding to the uppersurface of the thermometric column.

The driving clock is made to interrupt the light for a short time at each hour, producing on the sheet the hour lines above mentioned; the observeralso occasionally interrupts the register for a short time for proper identification of the hourly breaks.

The bulbs of the thermometers were at first completely protected from radiation by vertical or inclined boards fixed to the thermometer stand, two on the south side, two. on the north side, one at the east end, one at the west end, and one below, but with proper spaces for free circulation of air. Experiments made in the summer of the year 1886, an account of which is given at the end of the Introduction for 1887, showed that the north and south boards were unnecessary, and the two south boards and one north board were in consequence removed before commencing regular work with the instrument at the beginning of the year 1887.

•

 $\frac{1+\epsilon}{\epsilon^2}$

For a description of the apparatus formerly employed reference may be made to the Introduction for 1887 and previous years. A comparison of the results given by the old and new apparatus will be found at the end of the Introduction to the year 1887.

RADIATION THERMOMETERS.-These thermometers are placed in the Magnet Ground, south-east of the Magnet House. The thermometer for solar radiation' is a selfregistering mercurial maximum thermometer on Negretti and Zambra's principle, with its bulb blackened, and the thermometer enclosed in a glass sphere from which the air has been exhausted. The thermometer employed throughout the year was Negretti and Zambra, No. 72540. The thermometer for radiation to the sky is a self-registering spirit minimum thermometer of Rutherford's construction, by Horne and Thornthwaite, *No.* 3120. The thermometers are laid on short grass; they require no correction for index error.

EARTH THERMOMETERs.-These thermometers were made by Adie, of Edinburgh, under the superintendence of Professor J. D. Forbes. They are placed at the north· west corner of the photographic thermometer shed.

The thermometers are four in number, placed in one hole in the ground, thediameter of which in its upper half is 1 foot and in its lower half about 6 inches, each thermometer being attached in its whole length to a slender piece of wood. The thermometer No. 1 was dropped into the hole to such a depth that the centre of its bulb was 24 French feet (25·6 English feet) below the surface, then dry sand

was poured in till the hole was filled to nearly half its height. Then No. 2 was -dropped in till the centre of its bulb was 12 French feet below the surface; Nos. 3 and 4 till the centres of their bulbs were respectively 6 and 3 French feet below the surface; and the hole was then completely filled with dry sand. The upper parts -of the tubes carrying the scales were left projecting above the surface; No. 1 by 27.5 inches, No. 2 by 28.0 inches, No. 3 by 30.0 inches, and No. 4 by 32.0 inches. Of these lengths, 8.5 , 10.0 , 11.0 , and 14.5 inches respectively are in each case tube with narrow bore. The length of 1° on the scales is $1 \cdot 9$ inch, $1 \cdot 1$ inch, $0 \cdot 9$ inch, and 0.5 inch in each case respectively. The ranges of the scales are for No. 1, 46 \degree 0 to 55^o \cdot 5; No. 2, 43^o \cdot 0 to 58^o \cdot 0; No. 3, 44^o \cdot 0 to 62^o \cdot 0; and for No. 4, 36^o \cdot 9 to 68^o \cdot 0.

The bulbs of the thermometers are cylindrical, 10 or 12 inches long, and 2 or 3 inches in diameter. The bore of the principal part of each tube, from the bulb to the graduated scale, is very small; in that part to which the scale is attached it is larger; the fluid in the tubes is alcohol tinged red; the scales are of opal glass.

The ranges of scale having in previous years been found insufficient, fluid has at times been removed from or added to the thermometers as necessary, corresponding alterations being made in the positions of the attached scales. Information in regard to these changes will be found in previous Introductions.

The parts of the tubes above the ground are protected by a small wooden hut fixed to the ground ; the sides of the hut are perforated with numerous holes, and it has a double roof; in the north face is a plate of glass, through which the readings .are taken. Within the hut are two small thermometers, one, No.5, with bulb one inch in the ground, another, No.6, whose bulb is freely exposed in the centre of the hut.

These thermometers are read every day at noon, and the readings are given without correction. The index errors of Nos. 1, 2, 3, and 4 are unknown; No. 5 appears to read too high by 0° -2, and No. 6 by 0° -4, but no corrections have been .applied.

OSLER'S ANEMOMETER.—This self-registering anemometer, devised by A . Follett Osler, for continuous registration of the direetion and pressure of the wind and of the amount of rain, is fixed above the north-western turret of the ancient part of the Observatory. For the direction of the wind a large vane $(9^{ft} \t2^{in} \t1 m \t1 length)$, from which a vertical shaft proceeds down to the registering table within the turret, gives motion, by a pinion fixed at its lower end, to a rack-work carrying a pencil. A collar on the vane shaft bears upon anti.friction rollers, running in a cup of oil, rendering the vane very sensitive to changes of direction in light winds. The pencil marks a paper fixed

xluii INTRODUCTION TO GREENWICH METEOROLOGICAL OBSERVATIONS, 1896.

to a board moved horizontally and uniformly by a clock, in a direction transverseto that of the motion of the pencil. The paper carries lines corresponding to the positions of N., E., S., and W. of the vane, with transversal hour-lines. The vaneis 25 feet above the roof of the Octagon Room, 60 feet above the adjacent ground, and 215 feet above the mean level of the sea. A fixed mark on the north-eastern turret, in a known azimuth, as determined by celestial observation, is used for examining at. any time the position of the direction plate over the registering table, to which, reference is made by means of a direction pointer when adjusting a new sheet on the travelling board. The vane, which had been in use since the year 1841 , began in the autumn of 1891 to show signs of weakness; it was taken down in December 1891 and thoroughly repaired. It was satisfactory to find that the anti-friction bearings of the vane, on which the sensitiveness of its motion depends, were in excellent condition, after having been continuously in action for 25 years.

For the pressure of the wind the construction is as follows: at a distance of 2 feet below the vane there is placed a circular pressure plate (with its plane vertical) having an area of $1\frac{1}{3}$ square feet, or 192 square inches, which, moving with the vane in azimuth, and being thereby kept directed towards the wind, acts against a combination of springs in such way that, with a light wind, slender springs arefirst brought into action, but, as the wind increases, stiffer springs come into play. For a detailed account of the arrangement adopted the reader is referred to the Introduction for the year 1866. [Until 1866 the pressure plate was a square plate, 1 foot square, for which in that year a circular plate, having an area of 2 square feet, was substituted and employed until the spring of the year 1880, when the present circular plate, having an area of $1\frac{1}{3}$ square feet, was introduced. A short flexiblesnake chain, fixed to a cross bar in connexion with the pressure plate, and passing oyer a pulley in the upper part of the shaft is attached to a brass chain (formerly a copper wire) running down the centre of the shaft to the registering table, just before· reaching which the chain communicates with a short length of silk cord, which, led round a pulley, gives horizontal motion to the arm carrying the pressure pencil. Thesubstitution, in the year 1882, of the flexible brass chain for the copper wire has greatly increased the delicacy of movement of the pressure pencil, every small movement of the pressure plate being now registered. The scale for pressure, in lbs. on the square foot, is experimentally determined from time to time as appears necessary; thepressure pencil is brought to zero by a light spiral spring.

Whilst the action of the pressure apparatus has been satisfactory for moderate winds, it is believed that the record of occasional very large pressures in years preceding 1882 was due principally to irregular action, in excessive gusts, of the connecting copper

OSLER'S ANEMOMETER; ROBINSON'S ANEMOMETER.

wire, but the brass chain being always in tension, the movements of the recording pencil have since been in complete sympathy with those of the pressure plate, and in this condition of the apparatus, that is since the year 1882, no pressure greater than about 30 lbs. has been recorded, with the exception of those on 1893 December 12 and 1894 February 11.

A self-registering rain gauge of peculiar construction forms part of the apparatus: this is described under the heading "Rain Gauges."

A new sheet of paper is applied to the instrument every day at noon. The scale' of timeis ordinarily the same as that of the magnetic registers. On 1893 April 22, Mr. Kullberg applied a special gearing to the clock, which is so arranged that the table carrying the record can either be driven at the usual rate, or 12 times as fast, in order to give a largely increased time scale for the register of wind pressure during gales, the ordinary sheet thus giving a register for two hours instead of' 24. This arrangement continued in use until 1894 July, when the gearing was again modified so that the registering sheet could be carried at twenty.four times its usual rate instead . of twelve times as at first arranged.

ROBINSON'S ANEMOMETER.—This instrument, made by Mr. Browning, is constructed on the principle described by the late Dr. Robinson in the *Transactions of the Royal Irish Academy*, Vol. XXII., for registration of the horizontal movement of the air, and is mounted above the small building on the roof of the Octagon Room. It was brought into use in 1866, October. The motion is given by the pressure of the wind on four hemispherical cups, each 5 inches in diameter, the centre of each cup being 15 inches distant from the vertical axis of rotation. The foot of the axis is a hollow flat cone bearing upon a sharp cone, which rises up from the base of a cup of oil. An endless screw acts on a train of wheels furnished with indices for reading off the amount of motion of the air in miles, and a pinion on the axis of one of the wheels draws upwards a rack, to which is attached a rod passing down to the pencil, which marks the paper placed on the vertical revolving cylinder in the chamber below. A motion of the pencil upwards through a space of one inch represents horizontal motion of the air through 100 miles. The revolving hemispherical cups are 21 feet above the roof of the Octagon Room, 56 feet above the adjacent ground, and 211 feet above the mean level of the sea.

The cylinder is driven by a clock in the usual way, and makes one revolution in 24 hours. A new sheet of paper is applied every day at noon. The scale of time is the same as that of the magnetic registers.

It is assumed, in accordance with the experiments made by Dr. Robinson, that the horizontal motion of the air is three times the space described by the centres of the

GREENWICH MAGNETICAL AND METEOROLOGICAL OBSERVATIONS. 1896. **g**

⁷ INTRODUCTION TO GREENWICH METEOROLOGICAL OBSERVATIONS, 1896.

cups. To verify this conclusion experiments were made in the year 1860 in Greenwich Park with the anemometer by Negretti and Zambra, which was in use from 1859 until the introduction of the larger instrument by Browning in 1866 October. The instrument was fixed to the end of a horizontal arm, which was made to revolve round a vertical axis. For more detailed account of these experiments see the Introduction for 1880 and for previous years. With the arm revolving in the direction N., E., S., W., opposite to the direction of rotation of the cups, for movement of the instrument through one mile 1.15 was registered; with the arm revolving in the direction N., W., S., E., in the same direction as the rotation of the cups, 0·97 was registered. This was considered to confirm sufficiently the accuracy of the assumption. The hemispherical cups of the instrument with which these experiments were made were each $3\frac{3}{4}$ inches in diameter, the distance between the centres of the opposite cups being 13·45 inches.

From 1889 April 22 to May 8, both of the above instruments were sent to Mr. W. H. Dines, who kindly tested them on his whirling machine then erected at Hersham. "The particulars of these experiments are given at the end of the Introduction for 1889. The results appear to show that the instrumental results in the case of high velocities of the wind are too great for both anemometers, but it has been thought better for the sake of continuity not to apply any corrections to the recorded values, which consequently indicate velocities corresponding to three times the space described by the centres of the cups.

RAIN GAUGEs.-During the year 1896 eight rain-gauges were employed, placed at different elevations above the ground, complete information in regard to which will be found at page (civ) of the Meteorological Section.

The gauge No. 1 forms part of the Osler Anemometer apparatus, and is selfregistering, the record being made on the sheet on which the direction and pressure of the wind are recorded. The receiving surface is a rectangular opening 10×20 inches (200 square inches in area). The collected water passes into a vessel suspended by spiral springs, which lengthen as the water accumulates, until 0.25 inch is collected. The water then discharges itself by means of the following modification of the siphon. A vertical copper tube, open at both ends, is fixed in the receiver, with one end just projecting below the bottom. Over this tube a larger tube, closed at the top, is loosely placed. The accumulating water, having risen to the top of the inner tube, begins to flow off into a small tumbling bucket, fixed in a globe placed underneath, and carried by the receiver. When full the bucket falls over, throwing the water into a small exit pipe at the lower part of the globe--the only outlet. This creates a partial vacuum in the globe sufficient to cause the longer leg of the

,

ROBINSON'S ANEMOMETER; RAIN GAUGES; ELECTROMETER. *ti*

siphon to act, and the whole remaining contents of the receiver then run off, through the globe, to a waste pipe. The spiral springs at the same time shorten, and raise the receiver. The gradual descent of the water vessel as the rain falls, and the immediate ascent on discharge of the water, act upon a pencil, and cause a' corresponding trace to be made on the paper fixed to the moving board of the' anemometer. ,The rain scale on the paper was determined experimentally by passing a known quantity of water through the receiver. The continuous record thus gives complete information on the rate of the fall of rain .

Gauge No. 2 is a ten-inch circular gauge, placed close to gauge No. 1, its receiving surface being precisely at the same level. The gauge is read daily at 9^h Greenwich civil time.

Gauges Nos. 3, 4, and 5 are eight-inch circular gauges, placed respectively on the roof of the Octagon Room, over the roof of the Magnetic Observatory, and on the roof of the Photographic Thermometer Shed. All are read daily at 9^h Greenwich civil time.

Gauges Nos. 6, 7, and 8 are also eight-inch circular gauges, placed on the ground south of the Magnetic Observatory; *No.6* is the old daily gauge, *No.* 7 the old monthly gauge, and *No.8* an additional gauge brought into use in July 1881, as a check on the readings of Nos. 6 and 7 , the monthly amounts collected by these gauges having occasionally shown greater differences than seemed proper. On 1894 November 6, gauge *No.8* was shifted 61 feet eastwards. No. 6 is read daily, usually at $9^{\rm h}$, $15^{\rm h}$ and $21^{\rm h}$ Greenwich civil time, and Nos. 7 and 8 at $9^{\rm h}$ only.

The gauges are also read at midnight on the last day of each calendar month.

ELECTROMETER.-The electric potential of the atmosphere is measured by means of a Thomson self-recording electrometer, constructed by White, of Glasgow.

For a full description of the principle of the electrometer reference may be made to Sir William Thomson's "Report on. Electrometers and Electrostatic Measurements," contained in the *British Association Report* for the year 1867. It will be sufficient here to give a general description of the instrument which, with its registering apparatus, is planted in the Upper Magnet Room on the slate slab which carries the, suspension pulleys of the Horizontal Force Magnet. A thin fiat needle of aluminium, carrying immediately above it a small light mirror, is suspended, on the bifilar. principle, by two silk fibres from an insulated support within a large Leyden jar. A little strong sulphuric acid is placed in the bottom of the jar, and from the lower side of the needle depends a platinum wire, kept stretched by a weight, which connects the needle with the sulphuric acid, that is with the inner coating of the jar. A positive charge of electricity being given to the needle and jar; this charge is easily maintained

I

,

!J *2*

lii INTRODUCTION TO GREENWICH METEOROLOGICAL OBSERVATIONS, 1896.

at a constant potential by means of a small electric machine or replenisher forming part of the instrument, and by which the charge can be either increased or diminished at pleasure. A gauge is provided for the purpose of indicating at any moment the amount of charge. The needle hangs within four insulated quadrants, which may be supposed to be formed by cutting a circular flat brass box into quarters, and then slightly separating them. The opposite quadrants are placed in metallic connexion.

. Sir William Thomson's water-dropping apparatus is used to collect the atmospheric electricity. For this purpose a rectangular cistern of copper, capable of holding above 30 gallons of water, is placed near the ceiling on the west side of the south arm of the Upper Magnet Room. The cistern rests on four pillars of glass, each one encircled and nearly completely enclosed by a glass vessel containing sulphuric acid. A pipe passing out from the cistern, through the south face of the building, extends about six feet into the atmosphere, the nozzle (about ten feet above the ground) having a very small hole, through which the water passes and breaks almost immediately into drops. The cistern is thus brought to the same electrical potential as that of the atmosphere, near the nozzle, and this potential is communicated by means of a connecting wire to one of the pairs of electrometer quadrants, the other pair being connected to earth. The varying atmospheric potential thus influences the motions of the included needle, causing it to be deflected from zero in one direction or the other, according as the atmospheric potential is greater or less than that of the earth, that is according as it is positive or negative.

The small mirror carried by the needle is used for the purpose of obtaining photographic record of its motions. The light of a gas-lamp passing through a slit and falling upon the mirror, is thence reflected, and by means of a plano-convex cylindrical lens is brought to a focus at the surface of a horizontal cylinder of ebonite, nearly $\bar{7}$ inches long and 16 inches in circumference, which is turned by clock-work. A second fixed mirror, by means of the same gas-lamp, causes a reference line to be traced round the cylinder. The actual zero is found by cutting off the cistern communication, and placing the pairs of quadrants in metallic connexion with each other and with earth. The break of register at each hour is made by the driving-clock of the electrometer cylinder itself. Other photographic arrangements are generally similar to those which have been described for other instruments.

The scale of time is the same as that of the magnetic registers.

Interruptions sometimes occur through cobwebs making connexion between the cistern or its pipe and the walls of the building, and, in winter, from the occasional freezing of the water in the exit pipe.

ELECTROMETER; SUNSHINE RECORDER. (iii)

The electrometer having been in use for ten years, it was removed by Messrs. Elliott on 1888 July 12 for thorough cleaning and repair. After return it was found that its indications were altogether changed. The instrument was not again brought into use during the year 1888, and it was finally sent to the maker, Mr. White of Glasgow, who restored it to its normal state, excepting that the amplitude of motion of the spot of light is considerably increased. The instrument was brought into use again in October 1889.

SUNSHINE RECORDER.-Until the end of the year 1886 the instrument with which the record given in the printed volume was made was that presented to the Royal Observatory by the late Mr. J. F. Campbell, by whom this method of record was devised. This instrument is fully described in the Introductions to previous volumes. Commencing with the year 1887 the record is that of a modification of the Campbell form of instrument, as arranged by Sir G. G. Stokes for use at the observing stations of the Meteorological Office. By employing this instrument, the manipulation of which is more simple, there is the further advantage that the Greenwich results become strictly com- 'parable with those of the Meteorological Office Stations. A very complete account of 'the Campbell-S~okes instrument is given in the *Quarterly Journal* of the Royal Meteorological Society, Vol. VI., page 83. The recording cards are supported by carriers no larger than is required for keeping them in proper position; one straight. card serves for the equinoctial periods of the year, and another, curved, for the solstitial periods, the only difference between the summer and winter cards being that the summer cards are the longer: grooves are provided so that the cards are placed in position with great readiness. The daily record is transferred to a sheet of paper specially ruled with equal vertical spaces to represent hours, each sheet containing the record for one calendar month. The daily sums, and sums for each hour (reckoning from *apparent* midnight) through the month, are thus readily formed. The recorded durations are to be understood as indicating the amount of *bright* sunshine, no register being obtained when the sun shines faintly through fog or cloud, or when the sun is very near the horizon. Until 1896 February 5 the instrument was placed on a table upon the platform above the Magnetic Observatory, about 21 feet above the ground, and 176 feet above mean sea level. On account of the extension of the buildings in the South ground, it was found necessary on 1896 February 6 to remove the sunshine recorder from the roof of the Magnetic Observatory to a commanding position on the stage carrying the Robinson anemometer, on the roof of the Octagon Room, about 50 feet above the ground. A clear view of the sun is obtained in this position from sunrise to sunset, but some inconvenience is caused by the smoke from neighbouring chimneys. Very little record is obtained near to sunrise at any part of the year.

/

liv INTRODUCTION TO GREENWICH METEOROLOGICAL OBSERVATIONS, 1896.

A comparison between the two instruments for one complete year, 1886 June 1 to 1887 May 31, will be found at the end of the Introduction to the Volume for the year 1887.

It was pointed out by Mr. Marriott, Secretary of the Royal Meteorological Society, towards the end of 1896, that the record by the Campbell-Stokes instrument exhibited a notable falling off. This, though not very marked till 1896, had certainly begun in 1894, and it was found to be due to opacity in the glass globe, which appears to have deteriorated. On 1897 January 1 a globe of clearer glass, presented to the Royal Observatory in 1881 by the late Mr. Campbell, was substituted for the defective globe.

OzoNoMETER.-This apparatus is fixed on the south-west corner of the roof of the Photographic Thermometer shed, at a height of about 10 feet from the ground. The Δx in which the papers are exposed is of wood: it is about 8 inches square, blackened inside, and so constructed that there is free circulation of air through the box, without exposure of the paper to light. The papers exposed at 9^h , 15^h , and 21^h , are collected respectively at 15^h , 21^h , and 9^h , and the degree of tint produced is compared with a scale of graduated tints, numbered from 0 to 10. The value of ozone for the civil day is determined by taking the degree of tint obtained at each hour of collection as proportional to the period of exposure. Thus to form' the value for any given civil day, three-fourths of the value registered at 9^h , the values registered at 15^h and 21^h , and one-fourth of that registered at the following 9^h , are added together, the resulting sum (which appears in the tables of "Daily Results of the Meteorological Observations") being taken as the value referring to the civil day on a scale of 0 to 30. The means of the 9^h , 15^h , and 21^h values, as observed, are also given for each month in the foot notes.

§ 7. *Meteorological Reductions.*

The results given in the Meteorological Section refer to the civil day, commencing at midnight.

All results in regard to atmospheric pressure, temperature of the air and of evaporation with deductions therefrom, and atmospheric electricity, are derived from the photographic records, excepting that the maximum and minimum values of air temperature are those given by eye-observation of the ordinary maximum and minimum thermometers at 9^h and 21^h (civil reckoning), reference being made, however, to the photographic register when necessary to obtain the values corresponding to the civil day from midnight to midnight. The hourly readings of the photographic traces for the elements mentioned are entered into a form having.

OZONOMETER; METEOROLOGICAL REDUCTIONS.

double argument, the horizontal argument ranging through the 24 hours of the civil $day (0^h to 23^h)$ and the vertical argument through the days of a calendar month. Then for all the photographic elements, the means of the numbers standing in the vertical columns of the monthly forms, into which the values are entered, give the mean monthly photographic values for each hour, of the day, the means of the numbers in the horizontal columns giving the mean daily value. It should be mentioned 'that before measuring out the electrometer ordinates, a pencil line was first drawn through the trace to represent the general form of the curve, in the way described for the magnetic registers (page *xxxii*), excepting that no day has been omitted on account of unusual electrical disturbance, as it has been found difficult to decide on any limit of disturbance beyond which it would seem proper, as regards determination of diurnal inequality, to reject the results. In measuring the electrometer ordinates a scale of inches is used, and the values given in the tables which follow are expressed in thousandths of an inch, positive and negative potential being denoted by positive and negative numbers respectively. The scale has not been determined in terms of any electrical unit.

To correct the photographic indications of barometer and dry and wet bulb thermometers for small instrumental error, the means of the photographic readings at 9^h 12^h (noon), 15^h , and 21^h in each month are compared with the corresponding corrected mean readings of the standard barometer and standard dry and wet bulb thermometers, as given by eye-observation. A correction applicable to the photographic reading at each of these hours is thus obtained, and, by interpolation, corrections for the intermediate hours are found. , The mean of the twenty-four hourly corrections in each month is adopted as the correction applicable to each mean daily value in the month. Thus mean hourly and mean daily values of the several elements are obtained for each month. The process of correction is equivalent to giving photographic indications in terms of corrected standard barometer, and in terms of the standard dry and wet bulb- thermometers exposed on the free stand. The barometer results are *not* reduced to sea level, neither are they corrected for the effect of gravity, by reduction to the latitude of 45°.

The mean daily temperature of the dew-point and degree of humidity are deduced from the mean daily temperatures of the air and of evaporation by use of Glaisher's *llygrometrical Tables.* The factors by which the dew-point given in these tables is calculated were found by Mr. Glaisher from the comparison of a great number of dew-point determinations obtained by use of Daniell's hygrometer, with simultaneous observations of dry and wet bulb thermometers, combining observations made at the Royal Observatory, Greenwich, with others made in India and at Toronto. The factors are given in the following table.

•

lvi INTRODUCTION TO GREENWICH METEOROLOGICAL OBSERVATIONS, 1896.

TABLE OF FACTORS by which the DIFFERENCE between the READINGS of the DRy-BULB and WET-BuLB THERMOMETERS is to be MULTIPLIED in order to PRODUCE the CORRESPONDING DIFFERENCE between the DRy-BULB TEMPERATURE and that of the DEW-POINT,

In the same way the mean hourly values of the dew-point temperature and degree of humidity in each month (pages $(lxvii)$ and $(lxviii)$) have been calculated from the corresponding mean hourly values of air and evaporation temperatures (pages (lxvi) and $(lxvii)$.

The excess of the mean temperature of the air on each day above the average of 50 years, given in the" Daily Results of the Meteorological Observations," is found by comparing the numbers contained in column 6 with a table of average daily temperatures found by smoothing the accidental irregularities of the daily means deduced from

If the later of the METEOROLOGICAL RESULTS. The transmission of the second terms of the second terms

 $\lambda_1\in\mathbb{N}$

 \mathcal{A}_∞ , \mathcal{A}

 \sim

the observations for the fifty years $1841+1890$. In this series the mean daily temperature from 1841 to 1847 depends usually on 12 observations daily, in 1848 on 6 observations daily, and from 1849 to 1890 on 24 hourly readings from the photo. graphic record. The smoothed numbers are given in the following table. a sa ni ni pa

 ~ 1

in Silva.
Ngjarje

The daily register of rain contained in column 16 is that recorded by the gauge No. 6, whose receiving surface is 5 inches above the ground. This gauge is usually GREENWICH MAGNETICAL AND METEOROLOGICAL OBSERVATIONS, 1896. *h*

 \mathbf{I}

lviii INTRODUCTION TO GREENWICH METEOROLOGICAL OBSERVATIONS, 1896.

read at 9^{h} , 15^{h} , and 21^{h} Greenwich civil time. The continuous record of Osler's selfregistering gauge shows whether the amounts measured at 9^h are to be placed to the same, or to the preceding civil day; and in cases in which rain fell both before and after midnight, also gives the means of ascertaining the proper proportion of the 9^h amount which should be placed to each civil day. The number of days of rain given in the foot notes, and in the abstract tables, pages (lxv) and (cii) , is formed from the records of this gauge. In this numeration only those days are counted on which the fall amounted to or exceeded 0^{in} 005.

The indications of atmospheric electricity are derived from Thomson's Electrometer. Occasionally, during interruption of photographic registration, the results depend on eye-observations.

No particular explanation of the anemometric results seems necessary. It may be understood generally that the greatest pressures usually occur in gusts of short duration. The "Mean of 24 Hourly Measures" was in former years the mean of 24 measures of' pressure taken *at* each hour, but commencing with 1887 January 1 it is the mean of measures each one of which is the average pressure during the hour of which the nominal hour is the middle point.

The mean amount of cloud given in the foot notes on the right-hand pages (xxxix) to (lxi) , and in the abstract table, page (lxy) , is the mean found from oservations made usually at 9^h , 12^h (noon), 15^h , and 21^h , of each civil day.

For understanding the divisions of time under the headings "Clouds and Weather" and "Electricity," the following remarks are necessary :- In regard to Clouds and Weather, the day is divided by columns into two parts (from midnight to noon, and from noon to midnight), and each of these parts is subdivided into two or three parts by colons (:). Thus, when there is a single colon in the first column, it denotes that the indications before it apply (roughly) to the interval from midnight to 6^h , and those following it to the interval from 6^h to noon. When there are two colons in the first column, it is to be understood that the twelve hours are divided into three nearly equal parts of four hours each. And similarly for the second column. In regard to Electricity the results are included in one column; in this case the colons divide the whole period of 24 hours (midnight to midnight).

The notation employed for Clouds and Weather is as follows, it being understood that for clouds Howard's Nomenclature is used. The figure denotes the proportion of sky covered by cloud, an overcast sky being represented by 10.

METEOROLOGICAL RESULTS. lix

 $\ddot{}$

 \sim

ℓ INTRODUCTION TO GREENWICH METEOROLOGICAL OBSERVATIONS, 1896.

The following is the notation employed for Electricity :-

The duplication of the letter denotes intensity of the modification described, thus, ss, is very strong; vv, very variable. 0 indicates zero potential, and a dash " $-$ " accidental failure of the apparatus.

The remaining columns in the tables of "Daily Results" seem to require no special remark; all necessary explanation regarding the results therein contained will be found in the notes at the foot of the left-hand page, or in the descriptions of the several instruments given in § 6.

In regard to the comparisons of the extremes and means, $\&c.$ of meteorological elements with average values, contained in the foot notes, it may be mentioned that comparison is in all cases made with mean values determined from the observations for the fifty years $1841-1890$.

The tables following the "Daily Results" require no lengthened explanation. They consist of tables giving the highest and lowest readings of the barometer through the year; monthly abstracts of the principal meteorological elements; hourly values. in each month of barometer reading, of temperature of air, evaporation, and dew point, and of degree of humidity; sunshine results; observations of thermometers in a Stevenson screen and on the roof of the Magnet House, and of the earth thermometers; changes of direction of the wind; hourly values in each month of the horizontal movement of the air derived from Robinson's Anemometer; results derived from the Thomson Electrometer; rain results; and observations of meteors.

In the tables of mean values of meteorological elements at each hour for the different months of the year, the mean values have, in previous years, been given for the hours 0^h to 23^h only. But since 1886 the mean for the 24th hour (the following midnight) has been added, thus indicating the amount of, non -periodic variation. The monthly means have also been given since 1886 for the 24 hours, 1^h to 24^h , as well as for the hours, 0^h (midnight) to 23^h , which were given in former years.

It may be pointed out that the monthly means, 0^h to 23^h , for barometer and temperature of the air and of evaporation contained in these tables, pages $(lxvi)$ and $(lxvii)$, do not in some cases agree with the monthly means given in the daily results, pages (xxxviii) to (lx) , and in the table on page (lxy) , in consequence of occasional interruption of the photographic register, at which times daily values to completethe daily results could be supplied from the eye observations, as mentioned in the foot notes, but hourly values, for the diurnal inequality tables, could not be so

supplied. In such cases, however, the means given with these tables are the proper means to be used in connexion with the numbers standing immediately above them, for formation of the actual diurnal inequality.

The table" Abstract of the Changes of the Direction of the Wind" as derived from Osler's Anemometer, page (lxxxix), exhibits every change of direction of the wind occurring throughout the year whenever such change amounted to two nautical points or $22\frac{1}{2}^{\circ}$. It is to be understood that the change from one direction to another during the interval between the times mentioned in each line of the table was generally gradual. All complete turnings of the vane which were evidently of accidental nature, and which in the year 1881 and in previous years had been included, are here omitted. Between any time given in the second column and that next following in the first column no change of direction in general occurred varying from that given by so much as one point or $11\frac{1}{4}$. From the numbers given in this table the monthly and yearly excess of motion, page (xcvi), is formed. By direct motion it is to be understood that the change of direction occurred in the order N, E, S, W, N, &c., and by retrograde motion that the change occurred in the order N, W, S, E, N, &c.

In regard to Electric Potential of the Atmosphere, in addition to giving the hourly values in each month, including all available days, the days in each month have been (since the year 1882) further divided into two groups, one containing all days on which the rainfall amounted to or exceeded $0^{in}020$, the other including only days on which no rainfall was recorded, the values of daily rainfall given in column 16 of the "Daily Results of the Meteorological Observations" being adopted in selecting the days. These additional tables are given on pages (c) and (ci) respectively.

In regard to the observations of Luminous Meteors, it is simply necessary to say that in general only special meteor showers are watched for, such as those of April, August, and November. The observers of meteors in the year 1896 were Mr. Dyson, Mr. Hollis, Mr. Lewis, Mr. Nash, Mr. Edney, Mr. Walter, Mr. Beadle, Mr. Marchant and Mr. Davies. Their observations are distinguished by the initials FWD, H, L, N, E, W, B, M and D respectively.

W. H. M. CHRISTIE.

i

Royal 0 bservatory, Greenwich, 1898 August 5.

GREENWICH MAGNETICAL AND METEOROLOGICAL OBSERVATIONS, 1896.

1 1 1 1 1 $\label{eq:2.1} \begin{split} \mathcal{L}^{(1)}(A) = \frac{1}{\sqrt{2\pi}} \left(\frac{1}{\sqrt{2\pi}} \right) \mathcal{L}^{(1)}(A) \, , \\ \mathcal{L}^{(2)}(A) = \frac{1}{\sqrt{2\pi}} \mathcal{L}^{(2)}(A) \, , \end{split}$ 1 1 $\sim 10^{-10}$ ~ 30 $\mathcal{F}^{\mathcal{G}}_{\mathcal{G}}(x)$ and $\mathcal{G}^{\mathcal{G}}_{\mathcal{G}}(x)$ and $\mathcal{G}^{\mathcal{G}}_{\mathcal{G}}(x)$ $\label{eq:2.1} \frac{d\mathbf{r}}{dt} = \frac{1}{2} \left[\frac{d\mathbf{r}}{dt} + \frac{d\mathbf{r}}{dt} \right] \mathbf{r} = \frac{1}{2} \left$ $\label{eq:2} \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2}$ $\label{eq:2.1} \mathcal{L}(\mathcal{L}^{\text{max}}_{\mathcal{L}}(\mathcal{L}^{\text{max}}_{\mathcal{L}})) \leq \mathcal{L}(\mathcal{L}^{\text{max}}_{\mathcal{L}}(\mathcal{L}^{\text{max}}_{\mathcal{L}}))$ $\hat{\mathcal{L}}$ $\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{0}^{\infty}\frac{1}{\sqrt{2\pi}}\left(\frac{1}{\sqrt{2\pi}}\int_{0}^{\infty}\frac{1}{\sqrt{2\pi}}\left(\frac{1}{\sqrt{2\pi}}\int_{0}^{\infty}\frac{1}{\sqrt{2\pi}}\right)\frac{1}{\sqrt{2\pi}}\right)\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\$ $\label{eq:2} \frac{1}{2}\sum_{i=1}^n\frac{1}{2}\sum_{j=1}^n\frac{1}{2}\sum_{j=1}^n\frac{1}{2}\sum_{j=1}^n\frac{1}{2}\sum_{j=1}^n\frac{1}{2}\sum_{j=1}^n\frac{1}{2}\sum_{j=1}^n\frac{1}{2}\sum_{j=1}^n\frac{1}{2}\sum_{j=1}^n\frac{1}{2}\sum_{j=1}^n\frac{1}{2}\sum_{j=1}^n\frac{1}{2}\sum_{j=1}^n\frac{1}{2}\sum_{j=1}^n\frac{1}{2}\sum_{j=1}^n\frac{$ $\label{eq:1} \mathbf{a}_{\mathbf{a}} = \mathbf{a}_{\mathbf{a}} \left(\mathbf{a}_{\mathbf{a}} \right)$ \mathcal{L}^{max} $\mathcal{A}^{\mathcal{A}}_{\mathcal{A}}$, $\mathcal{A}^{\mathcal{A}}_{\mathcal{A}}$ $\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{0}^{\infty}\frac{1}{\sqrt{2\pi}}\left(\frac{1}{\sqrt{2}}\right)^{2}d\mu_{\rm{max}}\left(\frac{1}{\sqrt{2}}\right).$

1

1

1 1 1

> > 1

 $\mathcal{O}(\mathcal{A})$.

ROYAL OBSERVATORY, GREENWICH.

RESULTS

OJ'

MAGNETICAL OBSERV ATIONS,

1896.

The absolute values of the Magnetic Elements are to some extent affected by the masses of iron introduced in buildingthe North Wing of the new Physical Observatory and the new Altazimuth Pavilion. *See* Introduction.

ᅺ

GREENWICH MAGNETICAL AND METEOROLOGICAL OBSERVATIONS, 1896.

 $\boldsymbol{\ell}$

 \sim

 $\ddot{}$

TABLE III.-MEAN HORIZONTAL MAGNETIC FORCE (diminished by a Constant) FOR EACH CIVIL DAY.

(Each result is the mean of 24 hourly ordinates from the photographic register, expressed in terms of the whole Horizontal *Force, the unit in the table being* ·00001 *of the whole Horizontal Force. The letters* u *and* C *'indicate respectively values uncorrected for, and corrected for temperature.)*

At the end of the year experiments were made for determination of the angle of torsion, thus breaking the continuity of the values.

۰,

 $\hat{\mathbf{v}}$

 \sim

 \bar{z}

 $\frac{1}{2} \sum_{i=1}^{n} \frac{1}{i} \sum_{j=1}^{n} \frac{1}{j} \sum_{j=1}^{n$

 \bar{z}

 \mathbf{r}

TABLE V.-MONTHLY MEAN DIURNAL INEQUALITY OF HORIZONTAL MAGNETIC FORCE.

(The results are expressed in terms of the whole Horizontal Force, diminished in each case by the smallest hourly value, the unit in the table being '00001 of the whole Horizontal Force. The letters \bf{u} and \bf{c} in

TABLE VI.-MONTHLY MEAN TEMPERATURE at each HOUR of the DAY within the box inclosing the HORIZONTAL FORCE MAGNET.

 (v)

 ~ 10

 \sim

TABLE VII.-MEAN VERTICAL MAGNETIC FORCE (diminished by a Constant) FOR EACH CIVIL DAY.

(Each result is the mean of z_4 hourly ordinates from the photographic register, expressed in terms of the whole Vertical Force, the unit in the table being \cdot 00001 of the whole Vertical Force. The letters u and c

At the end of the year the magnet was readjusted, thus breaking the continuity of the values.

 $\ddot{}$

Means 67'55 67'69 67'4-8 67'54- 67'35 67'87 68'79 67'7 1 67'43 67'35 67'39 67' 17

 $\gamma_{\rm L}$

 $\mathcal{A}^{(1)}$

:

 $\mathbf i$,

 \sim

 $\ddot{}$

 $\hat{\mathbf{y}}$

 \mathbf{r}

RESULTS OF OBSERVATIONS OF MAGNETIC DECLINATION, HORIZONTAL FORCE, AND VERTICAL FORCE, $(viii)$

 \mathcal{A}

 \mathbf{r}

TABLE XI.-MEAN MAGNETIC DECLINATION, HORIZONTAL FORCE, and VERTICAL FORCE, in each MONTH.

The units in columns 2 and 3 are '00001 of the whole Horizontal and Vertical Forces respectively; in columns 4, 5, and 6 the unit is '00001 of the Millimetre-Milligramme-Second Unit, or '000001 of the Centimetre-Gramme-Sec

HORIZONTAL FORCE,-At the end of the year experiments were made for determination of the angle of torsion, thus breaking the continuity of the values.

VERTICAL FORCE,-At the end of the year the magnet was readjusted, thus breaking the continuity of the values.

 $\ddot{}$

TABLE XII.-MEAN DIURNAL INEQUALITIES OF MAGNETIC DECLINATION, HORIZONTAL FORCE, and VERTICAL FORCE, for the Year 1896.

(Each result is the mean of the twelve monthly mean values, the annual means for each element being diminished by the smallest hourly value, The results jor Horizontal Force and Vertical Force are corrected jor temperature,)

The units in columns 2 and 3 are coool of the whole Horizontal and Vertical Forces respectively; in columns 4, 5, and 6 the unit is coool of the Millimètre-Milligramme-Second Unit, or coool of the Centimètre-Gramme-Second Horizontal Force (applicable to columns 4 and 5) are 1°8358 and 0°18358 respectively, and of whole Vertical Force (applicable to column 6) are 4'3743 and 0'43743 respectively.

 $\ddot{}$

7

MADE AT THE ROYAL OBSERVATORY, GREENWICH, IN THE YEAR 1896. (xi)

TABLE XIII.-DIURNAL RANGE OF DECLINATION AND HORIZONTAL FORCE, on each CIVIL DAY, as deduced from the TWENTY-FOUR HOURLY MEASURES of ORDINATES of the PHOTOGRAPHIC REGISTER. *(The Declination is expressed in minutes of arc; the unit for Horizontal Force is* '00001 *of the whole Horizontal Force. The results for Horizontal Force are corrected for temperature.)*

The mean of the twelve monthly values is, for Declination $10'$ 78 , and for Horizontal Force 251.5.

TABLE XIV.-MoNTHLY MEAN DIURNAL RANGE, and SUMS of HOURLY DEVIATIONS from MEAN, for DECLINATION, HORI-ZONTAL FORCE, and VERTICAL FORCE, as deduced from the Monthly Mean Diurnal Inequalities, Tables II., V., and IX. *(The Declination is expressed in minutes of arc: the units for Horizontctl Force and Vertioctl Force are* '00001 *of the whole Hori* z ontal and Vertical Forces respectively.["] The results for Horizontal Force and Vertical Force are corrected for temperature.)

(xii) HARMONIC ANALYSIS OF THE DIURNAL INEQUALITIES OF MAGNETIC DECLINATION, HORIZONTAL FORCE,

TABLE XV.-VALUES of the CO-EFFICIENTS in the PERIODICAL EXPRESSION

 $V_t = m + a_1 \cos t + b_1 \sin t + a_2 \cos t + b_2 \sin t + a_3 \cos 3t + b_3 \sin 3t + a_4 \cos 4t + b_5 \sin 4t$

(in which t is the time from Greenwich mean midnight converted into arc at the rate of 15° to each hour, and V_t the mean value of the magnetic element at the time t for each month and for the year, as given in Tables II., V., IX., and XII., the values for Horizontal Force and Vertical Force being corrected for temperature).

The values of the co-efficients for Declination are given in minutes of arc: the units for Horizontal Force and Vertical Force are '00001 of the whole Horizontal and Vertical Forces respectively.

TABLE XVI.-VALUES of the CO-EFFICIENTS and CONSTANT ANGLES in the PERIODICAL EXPRESSIONS $V_t = m + c_1 \sin (t + a) + c_2 \sin (2t + \beta) + c_3 \sin (3t + \gamma) + c_4 \sin (4t + \delta)$ $V_t = m + c_1 \sin (t' + a') + c_2 \sin (2t' + \beta') + c_3 \sin (3t' + \gamma') + c_4 \sin (4t' + \delta')$ (in which *t* and *t'* are the times from Greenwich mean midnight and apparent midnight respectively, converted into arc at the rate of 15° to each hour, and V_t , $V_{t'}$ the mean value of the magnetic element at the time *t* or t' for each month and for the year, as given in Tables II., V., IX., and XII., the values for Horizontal Force and Vertical Force being corrected for temperature). The values of the co-efficients for Declination are given in minutes of arc: the units for Horizontal Force and Vertical Force are '00001 of the whole Horizontal and Vertical Forces respectively. Month, δ' \mathbf{r} \overline{m} a^{\prime} β β' γ' c_4 c_{2} γ $c₁$ *a* $c₂$ 1896. DECLINATION WEST. $\begin{array}{c} \begin{array}{c} \hline \hline \hline \hline \hline \end{array} \end{array}$ \bullet \circ \qquad λ \circ \cdot \circ , \circ \circ o I 266. 19 0'25 55· 19 64·47 1'13 9. 18 14-. 2 0'41 259· 13 3'20 267. 50 270. 12 January 2'74 0'35 237.48 0.41 14· 37 3'38 ²I. 45 227. 21 February
March 2'89 261. lZ 264.41 I' 55 14·47 0.52 61. 39 2'84 2.06 219.35 225.5 6 0.38 53. I I 240. 5 1'14 3.56 237.58 35·47 40. I 57. 26 ^rApril 228.47 32. 28 1'0 3 225. 0 225. 0 0'28 57. 26 4-' 17 228.47 2.85 3² • 28 3'53 103.48 238.58 236.22 0'24 107. 16 0.7 1 223.48 222. 56 2'2 I 32 .45 31. I 3'93 3'39 239. 18 0'11 2. 12 *2.40* 208.25 0'69 238.57 \ May June July , August !, S b eptem er (**October** $4'25$ 208.32 2'06 39.50 4°· 4 $3'43$ 355. 18 349.46 0.64 0'23 $216.$ I 46.27 49. 13 241. 3+ 245·43 4.41 3'7° 21 7. 24 2'14 0'06 196. 10 199. 50 1'14 248. 17 251.2 3'92 3'42 23I. 38 232.33 2'08 5 I. 14 53· 4 64-.48 0'40- *⁷⁰ •* 4 52. 3 ^I 236. 56 23 2. 59 2.84 $3'38$ 240. I I 238.52 2'02 48. 19 45.41 0'97 38. ² 3 28. 55 228. ^I 21 7. 25 0'4² 1'99 2.36 1'59 0.77 250.31 35.59
 23.59 254· 3 50 . 21 ~. **November** 0'36 259. 28 248. 34- 0.44 64.53 1'86 0.85 16·43 2'19 262.47 259· 9 20·43 *260.48* 0'15 24. 27 263.36 December............... 2.36 J'98 262.22 261. 26 0'62 . 2.28 0. 36 0'35 236.57 236.57 0'23 49· 35 49· 35 For the Year 2.28 2'86 0'7 ¹ 238. I 238. I 1.72 34· 55 34· 55 HORIZONTAL FORCE. 356. 8 *346.40* 148,43 155·49 *TO* 22'0 53· 59 26'9 260.31 265. 15 9'7 January
February
March 5 I. 37 *4-T3* $6. \circ$ 27 2. 14 161. 48 352.4 265. 16 15'0 151. 21 14'8 78. 12 22'9 76'4- $27'2$ 74-43 39. 26 8.5 *3*⁰ *.58* 17*0 •* 28 121.5 1 301. 47 164. 7 114'5 56'5 123. 58 *2T7 306.* I 22'7 34. 16 8.7 34. 16 18'4 152.33 152.33 || April || 170°4
|| May || 147°4 April| 170.4 96.1 122. 36 122. 36 304-. 7 *30 4-. 7* 55'7 *T6* 4· 7 46.6 168.42 96'8 306. 22 *30 4-.* 38 6.5 166. 6 7· 35 141.30 14-2. 22 3.8 212.25 2.7 348. 3 ^I 348. 59 212. 4 l June 116'8 92 '1 143. 20 33'3 293· 5 293· 19 143.27 7.2 334. 0 339. 32 98.6 188,48 192.57 i: July 14-5'8 137·4-° 139· 3 321.4 32 3. 5° 14'7 34'2 51.56 55. 36 9'5 336.42 20'6 *207.4-7* 210. 32 ~i· August September October 10T4- $\overline{\mathbf{107}}$ 13 I. 48 17 1'5 132.43 *3T3* 334. 52 187. 18 183. 21 12'0 35. 10 29· 54 118.31 42.8 *2T7* 177'9 89'8 1I9·5° 327.53 32 5. 15 162. 58 9'8 1 5· 5~ I. 4-4- 56'5 26.8 287.9 17.3 173·34 97· 39 94-· 7 294. 13 13 I. 6 7.8 0·33 276.31 142. 0 15· 5 November December 65'6 20.6 87·4° 84.2 20'9 283.47 12'5 4'8 18'7 6.5 132.18 129. 30 26.34 22. 50 358.46 255. 3 I 21'9 3"2 359.42 257. 23 15. 8 15. 8 For the Year 107'3 | 59'4 | 124.31 | 124.31 | 30'3 | 301.19 | 301.19 | 13'6 | 171. 0 | 171. 0 *T7* VERTICAL FORCE. 87·49 2'0 278.18 287.46 $6'2$ 265. 4
14.6 270. 4 269.48 94· 55 194.36 196. 58 $2'4$ January............... IT7 19'7 3'1 1'8 219.17 233. 13 February............... 22'9 277. 2 67.24 77· 5 I *2T4-* 184. 22 187. 5 ^I $\begin{array}{|c|c|c|c|}\n14^6 & 270. & 4 \\
18^3 & 263. & 38\n\end{array}$ 279· 33 28.4 18 3. 21 263.38 267. 52 98. 17 104. 38 4'0 271. 5 185.28 March 29'4- 7'3 6'1 3'0 105. 28 297·39 297·39 105.28 April..................... 35'3 26'9 163. 5 163. 5 $\begin{array}{|c|c|c|}\n 19'2 & 259.25 \\
 21'8 & 267.47\n\end{array}$ 259. 25 266. 3 6'5 120. 10 117· 34- 1'0 347.3 1 344· 3 16o. 55 160. 3 $\begin{array}{|c|c|c|}\n\hline\n21'8 & 267.47 \\
\hline\n16'9 & 263.49\n\end{array}$ May..................... 4- ¹ '7 *2T;* 1'4 33°·26 329.58 126·45 264-. 3 106. 53 107. 14- 14'6 126. 52 $\begin{array}{|c|c|}\n16'9 & 263.49 \\
17'1 & 258.11\n\end{array}$ $3'4$ June 33'6 6.3 84· 33 88.42 *0'6* 236.31 242.3 260. 57 151. 57 258. 11 July..................... 28'9 11'8 153. 20 6.8 102.46 10 5. 3 I 2.4 289.43 293. 23 $\begin{array}{|c|c|c|}\n14.3 & 248.40 \\
12.5 & 263.0\n\end{array}$ 25°·3° August 2 4'1 15'0 172.41 173.36 31o. 14 3°4-. 58 $2'1$ $263.$ 0 260.22 6'3 99. 26 95. 29 September| 22'9
October..................| 18.5 15'7 170. 38 169. 19 5.8 290. 6 275. 58 98. 18 87.42 $3'4$ 186.50 259. 17 October.................. 18'5 16'8 190.22 $9'7$ 266.21 148. 2 137. 8 266. I I 1'1 25 I. 39 November 16'3 $\begin{array}{|c|c|c|}\n5.7 & 273.47 \\
5.3 & 252.40\n\end{array}$ 266.31 2'9 15' I 194.41 191. 3 *0'6 20*9. 5 ^I 206. 7 196.30 5'3 *25 ² .4-0 250 .4-8 2'0* 12 3.37 *120·49* December.............. I 1'3 195· 34- 283.54 283.54 For the Year 22'5 18'2 174.45 174.45 13'4 262.34 262.34 4.7 102.12 102.12 1.7

TABLE XVII.-SEPARATE RESULTS of OBSERVATIONS of MAGNETIC DIP made in the Year 1896.

The needles B I and B 2 are 9 inches in length; C I and C 2, 6 inches; and D I and D 2, 3 inches.
The initials N and E are those of Mr. Nash and Mr. Edney.

 ϵ

 $\chi \to 0$

COLLECTED YEARLY MEANS of MAGNETIC DIP for each of the NEEDLES, and GENERAL MEAN for the Year 1896.

The deflecting magnet is placed on the east side of the suspended magnet, with its marked pole alternately east and west, and on the west side with its marked pole also alternately east and west : the deflexion given in th

Computation of the Values of Horizontal Force in Absolute Measure, from observations made with the Gibson Instrument in Library.

The deflecting magnet is placed on the east side of the suspended magnet, with its marked pole alternately east and west, and on the west side with it marked pole also alternately east and west: the deflexion given in the

TABLE XIX.-continued-COMPUTATION of the VALUES of HORIZONTAL FORCE in ABSOLUTE MEASURE.

From Observations made with the Elliott Instrument in Library.

From Observations made with the Elliott Instrument in the Park and Garden.

 $\hat{\bullet}$

AT THE ROYAL OBSERVATORY, GREENWICH, IN THE YEAR 1896. (xix)

MONTHLY MEAN DIURNAL INEQUALITIES OF MAGNETIC ELEMENTS FROM HOURLY ORDINATES, ON FIVE SELECTED DAYS, IN EACH MONTH.

Each result is the mean of the corresponding hourly ordinates from the photographic register, on five quiet days in each month, selected for comparison with results at other British Observatories, The days included are January I, 2, 2 I, 24, 29, February 7, 18, 20, 23, 24, March I I, 16, 17, 18, 21, April 7, 14, 16, 20, 30, May 5, 6, 9, 26, 29, June 2, 7, 20, 23, 24-, July 2, 9,17, 19,3 1, August 5,13,16,27,28, September 8, 9, 10,25,28, October 6, 7, 18, 25, 26, November 3, 12,22,24,25, December 8, 12, 18, 19, 24.

The results for Declination are given in minutes of arc: those for Horizontal Force and Vertical Force are given both in terms of the whole Horizontal or Vertical Force and in terms of the Millimetre-Milligramme-Second (Metric) Unit. The letter f indicates values in terms of the whole Horizontal or Vertical Force, and the letter *m* values in terms of the Metric Unit, the unit for the former values being '00001 of the whole Horizontal or Vertical Force, and for the latter '00001 of the Metric Unit, or '000001 of the Centimetre-Gramme-Second (C.G.S.) Unit. The values of the whole Horizontal and Vertical Forces expressed in terms of the Metric Unit are 1.8358 and 4.3743 respectively for the year.

TABLE XX.-MONTHLY MEAN DIURNAL INEQUALITY OF MAGNETIC DECLINATION WEST.

(The results are in each case diminished by the smallest hourly value.)

TABLE XXI.-MONTHLY MEAN DIURNAL INEQUALITY OF HORIZONTAL MAGNETIC FORCE.

(The results are corrected for temperature and in each case diminished by the smallest hourly value.)

TABLE XXII.-MONTHLY MEAN DIURNAL INEQUALITY OF VERTICAL MAGNETIC FORCE.

(The results are corrected for temperature and in each case diminished by the smallest hourly value,)

 $\label{eq:2.1} \frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\int_{0}^{\infty}\frac{1}{\sqrt{2\pi}}\left(\frac{1}{\sqrt{2\pi}}\int_{0}^{\infty}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi$

ROYAL OBSERVATORY, GREENWICH.

MAGNETIC DISTURBANCES

AND

 \bar{z}

EARTH CURRENTS.

1896.

MAGNETIC DISTURBANCES in DECLINATION, HORIZONTAL FORCE, and VERTICAL FORCE, recorded at the ROYAL OBSERVATORY, GREENWICH, in the Year IS96.

The following notes give a brief description of all magnetic movements (superposed on the ordinary diurnal movement) exceeding 3' in Declination, 0'001 in Horizontal Force, or 0'0003 in Vertical Force, as taken from the photographic records of the respective Magnetometers. The movements in Horizontal and Vertical Force are expressed in parts of the whole Horizontal and Vertical Forces respectively. When anyone of the three elements is not specifically mentioned it is to be understood that the movement, if any, was insignificant. Any failure or want of register is specially indicated.

The term " wave " is used to indicate a movement in one direction and return; "double wave " a movement in one direction and return with continuation in the opposite direction and return; "two successive waves" consecutive wave movements in the same direction; "fluctuations" a number of movements in both directions. The extent and direction of the movement are indicated in brackets, + denoting an increase, and $-$ a decrease of the magnetic element. In the case of fluctuations the sign \pm denotes positive and negative movements of generally equal extent.

Magnetic movements which do not admit of brief description in this way are exhibited on accompanying plates.

The time is Greenwich Civil Time (commencing at midnight, and counting the hours from \circ to 24).

1896.

January 3^d o^h to 6^d o^h. See Plate I.

- 6^a 3^h to 4^b Wave in Dec. (- 4'), followed till 16^h by small fluctuations in Dec. and H.F. 16^h to 18^h Wave in Dec. $(-13')$. 16h to 19h Two successive waves in H.F. $(-\infty 18)$ and $(-\infty 14)$.
Wave in Dec. $(-13')$. 16h to 19h Two successive waves in H.F. $(-\infty 18)$ and $(-\infty 14)$. wave in Dec. (-13) . To 10 19 Two successive waves in H.F. (-3018) and (-3014) .
 $z1^h$ to $z2^h$ Double wave in Dec. $(-6'$ to $+4')$: sharp wave in H.F. $(+904)$: wave in V.F. $(- 0004)$.
- 7^d o^h to 12^h Small fluctuations in Dec. and H.F., with waves, in Dec. o^h to $1\frac{1}{2}^h$ (- *5')*, 2^h to 3^h (- *5')*: $\lim_{x \to 0}$ H.F. $9\frac{1}{2^n}$ to $11^{\frac{n}{n}}$ (- $\lim_{x \to 0}$ / $\lim_{x \to 0}$ to $22^{\frac{n}{n}}$ Serrated wave in Dec. (- 14'): $21^{\frac{n}{n}}$ to $22^{\frac{n}{n}}$ Double wave in H.F. $(+)$ ∞ ∞ ∞ ∞ ∞ ∞ , followed by small fluctuations in Dec. and H.F.
- S^d oh to 4^h Small fluctuations in Dec. O^h to 2^h Wave in H.F. (+ '002). 17^h to 19^h Two successive waves in Dec. $(-4')$ and $(-6')$. 17^h to 22^h Small fluctuations in H.F.
- 9^d 8^{1h}_{2} to 12^h Two successive waves in Dec $(+ 4')$ and $(+ 7')$. 13^h to 15^{1h}_{2} Double wave in H.F. $(-\text{const})$ to $+\text{const}$, followed by a wave $(-\text{const})$ till 16^h , and by small fluctuations till 24^h .
- 9^d 22^h to 10^d 1^h Wave in Dec. (- 9'), with small superposed fluctuations.
- 10^d 2h to 4^h Double wave in Dec. $(-4'$ to $+3')$: in H.F. small. $13\frac{1}{2}^h$ to 15^h Wave in Dec. $(-6')$: in H.F. $(-\infty)^2$. 18^h to $19^{\frac{1}{2}h}$ Wave in Dec. $(-6')$: in H.F. $(-\infty)^{\frac{1}{2}h}$ wave in Dec. $(-6')$: in H.F. $(-\infty)^{\frac{1}{2}h}$ fluctuations till 24^h .
- 11^d 19^h to 24^h Fluctuations in Dec. (\pm 2'): in H.F. small.
- a^a oh to a^b Wave in Dec. $(-5')$. Oh to I^b Double wave in H.F. $(+)$ conto '001). 20h to aI^b Double wave in Dec. $(+ 4' \text{ to } -3')$: small fluctuations in H.F.
- 13^d 6^h to 8¹/₂h Shallow wave in Dec. (+ 5') : in H.F. (+ '0012). 16^h to 20^h Wave in H.F. (- '0025). 21^{h} to $3\frac{1}{2}^{\text{h}}$ Shallow wave in Dec. (+ 5): in H.F. (+ '0012). 10^{h} to 20^{h} V
 21^{h} to $23\frac{1}{2}^{\text{h}}$ Wave in Dec. (- 8'): in H.F. (- '0015): in V.F. (- '0005).
- 14^d $7\frac{1}{2}$ h to 9^h Wave in Dec. (+ 3'): in H.F. (- '0014). 11¹/₂h to 13¹/₂h Wave in H.F. (- '0025). $\frac{1}{2}$ to $\frac{1}{4}$ Wave in Dec. (+ 3): In II.F. (- '0014). $1\frac{1}{2}$ to $1\frac{1}{3}$ wave in H.F. (- '0023).
 13^{h} to 14^{h} Wave in Dec. (+ 4'). 14^{h} to 15^{h} Wave in H.F. (- '001). $17\frac{1}{2}^{\text{$ w_1^2 to 14^{μ} wave in Dec. (+4): u_1^2 to 15^{μ} wave in H,r. (- '001). $17\frac{1}{2}$ to 19^{μ} Double-cression wave in Dec. (-4): wave in H,F. (- '0016). 22^{μ} to 23^{μ} Wave in Dec. (-6'): in $H.F. (+ '0017).$
- 15^d o^h to 9^h Small occasional fluctuations in Dec. and H.F. $21\frac{1}{2}$ ^h to $23\frac{1}{2}$ ^h Double-crested wave in H.F. $(+ \text{ 'ooz4})$: small fluctuations in Dec.
- 16^d 15^h to $17\frac{1}{2}^h$ Small fluctuations in Dec.: wave in H.F. (- '002). 21^h to 24^h Wave in $H.F.(- 0015).$

- January 17^d $0^{\frac{1}{2}h}$ to 2^h Sharp wave in Dec. (+ 12'): double wave in H.F. (- '0016 to + '0016): decrease $\frac{1}{2}$ to 2^a snarp wave in Dec. (+ 12): double wave in H.F. (- '0010 to + '0010): decrease
of V.F. (- '0008). $6\frac{1}{2}$ to 8¹/₂. Wave in Dec. (+ 7'): in H.F. (- '002), followed by small rapid of v.f. (- '0008). σ_3^{-1} to σ_3^{-2} wave in Dec. (+ 7): in H.F. (- '002), followed by small rapid fluctuations. σ_4 ¹ to σ_5 ¹ Sharp wave in Dec. (- 20'): in H.F. (- '0024), with superposed fluctuations: $14\frac{1}{2}$ to 10th Sharp wave in Dec. (-20): In H.F. (- 0.024), with superposed fluctuations: in V.F. (+ 0.007). $17\frac{1}{2}$ ^h to 19^h Wave in H.F. (- 0.02). 18 ^h to 20^h Wave in muctuations : in v.f. $(+$ '0007). $17\frac{1}{2}$ '
Dec. $(-10')$.
	- 18^d oh to $1\frac{h}{2}$ Sharp wave in Dec. (-12'): in H.F. (- .0024): in V.F. small. 17h to 18^h Wave in bec. $(-3')$: in H.F. small. 19h to 20h Wave in Dec. $(-8')$: double wave in H.F. $(- \cdot \circ \circ i \cdot z \text{ to } + \cdot \circ \circ i).$
	- 19^d $2\frac{1}{2}$ ^h to 4 ^h Wave in Dec. (- 8'), followed till 5 ^h by a small wave (- 3'). 8^h to 10¹₂h Shallow wave $\frac{1}{2}$ to 4 wave in Dec. (- 8), followed till 5^{μ} by a small wave (- 3). 8^{μ} to $10^{\frac{1}{2}^{\mu}}$ Shallow wave in H.F. (- '002). $12^{\frac{1}{2}^{\mu}}$ to 14^{μ} Wave in H.F. (- '004). $16^{\frac{1}{2}^{\mu}}$ to $17^{\frac{1$ increase of R.F. (+ '0025). 20h to 22ih Two successive waves in Dec. (- 9') anti (- 8') : increase of H.F. (+ 0.025). 20² to $22\frac{3}{2}$ T wo successive waves in Dec. (-9) and (-8):
irregular double wave in H.F. (- 0.015 to + 0.012). 12^h to 23^h Small fluctuations also in Dec., R.F. and V.F.
	- 20^d $I2^h$ to $I5^h$ Fluctuations in Dec., H.F. and V.F. $I5^{\frac{1}{2}h}$ to $I7^h$ Wave in H.F. (- ·003). 16^h to 21^h Three successive waves in Dec. $(-6')$, $(-7')$ and $(-13')$, the last steep at commencement. $2e^h$ to 22^h Serrated wave in H.F. $(+\cdot\infty)$: in V.F. small.
	- 21^d 16¹/₂h to 18^h Small wave in Dec. $(-3')$: in H.F. $(-\infty)$ 14).
	- 22^d o^h to 4^h Fluctuations in Dec. and H.F. $16\frac{1}{2}$ ^h to 18^h Wave in Dec. (-9'). 22^h to 23^h Sharp wave in Dec. $(-14')$, in H.F. $(+ 003)$.
	- 23^d 20^h to 22^h Double-crested wave in Dec. (- $7'$) : small wave in H.F.
	- 24^d oh to $1\frac{1}{2}$ Double wave in Dec. $(+3')$ to -3): in H.F. $(+\infty)$ to $-\infty$): decrease of V.F. $(- 0003)$.
	- 25^d 16h to 21h Fluctuations in Dec., with wave $18\frac{1}{2}$ ^h to 21^h (- 6'). 17^h to 21^h Long wave in H.F. $(-\infty)$, with superposed fluctuations.
	- 26^d $22\frac{1}{2}$ ^h to 27^d ¹^h Wave in Dec. (- 9'): in H.F. (- '001), followed by small fluctuations in Dec. till 4^h . $I^{\hat{B}h}$ to 24^h Small fluctuations in Dec. and H.F.
	- 28^d I^h to 2^h Wave in Dec. $(+3')$: in H.F. $(+\infty)$. $2\frac{1}{2}$ ^h to 4^h Wave in Dec. $(-5')$: in H.F. small.
	- 29^d 20^h to 23^h Small fluctuations in Dec. and H.F. 23^h to 24^h Wave in H.F. (+ '0016).
	- 30^d oh to I^h Wave in H.F. $(-\cot 4)$: I^h to 7^h Three successive waves in Dec. $(-8')$, $(-5')$ and $(-6')$. I^h to $5\frac{1}{2}$ ^h Long irregular wave in H.F, $(-\frac{0.025}{2})$, with superposed fluctuations. and $(-\sigma)$. In to $\frac{1}{2}$ Long fregular wave in H.F. $(-\frac{1}{2}$ to Ilih Superposed nucleations.
 6^h to 17^h Small fluctuations in Dec., H.F. and V.F. $10¹$ Wave in Dec. $(-6')$. I 3^h to 14 Wave in H.F. $(-\infty 25)$. $17\frac{1}{2}$ ^h to 20^h Wave in Dec. $(-10')$, with superposed fluctuations. wave in **H.F.** (- '0025). 17⁵ to 20^t wave in Dec. (- 10), with superposed intetuations.
17¹/₂h to 19¹/₂h Wave in H.F. (- '0035). 21¹/₂h to 24^h Three successive waves in Dec. (- 6'), (- 5') $17\frac{1}{2}$ to $19\frac{1}{2}$ wave in H.F. (- '0035). $21\frac{1}{2}$ to 24 Tiffed
and (- 6'): in H.F. (- '0014), (- '0013) and (- '0025).
	- 30^d 23^h to 3¹^d 2^h Wave in V.F. (- '0007).
	- 31^d o^h to 12^h Small fluctuations in Dec. and H.F.
	- 31^d I2^h to February 1^d 12^h. See Plate II.
- February I^d 16^h to 18¹/₂h Sharp wave in Dec. (-15[']), followed till 20^h by a double-crested wave (-8'). ¹⁶ to 16^h to 20^h Two successive double waves in H.F. (- $\cos 2$ to + $\cos 15$) and (- $\cos 2$ to + $\cos 16$), followed by fluctuations till 22^h. 20^h to 21¹₂^h Fluctuations in Dec., followed till 24^h by double-crested wave $(-6')$. 21^h to 24^h Shallow wave in V.F. (- ·0004).
	- 2^d $4\frac{1}{2}$ ^h to 6^h Small wave in Dec. $(-5')$. 7^h to 11^h Two successive waves in H.F. $(-\infty)$ and $(1-\cos 1)$. $7\frac{1}{2}$ to $1-\sin 10$ bec. (-5) . $7\frac{1}{2}$ to $11\frac{1}{2}$ if to successive waves in H.F. $(-\cos 1)$ and $(-\cos 2)$. $7\frac{1}{2}$ to $10\frac{1}{2}$ Double wave in Dec. $(+4\frac{1}{2}$ to $-4\frac{1}{2})$ $11\frac{1}{2}$ to $24\frac{1$ $(-\infty z_5)$. $\frac{1}{2}$ to 10^a Double wave in Dec. (+4 to -4) II^a to 24^a Frequent nuctuations in Dec. and H.F., with sharp wave z^{0^h} to z^{1^h} in Dec. (-16'): in H.F. (+ ·005): small wave in V.F. 22^h to 23¹/₂h Double-crested wave in Dec. $(-5')$: in H.F. $(-\infty)$.
	- 3^d oh to 5^h Fluctuations in Dec. $(\pm 2')$: in H.F. $(\pm \infty)$. I^h to 2^h Double wave in H.F. (- ∞ 01). to 5^n Finetuations in Dec. (± 2) : in H.f. (± 301) . Iⁿ to 2^n Double wave in H.f. (-501)
to $+501$. 3^n to $5\frac{1}{2}$ Double wave in Dec. $(-5)'$ to $+5'$). I2h to 16h Fluctuations in Dec. and $R_0 + 0.01$. 3^{μ} to $5\frac{\hbar}{2}^{\mu}$ Double wave in Dec. $(-5 \text{ to } + 5)$. 12^{μ} to 10^{μ} Filletuations in Dec. and H.F., with wave in Dec. 13^{μ} to 14^{μ} (+ 6'). 16^{μ} to $17\frac{1}{2}^{\mu}$ Double-crested wav H.F., with wave in Dec. 13ⁿ to 14ⁿ (+ 0). 10ⁿ to 17^k Double-crested wave in H.F. (- '002), followed by a serrated wave (- '0025) till 20^h; by a double-crested wave (- '0022) till 20^k₁; followed by a serrated wave (1.0025) till 204 ; by a double-crested wave $(-.0022)$ till $20\frac{1}{2}$;
and by a long irregular wave $(-.003)$ till 4^0 $0\frac{1}{2}$ ^h. $16\frac{1}{2}$ to $19\frac{1}{2}$ ^h Wave in Dec. $(-18')$, fo till 21^h by a double wave $(+ 6^{\degree}$ to $- 7^{\degree})$. Small fluctuations throughout in V.F.
	- 4^d oh to 12^h Fluctuations in Dec. $(\pm 2')$: in H.F. $(\pm \infty)$; with wave in Dec. oh to 1^h (+ 8'), and double wave in H.F. till 2^h (+ ∞ 016 to $-\infty$ 16). 0^h to 1^h Decrease of V.F. (- ∞ 008).
	- 4^d 12h to 5^d 12h. See Plate II.

 2^d $2^{\frac{1}{2}h}$ to $3^{\frac{1}{2}h}$ Wave in Dec. (+7): in H.F. (+ '0012): in V.F. (- '0004). I2h to 21^h Small fluctuato $3\frac{1}{2}$ wave in Dec. $(+)$: in H.f. $(+)$ core $(+)$. In v.f. $($ $\frac{1}{20004}$. $12\frac{1}{2}$ to $21\frac{1}{2}$ Sinal nucleations in Dec. and H.F., with wave in Dec. $20\frac{1}{2}$ $($ $5')$. $23\frac{1}{2}$ becrease of D

 $\bar{\chi}$

March

 3^d 14h to 15h Wave in H.F. (- '0012). I8h to 19h Wave in Dec. (-- 4').

 3^d 20 $\frac{1}{2}$ ^h to 4^d I^h Three successive waves in Dec. (- 5'), (- 8') and (- 8'). 3^d 2 I^h to 22^h Wave in \tilde{H} .F. (+ '0016), followed by fluctuations: small wave in V.F.

 4^d I^h to 3^h Fluctuations in Dec. $(\pm 3')$. I^h to $2\frac{1}{2}$ ^h Wave in H.F. $(+ \infty 3)$: in V.F. $(- \infty 04)$.

 4^d 6^h to 5^d 6^h. See Plate III.

 5^d 18h to 20h Wave in Dec. (-12'): double wave in H.F. (-'0016 to + '0014).

 6^d $1\frac{1}{2}^h$ to 3^h Shallow wave in Dec. $(+ 3')$.

- 6^d 23¹/₂ to 7^d 4¹/₂^h Three successive waves in Dec. (-8'), (- 9') and (- 12').
- 7^d oh to I_2^{h} Double wave in H.F. (+ '001 to '001), followed by a wave (- '002) till 3^h . Oh to 7^h Long wave in V.F. $(-\infty)$, with superposed fluctuations. 3^h to 4^h Decrease of H.F. $(-\infty)$, $(0, 2^h)$, $(0, 0, 0)$, $(0, 0, 0)$, $(0, 0, 0)$, $(0, 0, 0)$, $(0, 0, 0)$, $(0, 0, 0)$, $(0, 0, 0)$, $(0, 0, 0)$, $(0, 0,$ followed by small fluctuations. $4\frac{1}{2}$ to $5^{\frac{h}{2}}$ Decrease of Dec. (- 5'), followed by fluctuations till 10h. 8h to 9h Wave in H.F. (- '002). $15\frac{1}{2}$ h to 17h Wave in H.F. (- '002). $19\frac{h}{2}$ to $20\frac{h}{2}$ Wave in H.F. D^2 . S^2 to O^2 wave in H.F. (- $O(2)$. $15^{\frac{1}{2}}$ to $17^{\frac{1}{2}}$ wave in H.F. (- $O(2)$). $19^{\frac{1}{2}}$ to $20^{\frac{1}{2}}$ wave in Dec. (- 12'), followed till $22^{\frac{1}{2}}$ by two successive waves (- 3') and (- 3'). Let $(1 - 12)$, followed the 22¹ by two successive waves (-3) and (-3) . $19\frac{1}{2}$ to 2
H.F. $(+ \infty)$. 22^{h} to 24^{h} Wave in Dec. $(-10')$: in H.F. $(- \infty)$; in V.F. small.
- 8^d $1\frac{1}{2}^h$ to 3^h Wave in Dec. $(+7')$. 2^h to $2\frac{1}{2}^h$ Decrease of V.F. $(-\infty)$.
- 9^d oh to 3^h Small fluctuations in Dec. and H.F. 18h to 20h Wave in Dec. (-5'): small fluctuations in H.F. 2^{1h} to 23^h Double wave in Dec. $(+ 4'$ to $- 5')$: in V.F. small.
- 10^d 2^{1h} to 24^h Small fluctuations in Dec. and H.F.
- 12^d 2^h to 7^h Two successive waves in Dec. (- 6') and (- 10'), followed till $10\frac{1}{2}^h$ by a shallow wave (- 6'), with rapid superposed fluctuations. 2^h to 4^h Fluctuations in H.F. (\pm '001). 4^h to 6h (- 6'), with rapid superposed fluctuations. 2^h to 4^h Fluctuations in H.F. (\pm '001). 4^h to 6h (- 0), with rapid superposed nuctuations. 2^{α} to 4^{α} Fluctuations in H.F. (\pm '001), 4^{α} to 6^{α}
Wave in V.F. (- '0005). 5^{α} to 7^{α} Two successive waves in H.F. (- '0015) and (- '001), followed till 10^h by rapid fluctuations. I₃^h to 16^h Small rapid fluctuations in Dec. and H.F., with wave in H.F. 14^h to 15¹₂^h (- '002), followed till 17^h by two successive sharp waves with wave in H.r. 14° to $15\frac{1}{2}^{\circ}$ (- '002), followed the 17° by two successive sharp waves (- '0034) and (- '0024). $15\frac{1}{2}^{\circ}$ to $16\frac{1}{2}^{\circ}$ Double wave in Dec. (+ 4' to - 14'), followed by wave (-5034) and (-5024) . $15\frac{3}{2}$ to $10\frac{3}{2}$ Double was
 $(-7')$ till 17^h . 14^h to 19^h Wave in V.F. (+ '0017).
- 13^d 14^h to 15^h Small wave in Dec. (+ 3'): double wave in H.F. (+ '0012 to '001). 13^d 21^h to 14^d 2^h Long wave in Dec. (- 21'): in V.F. (- '0005). 13^d 21^h to 23^h Double-crested wave in H.F. Long wave in Dec. (- 21): In v.f. (- '0005). 13^d 21^d to 23^d Double-cressed wave $(+)$ '002). 23^h to 23^{$\frac{1}{2}$ h Decrease of H.F. (- '0015), followed by fluctuations till 14^d 3^h.}
- 14^d 2^h to $3\frac{1}{2}$ ^h Wave in Dec. (+ 5'). 8^h to 10^h Wave in H.F. (- '0015). 15^h to 17^h Wave in Dec. (b) $3\frac{1}{2}$ wave in Dec. (+ 5). $8\frac{1}{2}$ to $10\frac{1}{2}$ wave in H.F. (- '0015). $15\frac{1}{2}$ to $17\frac{1}{2}$ wave in Dec. (- 7): in H.F. (- '002): in V.F. small. $18\frac{1}{2}$ to $23\frac{1}{2}$ Small fluctuations in Dec. an wave in Dec. $19^{\frac{1}{2}h}$ to $20^{\frac{1}{2}h}$ (- 4^{*/*}).
- 14^d 23¹/₂h to 15^d 2^h Two successive waves in H.F. (+ 10015). and (+ 1002). 15^d Oh to 1^h Wave in Dec. (- 8'). Oh to 3^h Shallow double-crested wave in V.F. (- 10006). 2^h to 12^h V fluctuations in Dec. and H.F. $13\frac{1}{2}$ ^h to $14\frac{1}{2}$ ^h Wave in Dec. (-4'): in H.F. (- '001). 16^h to 20^h to 20^h Occasional fluctuations in Dec. and H.F.
- 20^d I2^h to 22^h Small fluctuations in Dec. and H.F., with wave in H.F. 17¹/₂^h to 19¹/₃^h (-'002).
- 22^d I^h to 2¹^h Wave in Dec. (+5') : in H.F. (+ '0015) : in V.F. small. 12¹^h to 13¹^h Wave in Dec. (+3') : . in H.F. small, followed by fluctuations in both elements till 2^{1^h}.
- 23^d o^h to I^h Wave in Dec. (+ 8'): in H.F. (+ '0028): in V.F. (- '0005). I^h to $2\frac{1}{2}$ ^h Small wave in Dec. $(+3')$.
- 24^d $22\frac{1}{2}$ ^h to 25^d o¹₂h Wave in Dec. $(+3')$: in H.F. (+ '001). Decrease of V.F. (- '0004). 25^d Is¹₂h to $16\frac{1}{2}$ Wave in Dec. (-4') : in H.F. (+ '0012). Decrease of V.F. (- '0004). 25^{4} $15\frac{1}{2}$ to $16\frac{1}{2}$ Wave in Dec. (-4') : in H.F. (+ '0012). 17^{h} to 19^{h} Small fluctuations in H.F. $19\frac{1}{2}$ to 21^{h $10\frac{1}{2}$ Wave in Dec. (-4): In H.F. (+ '0012). 17^{ω} to 19" Small nuctuations in H.F. 19 $\frac{1}{2}^{\omega}$ to 21".
Double-crested wave in Dec. (-7): two successive waves in H.F. (+ '0012) and (+ '001). Double-crested wave in Dec. (-7) : two successive waves in H.F. $(+$ '0012) and $(+$ '001).
21 $\frac{1}{2}$ ^h to 22 $\frac{1}{2}$ ^h Double wave in Dec. $(-3)'$ to $+3'$), followed by double-crested wave $(-5')$ till 24^h: fluctuations in H.F.
- 2^{6^d} I^h to 3^{th}_2 Two successive double waves in Dec. (+ 3' to 3') and (- 4' to + 3'): double wave in to $3\frac{1}{2}$ Two successive double waves in Dec. $(+ 3 \text{ to } -3)$ and $(- 4 \text{ to } + 3)$: double wave in H.F. $(+ \text{ 'oor to } - \text{ 'oor})$: $1\frac{1}{2}$ to 2^{h} and $3\frac{1}{2}$ to 4^{h} decrease of V.F. $(- \text{ 'ooo4})$ and $(- \text{ 'o$ H.F. $(+)$ oor to $-$ '001): $1\frac{1}{2}$ to $2\frac{1}{4}$ and $3\frac{1}{2}$ to $4\frac{1}{4}$ decrease or $V.F.$ ($-$ '0004) and ($-$ followed by small fluctuations till 9^h in all elements. 9^h to 1^h Wave in H.F
- 2^{6^d} 12^h to 27^d 12^h See Plate III.
- 27^d I3h to 15^h Wave in Dec. $(+\frac{5}{6})$. 14^h to $15^{\frac{h}{2}h}$ Wave in H.F. (- '002). $17^{\frac{h}{2}h}$ to 19h Double-crested where in Dec. (+ 5). 14° to 15° wave in H.F. (- '002). 17° to 19⁴ Double-crested wave in Dec. (- 9'): double wave in H.F. (- '0022 to + '0024): small wave in V.F. 19^h to 22^h Fluctuations in Dec. and H.F., with wave in H.F. 19 $_2^{1h}$ to 21^h (- '002).
- 27^d $22\frac{1}{2}^h$ to 28^d 2^h Double wave in H.F. (+ $\frac{1}{2}$ of $\frac{1$ 28^d $3\frac{1}{2}^h$ to 5^h Double wave in Dec. (-4' to + 3'): wave in H.F. (-'0014): in V.F. small. 5^{h} to 12^{h} Small rapid fluctuations in Dec. and H.F. 12^{h} to 13^{h} Wave in Dec. (-4'): double 5^{h} to 12^{h} Small rapid fluctuations in Dec. and H.F. 12^{h} to 13^{h} Wave in Dec. 5^{μ} to 12^{*n*} Small rapid indetuations in Dec. and H.F. 12^{*n*} to 13^{*n*} wave in Dec. (-4): double wave in H.F. (- '001 to + '001). 16^h to 18^h Wave in Dec. (-10'). 16^h^h to 17^h Sharp double wave in H.F. (-- $\cos 2 \cdot t$ + $\cos 17$). $17\frac{1}{2}$ h to $19\frac{1}{2}$ h Two successive waves in H.F. (+ $\cos 1$) and (+ $\cos 35$). $18\frac{1}{2}$ h to 20 ^h Sharp double wave in Dec. (- 10' to + 5'). 22 ^h to $23\frac{1}{2}$ ^h Wav (+ '0035). 18 $\frac{1}{2}$ to 20" sharp double wave in Dec. (- 10 to + 5). 22" to 23 $\frac{1}{2}$ " w
(- '002). 22 $\frac{1}{2}$ ^h to 24^h Wave in Dec. (+ 6'). Small fluctuations throughout in V.F.

1896. March April 29^d o^h to I^h Wave in H.F. (- '0014). I^h to 2¹/₂h Double wave in Dec. (+ 3' to - 6'): small wave in V.F. 13^h to 16^h Small rapid fluctuations in Dec., H.F. and V.F. 17¹h to 18^h Wave in Dec. (- 6'). in H.F. (+ ·0015). 19¹₁h to 21^h Wave in H.F. (+ ·0016): in Dec. small. 3°^d} oh to 3^h Double wave in Dec. $(+ 4'$ to $- 4')$. 31^d I2^h to 18^h Small fluctuations in Dec. and H.F. 18¹/₃^h to 20¹/₃^h Wave in Dec. (- 10'): in H.F. (- $\frac{1}{2}$ to 18^{-h} Small fluctuations in Dec. and H.F. 18⁵^h to 20⁵^h Wave in Dec. (- 10): in H.F. (- $\frac{1}{2}$ to $22\frac{1}{2}$ ^h Wave in Dec. (+ 4'). 22^h to 24^h Two successive waves in H.F. (+ ·0016) and $(+ \cos 2)^2$ $22\frac{1}{2}$ to $23\frac{1}{2}$ Double wave in Dec. $(+5 \cos 2)^2$. I^d oh to I^h Small fluctuations in Dec. and H.F. I^h to I^{h} Loss of Dec. register. $22\frac{1}{2}$ ^h to $23\frac{1}{2}$ ^h Wave in Dec. $(+4')$: shallow wave in H.F. $(+\infty)$. 2^d 6^h to 12^h Loss of Dec. and H.F. registers. 2^d $23\frac{1}{2}^h$ to 3^d $0\frac{1}{2}^h$ Wave in H.F. (+ ·001). 3^d O^h to 2^h Wave in Dec. (-7'). Ith to 17^h Occasional fluctuations in Dec. and H.F. $17^{\frac{h}{2}}$ to 19^h Shallow wave in H.F. (- '0012). 20^h to 2th Sharp wave in Dec. (-8'): in H.F. (+ '0018). Shahow wave in H.F. (- '0012). 20^{μ} to 21^{μ} Sha
 22^{μ} to 24^{μ} Wave in Dec. (- 6'): in H.F. (- '0012). 4^d 2^{th}_2 to 4^{th} Wave in Dec. (+ 5'). 3^{th} to 4^{th}_2 Wave in H.F. (+ '0025). 3^{th} to 7^h Long wave in V.F. (- '001). 4^{th} to 6^h Double wave in Dec. (+ 3' to - 5'). 15^h to 16^h Small $18\frac{1}{2}$ h to 21^h Wave in Dec. (-10'): double wave in H.F. (-1001 to +1001). 2^{1h} to 2^{1h} Small fluctuations in Dec. and H.F. 5^d 2^h to 4^h Wave in Dec. (+ 4'): in H.F. (+ ·001). 5^h to 6^h Wave in Dec. (+ 6'), followed by small fluctuations in Dec. and H.F. till 15^h . 15^h Decrease of Dec. (- 4'): increase of H.F. (+ ·002). 15^h to 16^h_2 ^h Wave in V.F. (+ '0004). S^d 7^h to I^h Small fluctuations in Dec. and H.F. $I_5^{\frac{1}{2}h}$ to I_7^h Wave in H.F. (- '0018): in Dec. small. 9^d $2^{\frac{1}{2}h}$ to $3^{\frac{1}{2}h}$ Wave in Dec. (+ 3'), followed by small fluctuations in Dec. and H.F. till 14^h . $20^{\frac{1}{2}h}$ to 22^h Wave in Dec. (- 5'). 10^d o^h to 6^h Occasional fluctuations in Dec. and H.F. $17\frac{1}{2}$ ^h to 20^h Double wave in H.F. (+ '0012 to -'0018). 18^h to 22^h Two successive waves in Dec. (- 5') and (- 8'). 23^h to $23\frac{1}{2}$ ^h Wave $(+ 5')$. IS^h to 2^{1h} Shallow wave in V.F. (+ '0003). 2^{1h} to 23¹h Serrated wave in H.F. (- '0015). 23^h to 24^h Decrease of V.F. (- '0003). $I I^d$ $o_{\frac{1}{2}}^{\text{h}}$ to 2^{h} Double-crested wave in Dec. $(+7')$. 3^{h} to $4\frac{1}{2}^{\text{h}}$ Wave in Dec. $(+5')$: in H.F. small. $12^{\mathfrak{g}}$ oh to $1\frac{1}{2}$ h Wave in Dec. (+ 4'). Oh to $2^{\mathfrak{h}}$ Wave in H.F. (+ '0016). $2^{\mathfrak{h}}$ to $3\frac{1}{2}$ h Shallow ,wave in Dec. $(-3)^{\circ}$: 4^h to 6^h Wave in H.F. (- ·0012). 13^d o^h to 1^h Two successive waves in Dec. $(+3')$ and $(+3')$: in H.F. $(+\infty)$ and $(+\infty)$. I_5^d oh to 4^h Small fluctuations in Dec. and H.F., with wave in Dec. I_3^h to 3^h (- 3'). 20^h to 22^h Shallow wave in Dec. $(+4')$. 17^d 10^h to 17^h Small rapid fluctuations in H.F. 18^d 2^h to 12^h Small fluctuations in Dec. and H.F. 12^h to 14^h Wave in H.F. (- '002). 19^d 2h to 4^h Small wave in Dec. $(+3')$ 14^h to 16^h Double wave in H.F. $(+\infty)$ to $-\infty$ 1). 21^d 2^h to 4^h Serrated wave in Dec. $(+5')$: in HR . $(-\infty 12)$. 12^h to 17^h Small rapid fluctuations in H.F., with wave 15^h to 16^h (+ '002). $13\frac{h}{2}$ to 15^h Wave in Dec. (+4'). 17^h to 18^h Wave in H.F. (- '0015): decrease of Dec. (-7'). $19\frac{h}{2}$ to 20^h Decrease of Dec. (-14'), followed by a double (- '0015): decrease of Dec. (-7). 19⁴ to 20^h Decrease of Dec. (-14), followed by a double-
wave till $21\frac{1}{2}$ ^h (-5' to +4'). 20^h to 21 ^h Sharp wave in H.F. (+ '0025), followed by doublewave till $21\frac{1}{2}$ (- 5 to + 4). 20^{μ} to 21^{μ} Snarp wave in f
crested wave (- '0015) till $22\frac{1}{2}$ ^h. Small fluctuations in V.F. 21^d $23\frac{1}{2}^h$ to 22^d $1\frac{1}{2}^h$ Sharp double-crested wave in Dec. $(+14')$: wave in H.F. $(-\text{const})$. 0^h to 1^h Decrease of $V.F.$ (- '001). 3^h to 1^h Small rapid fluctuations in Dec. and H.F. with wave in H.F. Decrease of $V.F.$ (- '001). 3^h to 1^h Small rapid fluctuations in Dec. and H.F. with wave in H.F. Decrease of v.f. (- '001). 3^{h} to 12^{h} small rapid fluctuations in Dec. and H.f. with wave in H.f. 3^{h} to 5^{h} (- '002). 15^{h} to 24^{h} Fluctuations in Dec. ($\pm 2'$): in H.F. (\pm '001), in Dec. (- 5'). IS~l1 to 1911 Double wave in Dec. (- 6' to + 3'): sharp wave in R.F. (+ ·003) : in Dec. (-5) . $18\frac{1}{2}$ to 19^{μ} Double wave in Dec. (-6) to $+3$): sharp wave in H.F. $(+\degree 03)$:
slight decrease of V.F. $_{21}$ ^h to 23^h Double wave in Dec. $(-5)'$ to $+14'$). $_{21}$ ^h to 22^h Wave in H.F. slight decrease of V.F. 21^{μ} to 23^{μ} Double wave in Dec. (-5 to $+14$). 21^{μ}
(+ \cdot 003) : decrease of V.F. ($-\cdot$ 0007). 23^{μ} to 24^{μ} Small double wave in Dec. 23^d I^h to 4^h Two successive waves in Dec. $(+ 4')$ and $(+ 5')$. $2\frac{1}{2}$ ^h to $4\frac{1}{2}$ ^h Double wave in H.F. (- '001 to 4" Two successive waves in Dec. $(+)$ and $(+)$ 5). $2\frac{1}{2}$ " to $4\frac{1}{2}$ " Double wave in H.F. (- '001)
to + '0018). $2\frac{1}{2}$ ^h to 6^h Wave in V.F. (- '001). 5^{h} to 10^h Small rapid fluctuations in Dec. an 14^h to 19^h Five successive waves in H.F. (- \sim 0016), (- \sim \sim 0012), (- \sim 0012), (- \sim 0015) and (- \sim 0016). 14^{μ} to 19^u Five successive waves in H.F. (- '0010), (- '0012), (- '001), (- '0015) and (- '0016).
 18^{μ} to 20^u Wave in Dec. (- 9'). 2 $1\frac{1}{2}^{\mu}$ to 22 $\frac{1}{2}^{\mu}$ and 23^u to 24^u Waves in H.F. (+ '0012 in Dec. small.

May

- April 24^d 3^h to 4^h Wave in Dec. $(+ 4')$: in H.F. (- '0014): small fluctuations in Dec., H.F. and V.F. till 15^h. 16^h to 18^h Two successive waves in H.F. (- '002) and (- '003). 18^h to 21^h Serrated wave in 16^h to 18^h Two successive waves in H.F. (- '002) and (- '003). 18^h to $21<$ Dec. (- II'). 22^h to 23^h Two successive waves in H.F. (- 002) and (- 003). 13⁵ to 21⁴ Serrated wave in Dec. (+ 9') and (+ 6'), followed till 25^d I^h by wave $(-9')$. $22\frac{h}{2}$ to $23\frac{h}{2}$ Wave in H.F. (+ '0035).
	- 25^d $2\frac{1}{2}$ ^h to 5^h Shall ow wave in H.F. (- '0015). $5\frac{1}{2}$ ^h to $7\frac{1}{2}$ ^h Wave in H.F. (- '0015), followed by small rapid fluctuations in Dec. and H.F. till 15^h . 18^h to 19^h Sharp wave in Dec. (- 9'): in H.F. (+ '0036): in V.F. small. $20\frac{1}{2}$ h to $23^{\frac{1}{2}}$ Wave in Dec. (-7): two successive waves in H.F. $(+ \cdot \circ \circ \iota)$ and $(+ \cdot \circ \circ \iota)$.
	- 2^{6d} oh to $2\frac{1}{2}$ h Double wave in Dec. (- 4' to + 7'). Oh to $1\frac{1}{2}$ h Wave in H.F. (+ '0012). 3^h to 4^h Wave in $\sum_{i=1}^{\infty}$ bound wave in Dec. (-4 to +7). σ^2 to $1\frac{1}{2}$ wave in H.F. (+ σ o12). $3\frac{1}{4}$ to $4\frac{1}{4}$ wave in Dec. (-4'). 13^{h} to 19^{h} Small fluctuations in H.F. $19\frac{1}{2}$ ^h to 21^{h} Wa $(- \cdot 0012).$
	- 27^d 19^h to $20\frac{1}{2}$ ^h Wave in Dec. (- 7'): double wave in H.F. (- '001 to + '0012).
	- 2^{8d} oh to Ih Wave in Dec. $(+5')$. 2^h to $3\frac{1}{2}$ h Wave in H.F. (- '0012); and 5^h to 7^h (- '0016). $20\frac{1}{2}$ h to $21\frac{1}{2}$ h Wave in Dec. (-5) . 21^h to 22^h Wave in H.F. $(+\infty)$.
	- 29^d oh to 6h Small fluctuations in Dec. and H.F. 8^h to $9^{\frac{1}{2}h}$ Wave in H.F. (- '0012). 21^h to $22^{\frac{1}{2}h}$ Small wave in Dec. and H.F.

 I^d I^h to 22^h Small fluctuations in H.F. 20^h to 22^h Wave in Dec. (- 6').

- 2^d 12h to 4^d 12h. See Plate IV.
- 7^d ¹^h to 14^h Small fluctuations in Dec. and H.F.
- 10^d $3^{\frac{1}{2}h}$ to 5^h Wave in Dec. $(+ 4')$. 18^h to $19^{\frac{1}{2}h}$ Wave in H.F. (- '0012).
- 11^d 14^h to 16^h Double wave in H.F. (- '0012 to + '0014). 17^h to 18^h Wave in Dec. (- 4'): in H.F. (- '0012). I $8\frac{1}{2}$ ^h to $19\frac{1}{2}$ ^h Wave in H.F. (- '0012), followed by small fluctuations.
- 12^d 4^h to 6^h Wave in H.F. (-'0016). 5^h to 6¹/₂h Wave in Dec. (+ 4'). $13^{\frac{1}{2}h}$ to 15^h Wave in H.F. (- 002). $16\frac{1}{2}$ ^h to $18\frac{1}{2}$ ^h Two successive waves in H.F. (+ '002) and (+ '0025). $17\frac{1}{2}$ ^h to $18\frac{1}{2}$ ^h Wave in Dec. (-6'). 20^h to 21^h Two sharp waves in Dec. (-4') and (-4'): wave in H.F. (+ '0024).
- 13^d $0^{\frac{1}{2}h}$ to $1^{\frac{1}{2}h}$ Wave in Dec. $(+ 4')$. 14^h to 19^h Small fluctuations in H.F.
-
- 14^d 5^h to 12^h Loss of Dec. and H.F. registers. 17^h to $18\frac{1}{2}^h$ Wave in H.F. (- '0014).
- 15^d oh to 1^h Wave in Dec. $(-4')$: in H.F. small. 2^h to 7^h Fluctuations in Dec. $(\pm 2')$. 6^h Decrease to 1^{α} wave in Dec. (-4): in H.F. small. 2^{α} to 7^{α} Filectuations in Dec. (\pm 2). 0^{α} Decrease of H.F. (- α). 20^{α} to 22^{α} Small fluctuations in H.F. 22^h to 24^h Double wave in H.F. (- '001 to + '001).
- 15^d 23^h to 16^d I^h Wave in Dec. (+ 4'). 16^d 3^h to 4^h Wave in H.F. (- '0012). 3¹h to 5^h Wave in Dec. $(+ 5')$. 19¹h to 21^h Wave in H.F. $(+ 0.02)$. 20¹h to 22^h Wave in Dec. $(-4')$.
- 17^d oh to $0^{\underline{1}h}$ Decrease of H.F. (- '0012). 2^h to 3^h Wave in H.F. (- '0012).
- 17^d 12^h to 18^d 12^h. See Plate V.
- 18^d 12^h to 21^h Fluctuations in H.F., with three successive waves 17^h to 20^h (- '0012), (- '0016) and $(-\text{const})$. zoh to 21^h Wave in Dec. $(-3')$.
- 18^d 23¹/₂h to 19^d 0^{th}_2 Wave in Dec. (+ 5'): in H.F. (+ '0016): in V.F. small. $3^{\frac{1}{2}h}$ to 5^h Wave in H.F. $(1, 0.06)$. She to IOh Small fluctuations in Dec. and H.F., with wave in H.F. 8^{h} to 5^{u} wave in H.F. $(1, 0.016)$. She to 10^{h} Small fluctuations in Dec. and H.F., with wave in H.F. 8^{h} to 10^{\text $16\frac{1}{2}$ h to 17^{h} Wave in H.F. (- '0012). 19h to 20 $\frac{1}{2}$ h Shallow wave in Dec. (-3'). 22 $\frac{1}{2}$ h to 23 $\frac{1}{2}$ h to 23 $\frac{1}{2}$ h to 23 $\frac{1}{2}$ h to 20 $\frac{1}{2}$ h Shallow wave in Dec. (-3'). 22 $\frac{1}{2}$ h to 2 $W_{\text{ave}}^{\frac{1}{2}}$ to $1/2$ wave in H.F. (- '0012).
Wave in Dec. (+4') : in H.F. (- '0012).
- 20^d O^h to 2^h Shallow wave in Dec. $(-4')$. 7^h to 8^h Wave in Dec. $(-4')$: in H.F. (- '0012). 9¹/₂h to 12^h Wave in H.F. (- '0034). $10^{\frac{1}{2}h}$ to $11^{\frac{1}{2}h}$ "Wave in Dec. (+ 5'). 13^h to $14^{\frac{1}{2}h}$ Wave in H.F. (- '0018), wave in $\mathbf{H}.\mathbf{r}.(-\infty)$ to \mathbf{H}^{\pm} wave in Dec. $(+5)$. I₃^{2} to \mathbf{H}^{\pm} wave in $\mathbf{H}.\mathbf{r}.(-\infty)$ is to \mathbf{H}^{\pm} .
followed till \mathbf{H}^{\pm} by two successive double-crested waves (- ∞) and (- Followed till 17⁴ by two successive double-crested waves (- '002) and (- '0010). 18⁴ to 19⁴ Wave in H.F. (- '0016). 19¹ to 21¹ Wave in H.F. (- '0016). 19¹ to 21¹ Wave in H.F. (- '0016). 19¹ to 21¹ Wo suc
- 21^d 1^h to 3^h Double wave in Dec. $(+ 4'$ to $4')$: in H.F. $(+ 3^{10}$ to 3^{10} : wave in V.F. (-3005). $\begin{array}{c}\n\text{A}^{\text{h}}\text{ to }3^{\text{h}}\text{ Double wave in Dec. } (+4\text{ to }-4): \text{ in H.F. } (+\text{ 0010 to }-901): \text{ wave in V.F. } (-1)^{\text{h}}\n\end{array}$
- 21^d 21^h to 2^d ^{1h} Double wave in Dec. (-4' to +4'). 22^h to 2^h Wave in H.F. (-'0016) 22^d O^h and 3^h Slight decrease of V.F. 3^h_{2} to 5^h to 6^h Double wave in H.F. (- '001 to + '001). 6^h_{2} to 8^h and 3^h Slight decrease of V.F. 3^h_{2} to 6^h Double wave in H.F. (– '001 to + '001). 6^h_{2} to 8and 3^{μ} slight decrease of $v \cdot r$. $3\frac{1}{2}^{\mu}$ to 0^{μ} Double wave in H.F. ($-$ '001 to $+$ '001). $0\frac{1}{2}^{\mu}$ to 8^{μ}
Wave in Dec. ($+ 5'$). $18\frac{1}{2}^{\mu}$ to $19\frac{1}{2}^{\mu}$ Wave in Dec. ($- 7'$): in H. wave in Dec. $(+3')$: small double wave in H.F. $(+\infty)$ to $- \infty$ 1).
- 23^d 7^h to 14^h Small fluctuations in Dec. and H.F. 15^h to 17^h Two successive waves in H.F. (- '0014) and (- *·ooz).* ZOh to 2Zh Three successive waves in Dec. (- 5'), (- 3') and (- 4'). 20h to 21ih Wave in H.F. $(+ 0.026)$.

1896. 24^d oh to 4^h Long wave in Dec. (- 6'). $3\frac{1}{2}$ ^h to 4^h Decrease of V.F. (- '0003), and small wave in H.F. May 14^h to 15^h . Wave in H.F. (- '0018), followed by small fluctuations till 19^h . 20^{1h} to 21^h Small 14° to 15° wave in H.F. (-3018), followed by small fluctuate in H.F. (-301). $20\frac{1}{2}$ ^h Wave in Dec. (+4[']). 25^d oh to 5^h Two successive waves in Dec. (+ 4') and (+ 5'). II $\frac{1}{2}$ ^h to 12 $\frac{1}{2}$ ^h Wave in H.F. (- '0012) 10 ζ^2 1 wo successive waves in Dec. (+ 4) and (+ $19\frac{1}{2}$ ^h to 20^h Wave in Dec. (- 4): in H.F. (+ $\cot 4$). 29^d 18^h to 23^h Small fluctuations in H.F. 30^d 19^h to 24^h Occasional small fluctuations in Dec. and H.F. 31^d 2^h to 4^h Wave in Dec. (+ 4'). June z^d 21^h to 22^h Decrease of Dec. $(-3')$: of H.F. $(-\infty)$. 3^d 16^h to 17^h Wave in H.F. (+ '001). 21^h to 24^h Small fluctuations in Dec. and H.F., with two successive waves in Dec. 22^h to 24^h (- 3') and (- 3'). 5^d I^h to 2^h Wave in Dec. $(+3')$. 6^d 10^h to 18^h Loss of register in Dec., H.F. and V.F. S^d 2¹/₂h to $4\frac{1}{2}$ h Wave in Dec. (- 5'). 19¹/₂h to 19²/₄h Very sharp wave in H.F. (+ ·0018). 20¹/₂h to 21¹/₂h Double wave in H.F. (+ '001 to $-$ '001), followed by fluctuations in Dec. and H.F. till 24^h . 8^d 2¹/₂h to 9^d ²h Double wave in H.F. (- '002 to + '001). 9^d o^h to ¹^h Decrease of Dec. (- 5'): $s_{\tilde{x}}$ ⁿ to g^a z^a Double wave in H.F. (- '002 to + '001). g^a on to I^a Decrease of Dec. (- ζ):
small wave in V.F. 13^h to 15^h Double wave in H.F. (- '002 to + '002), followed by rapid fluctuations till 18^h . 14^h Decrease of Dec. (-6'). 15^h to 16^h Wave in Dec. (-5'). 18^h to 20^h Double wave in H.F. $(+)$ correlate to $=$ '0014), followed by fluctuations till 23^h . 19h to 21^h Wave in Dec $(-7')$. 2I^h to 23^h Sharp wave in Dec. $(-13')$: small fluctuations in V.F. 10^{d} I^h to $2\frac{1}{2}$ ^h Wave in Dec. (+ 4'). 6^h to 8^h Wave in Dec. (+ 4'). I₅^h to 17^h Fluctuations in H.F. (\pm '001). $(\pm \cdot 0.01)$.
12^d 15¹/₂h to 17^h Wave in H.F. (- $\cdot 0.012$). 13^d 16¹/₂h to 17¹₂h Wave in H.F. (- 001). 14^d 2^h to $3\frac{1}{2}$ ^h Wave in Dec. $(+5')$. 14^h to 15^h Fluctuations in H.F. $15\frac{1}{2}$ ^h to 18^h Two successive sharp waves in H.F. $(+\infty 64)$ and $(+\infty 665)$: small double wave in V.F. $(-\infty 003$ to $+\infty 0$ waves in 11.r. (+ '0034) and (+ '0005): small double wave in $v.r.$ (- '0003' to + 0004), followed
by an increase (+ '0004). $16\frac{h}{2}$ ^h to $17\frac{h}{2}$ ^h Wave in Dec. (- 4'). $17\frac{h}{2}$ ^h to $18\frac{h}{2}$ ^h Sharp decr by an increase $(+\degree 0.004)$. $10\frac{1}{2}\degree 0.17\frac{1}{2}\degree$ wave in Dec. $(-4)^{1}$. $17\frac{1}{2}\degree 0.16\frac{1}{2}\degree 0.16\frac{1}{2}\degree 0.16\degree 0.16\degree$
of Dec. $(-18')$, followed by a small wave $(+5')$. 18^h to $23\frac{1}{2}^h$ Fluctuations in H. small fluctuations in Dec. 15^d 2^h to 3^h Wave in Dec. $(+ 3')$: in H.F. $(+ 001)$. 16^d 9^h to 24^h Rapid fluctuations in Dec., H.F. and V.F. 9¹/₂^h to $10^{\frac{1}{2}h}$ Wave in H.F. (- '0016). ¹ to 24th Kapid iniciuations in Dec., H.F. and V.F. $9\frac{1}{2}$ ^h to $10\frac{1}{2}$ ^h wave in H.F. (- '0016).
 12^{h} to $13\frac{1}{2}^{\text{h}}$ Double wave in H.F. (- '0016 to + '003), followed till $14\frac{1}{2}$ ^h by sha i_1^2 to i_3^2 Double wave in H.F. (- '0010 to + '003), followed the i_4^2 by snarp serrated wave in H.F. (+ '0034), and by fluctuations till 18^h . i_4^1 to i_5^1 Wave in Dec. (- 6'). 18^h to i_9^1 i_2^h In H.r. (+ '0034), and by fluctuations till 18². 14⁵² to 15⁵² wave in Dec. (- 0). 18² to 195²
Two successive waves in Dec. (- 8') and (- 5'): wave in H.F. (+ '0026). 20^h to 21^h Sharp Two successive waves in Dec. $(-\circ)$ and $(-\circ)$: wave in H.F. $(+\cos 2\circ)$. 20⁻ to 21⁻ Sharp at wave in H.F. $(+\cos 8)$: in Dec. small. 16^d 22^h to 17^d $0\frac{1}{2}^h$ Long wave in Dec. $(-14')$, sharp at commencement. 16£1 22th to 17£1 Ih Long wave in H.F. (- '0016). 17^d $14\frac{1}{2}^h$ to $15\frac{1}{2}^h$ Double-crested wave in H.F. (- '0016), followed till 16^h by a wave (- '0012). 17^h to 15^h Double-crested wave in H.F. (- '0010), followed till 10th by a wave (- '0012).
17^h to 18^h Wave in Dec. (-4'): in H.F. (+ '0016). 21^h to 24^h Small fluctuations in Dec. 23^h to 24^h Wave in H.F. $(+\cdot \infty)$. 18^d 2^h to 4^h Shallow wave in Dec. (+ 4). 3^h to 4^h Decrease of H.F. (- '001). 12^h to 20^h Occasional small fluctuations in H.F. $20\frac{1}{2}$ ^h to 22 ^h Wave in H.F. (+ '002) : small double wave in Dec. 19^d 23 $\frac{1}{2}$ ^h to 20^d $0\frac{1}{2}$ ^h Small wave in Dec. (+ 3'). 21^d 16^h to 24^h Occasional small fluctuations in H.F. 2^{6d} Ish to $15\frac{1}{2}$ Increase of H.F. (+ '0018). $17\frac{1}{2}$ to $18\frac{1}{2}$ Wave in H.F. (+ '001). 22^h to 23^h Wave in Dec. $(-3')$: in H.F. $(+ 0.0014)$. \mathcal{O}^h to I^h Fluctuations in Dec., H.F. and V.F. I^h to $2\frac{1}{2}^h$ Double wave in Dec. (-5' to + 3'): in H.F. small. 2^h to 4^h Wave in V.F. (-*'*ooos). 22^h to 23^h Small wave in Dec. (-3'). $22\frac{h}{2}$ to $23\frac{h}{2}$
H.F. small. 2^h to 4^h Wave in V.F. (-'ooos). 22^h to 23^h Small wave in Dec. (-3'). $22\frac{$ Wave in H.F. $(+ \cdot \infty)$. 29^d ISh to 24^h Fluctuations in H.F. (\pm '001), with waves $18\frac{1}{2}^h$ to $20\frac{1}{2}^h$ (- '0016) and $20\frac{1}{2}^h$ to $21\frac{1}{2}^h$ $(- \text{ 'oot6}).$ 21¹/₂h to 23^h Double-crested wave in H.F. (- $\text{ 'oot2}.$ $2\frac{1}{2}$ ^h to 5^{h} Two successive waves in Dec. (-4') and (-3'), followed by a decrease till 6^{h} (-5') : in H.F. small. $17\frac{1}{2}$ h to 19^h Wave in H.F. (+ '0012).

July

 I^d 3^h to $4\frac{1}{2}$ ^h Wave in Dec. (- 3'). 13^h to 21^h Occasional small fluctuations in H.F.

- 3^d $15^{\frac{1}{2}h}$ to $16^{\frac{1}{2}h}$, 17^h to 18^h and $18^{\frac{1}{2}h}$ to 21^h Double waves in H.F. (- '0014 to + '001), (+ '001 to '001) $\frac{2}{32}$ to $\frac{1}{22}$, $\frac{1}{1}$ to 15- and $\frac{1}{62}$ to 21^h Double waves in 1.1. ($\frac{1}{4}$ colears to $\frac{1}{4}$ to $\frac{1}{21}$ to $\frac{1}{21}$ to $\frac{1}{21}$ wave in Dec. (-9'): in H.F. $(-\infty)$: small fluctuations in V.F.
- 4^d ohto 24^h Small rapid fluctuations in Dec., H.F. and V.F. 2^h to $3\frac{1}{2}^h$ Two successive waves in Dec. $(+ 4')$ and $(+ 8')$. Ishto 20^h Wave in H.F. $(+ \cdot \circ 02)$. 22^h to 23^h Wave in Dec. $(4')$. $23\$ Wave in Dec. $(+5')$: in H.F. $(+0.0014)$.
- 5^d $0^{\frac{1}{2}h}$ to 2^h Wave in Dec. $(+15')$: in H.F. $(+\infty)$ ob. 0^h to 3^h Double wave in V.F. $(+\infty)$ to - '0007). $2\frac{1}{2}$ ^h to 5 ^h Long wave in Dec. (+6'), with superposed fluctuations. $3\frac{1}{2}$ ^h to 6 ^h Wave in H.F. $(+\cdot\infty)$: small fluctuations in Dec. and H.F. till 13^h . 13^h to $14\frac{1}{2}^h$ Wave in H.F. $(-\cdot\infty)$, followed by small fluctuations till $z1^h$. 14^h to 15^h Small double wave in Dec. 19^h to $z1^h$ Two successive waves in H.F. (+ '0018) and (+'002). $z0^h$ to $z0^h$. Wave in Dec. (-4').
- 6^d ^{Ih} to $2\frac{1}{2}$ ^h Double wave in Dec. $(+ 6'$ to $6')$: small wave in V.F. $(-\infty)$, 3^h to 21^h Fluctuations in R.F. : in Dec. small.
- 7^d oh to 2^h Fluctuations in Dec. $(\pm z')$: shallow wave in H.F. $(-\infty)$. 15^h to z_4 ^h Small occasional fluctuations in H.F. 21^h to 22^h Wave in Dec. $(-4')$.
- 8^d oh to 3^b Fluctuations in Dec. $(\pm 3')$: in H.F. small. 13^h to 20^h Fluctuations in H.F. $(\pm$ '001).
- $\mathbf{H}^{\mathbf{d}}$ 3 $\frac{1}{2}$ h to $\mathbf{S}^{\mathbf{h}}$. Wave in Dec. (+ \mathbf{S}').
- II^d 12^h to 12^d 12^h. See Plate V.
- 12^d $18\frac{1}{2}$ ^h to 20^h Double-crested wave in Dec. $(-6')$: in H.F., also double-crested $(+\infty)$. $22\frac{1}{2}$ ^h to $23\frac{1}{2}$ ^h Wave in Dec. $(+ 6')$: in H.F. small: decrease of V.F. $(-\infty)$.
- 13^d 2^h to 4^h Wave in Dec. (+ 6'), followed by fluctuations till 8^{h} . 16^h to 22^h Fluctuations in H.F. (\pm '001). 21^h to 22^h Wave in Dec. (- 6').
- 14^d I^h to $2\frac{1}{2}$ ^h Wave in Dec. $(+5')$: in H.F. $(+\infty)$, followed by wave $(+\infty)$ till $3\frac{1}{2}$ ^h. $1\frac{1}{2}$ ^h to 4^h Shallow wave in V.F. $(-\text{10005})$. 6^h to 8^h Small fluctuations in Dec. 12^h to 16^h Small fluctuations in H.F. z^{th} to z^{h} Small fluctuations in Dec. and H.F.
- 14^d 23^h to 15^d $1\frac{1}{2}$ Wave in H.F. (- '0016), followed by a smaller wave till 3^h and fluctuations till 4^h . 15^d o^h to $2\frac{1}{2}$ ^h Double wave in Dec. $(+ 3'$ to $-3')$, followed by small fluctuations till 5^h . O^h to 2^h
Decrease of V.F. (- '0004). 10^h to $11\frac{1}{2}$ ^h Wave in H.F. (- '002). 14^h to 18^h Small in H.F. 2^{1h} to 22^{1h} Wave in H.F. (+ \cdot 0012).
- 16^d 2^h to 5^h Long shallow wave in Dec. $(+ 4')$. 15^h to 16^h Wave in H.F. (- '0012) $17\frac{1}{2}$ to $18\frac{1}{2}$ Wave in Dec. $(-4')$: in H.F. (+ $\frac{1}{2}$ to 22^h Wave in Dec. (-8'): in H.F. (+ $\frac{1}{2}$ to 22^h Wave in Dec. (-8'): in H.F. (+ $\frac{1}{2}$ to 22^h
- 23^d o^h to 2^h Double wave in Dec. $(-4'$ to $+3')$.
- 23^d 12h to 24^d 12h. See Plate V.
- 24^d $12\frac{1}{2}$ ^h to $13\frac{1}{2}$ ^h Wave in H.F. (+ '0015). 13^h to 21^h Fluctuations in H.F. (\pm '001): in Dec. small. $1\bar{9}^{\text{h}}$ to $2\sigma_{\bar{2}}^{\bar{1}\bar{h}}$ Wave in Dec. $(-4')$: in H.F. small.
- 25^d I2^h to 20^h Small fluctuations in H.F., with sharp wave 16^h to 17^h (+ '0024). IS¹₂h to 20^h Wave in Dec. $(- 6')$.
- 26^d 14^h to 16^h Small fluctuations in H.F. 22^h to 24^h Wave in Dec. $(-5')$: in H.F. $(+\infty)$.
- 27^d 7^h to I^Ih Small rapid fluctuations in Dec. and H.F., with wave in H.F. 10 $\frac{1}{2}$ ^d to II^{I₂h} (- '0014). to 11^{μ} Small rapid nuctuations in Dec. and H.F., with wave in H.F. $10^{2^{\mu}}$ to $11^{2^{\mu}}$ (- '0014).
 12^{μ} to 21^{μ} Fluctuations in H.F., with waves 14^{μ} to 14^{μ} (- '0017) and 16^{μ} to 17^{μ} (- 12^h to 18^h . Very small fluctuations in Dec.
-
- 29^d 13^h to 17^h Small fluctuations in H.F.
- 30^d I5^h to 2^{Ih} Small fluctuations in H.F.

August Id I2h to 2d 12b. See Plate VI.

- 2^d Ish to 16^h Double wave in H.F. (- '0015 to + '0014), $16\frac{1}{2}$ to 18^h Wave in Dec. (- 8'): double wave in H.F. ($-\infty$ 22 to $+\infty$): small wave in V.F. 18^h to 23^h Small fluctuations in H.F. 23^h to 24^h Wave in H.F. (+ '0014).
- 3^d o^h to 1^h Wave in Dec. $(-5')$: in H.F. small. 3^h to 4^h Wave in Dec. $(+5')$. 3^h to 5^h Shallow wave i_{10} I^{*} wave in Dec. (-5): In H.F. small, 3^{2} to 4^{4} wave in Dec. (+5). 3^{2} to 5^{2} Smallow wave in T.F. (- '0024). 14^h to 17^h Three successive waves in I.F. (- '0003). $11\frac{1}{2}$ to $12\frac{1}{2}$ wave in $H.F.$ (- '0024). 14 to 17 Times successive waves in $H.F.$ (- '0014), (- '0018) and (- '0018): small fluctuations in Dec. and V.F. till 16^b, and small double wave in Dec. 16^{h} to $16^{\frac{1}{2} \text{h}}$. 21^{h} to 24^{h} Small fluctuations in Dec. and H.F.
- $_{4}^{\text{d}}$ oh to 8h Fluctuations in Dec. and H.F., with wave in H.F. 5h to 7h (- '0012), and in Dec. $5\frac{1}{2}$ h to $7\frac{1}{2}$ h (b) $e^{i\omega}$ runctuations in Dec. and H.F., with wave in H.F. S^{-10} / (ω 0012), and in Dec.
(+ 6'). 12^h to 17^h Fluctuations in H.F. (\pm '001). 17^h to $18\frac{h}{2}$ ^h Wave in H.F. (ω '0012).

 6^d 12^h to 7^d 12^h. See Plate VI. August

- 7^d 12^h to 22^h Frequent small fluctuations in Dec. and H.F., with double-crested wave in H.F.
 14^h to 16^h (- ·ooz). 22^h to 24^h Irregular double wave in Dec. (- 6' to + 5'). 22^h to 23^h Wave in H.F. (+ '0018), followed till 8^d I^h by double-crested wave (+ '0026). 7^d 23^h to 24^h Decrease of V.F. (- '0004).
- 8^d 3^d to 5^h Wave in Dec. (+ 6'). $12\frac{1}{2}$ ^h to 14^h Wave in Dec. (+ 4'): in H.F. (+ '0018). 16^h to 17^h Wave in H.F. $(+\infty)$, followed by small double wave. $2I^h$ to 22^h Double wave in Dec. $(+ 5' to - 4')$: in H.F. (- '0012 to + '0008): in V.F. small.
- 8^d 23¹/₂h to 9^d I^h Wave in Dec. $(+5')$: small increase of H.F.: slight decrease of V.F. 9^d 13^h to 20^h Small fluctuations in H.F. 21^h to 24^h Two successive waves in H.F. (- '0014) and (- '0012).
- 9^d 23¹/₂h to 10^d I^h Wave in Dec. (+ 4'). I^{od} 3^h to $4\frac{1}{2}$ ^h Wave in Dec. (+ 4'). $4\frac{1}{2}$ ^h to $5\frac{1}{2}$ ^h Double-crested wave in H.F. (- '0014). 5^h to $5\frac{1}{2}$ ^h Small wave in Dec. (- 4'). $(+ 3'$ to $- 5')$. 8^h to 18^h Small fluctuations in H.F.
- $I^{\{d\}}$ oh to $I^{\{h\}}$ Wave in Dec. $(-3')$: in H.F. $(-\infty)$. $I^{\{h\}}$ to $I^{\{h\}}$ Increase of H.F. $(+\infty)$.
- 12^d $17\frac{1}{2}^h$ to $18\frac{1}{2}^h$ Shallow wave in Dec. $(-3')$: in H.F. $(-\infty)$. $19\frac{1}{2}^h$ to 21^h Wave in Dec. $(-6')$: in H.F. $(+ \cdot \circ \circ \circ \circ)$.
- 13^d 23¹/₂h to 14^d I^h Wave in H.F. (+ '0014).
- 15^d 15^h to 23^h Occasional small fluctuations in H.F.
- 17^d 18¹/₂h to 23^h Small rapid fluctuations in H.F., with waves 19^{1h} to 21^h (- '002); 22^h to 23^h (+ '0012). $19\frac{1}{2}$ ^h to 24 ^h Very small fluctuations in Dec.
- 18^d I^h to 3^h Double wave in H.F. (- '0016 to + '001). I₂^h to 3^h Sharp wave in Dec. (+ 18'). 2^h to 6^h Long wave in V.F., sharp at commencement (- '001). 4^h to 5^h Decrease of H.F. (- '002). 22^h to 23^h Wave in Dec. $(+3')$: in H.F. $(+\infty)$.

19^d 13^h to 2^I^h Small fluctuations in H.F. 20^h to 21¹/₂^h Wave in Dec. (-4').

- $2^{c^d} 3^{\frac{1}{2}h}$ to 9^h Prolonged double wave in Dec. $(+3')$ to $-3')$. $16^{\frac{1}{2}h}$ Increase of H.F. $(+\infty 14)$.
 $17^{\frac{1}{2}h}$ to $19^{\frac{1}{2}}$ Double wave in H.F. $(+\infty 16$ to $-\infty 16)$. 18^h to 20^h Wave in
- 21^d o^h to 1^h Double wave in H.F. (- '001 to + '0012), followed by fluctuations in Dec. and H.F. till 2^h . 2^h to 3^h Wave in Dec. $(+ 8')$: in H.F. $(+ \cdot \circ \circ 28)$: decrease of V.F. $(- \cdot \circ \circ 8)$. 4^h to 5^h Increase of Dec. $(+ 14')$: decrease of H.F. $(-\infty)^2$. Sharp decrease of H.F. $(-\infty)^2$, followed of Dec. $(+ 14')$: decrease of H.F. $(-\infty)^2$. by wave till I_0^h (- '003), with superposed fluctuations. 3^h to I_0^h Small fluctuations in V.F. By wave the 10^a (- $\frac{3}{2}$), with superposed intertuations. 3^{α} to 10^a Small intertuations in V.F. fluctuations in Dec., H.F. and V.F.
- 22^d 9h to 10h Wave in H.F. (- \circ 01). 14^h to 16h Wave in H.F. (- \circ 018), with superposed fluctuations. 23^d I4^h to 16^h Fluctuations in H.F. 16^h to 17^h Wave in H.F. (- '0012). 19^h to 21^h Double-crested
- wave in Dec. $(-8')$. 20^h to 21^h Wave in H.F. $(+ \text{ '0014})$. 23¹/₂^d to 24^d $0^{\frac{1}{2}h}$ Wave in Dec. $(-6')$.
- 24^d 3^h to 5^h Wave in Dec. (+ 5') 13^h to 16^h Fluctuations in H.F. $16\frac{1}{2}$ ^h to 18^h Wave in H.F. (- '002). 24^d $22^{\frac{1}{2}h}$ to 25^d 3^h Long serrated wave in Dec. $(-12')$: shallow wave in V.F. $(-\infty)$. 24^{4} $23\frac{1}{2}^{\text{4}}$ to 25^{4} 3th Decrease of H.F. (- '002).
- 25^d $3\frac{1}{2}$ ^h to 5^h Wave in H.F. (- '0012). I2^h to 19^h Small fluctuations in H.F. and V.F. 19¹/₂^h to 21^h Two successive waves in Dec. $(-3')$ and $(-5')$. $20\frac{1}{2}$ to 21^h Wave in H.F. (+ '0012).
- 29^h I2^h to 30^d I2^h. See Plate VI.
- 31^d 23^h to 24^d Wave in Dec. (+ 4'): in H.F. small.
- September I^d 6^h to $7\frac{1}{2}$ ^h Shallow wave in Dec. $(+ 3')$.
	- 2^d 22^h to 24^h Wave in H.F. (+ '003): slight decrease of V.F.
	- 3^d o^h to 3^h Small fluctuations in Dec. and H.F. 3^h to 4^h Wave in H.F. $(+$ \circ 016). $11\frac{1}{2}^h$ to $12\frac{1}{2}^h$
Wave in H.F. $(\circ$ 02). 12^h to 14^h Wave in Dec. $(+$ 6[']). 12^h to 18^h Small ra successive sharp waves $(+ \cdot \infty 28)$ and $(+ \cdot \infty 26)$: small fluctuations in Dec. and V.F.
	- 3^d 23h to 4^d I^h Wave in Dec. (-7): in H.F. (+ '0026). $3^{\frac{1}{2}h}$ to 5^h Wave in Dec. (+4): in H.F. $(+ \cdot \text{oo1})$: in V.F. small.

 4^d 12^h to 24^h Occasional small fluctuations in H.F.

 5^d oh to 22h Fluctuations in Dec. and H.F., with wave in H.F. $8\frac{1}{2}$ h to 10h (- '0016). 20 $\frac{1}{2}$ h to 21 $\frac{1}{2}$ h Wave in Dec. $(-6')$, followed by a small double wave till 22^h : small double-crested wave in H.F. 1896•

- September 6^a 7^h to 10^h Wave in H.F. (- '002). 14^h to 15^h Double-crested wave in H.F. (- '0016), followed by two successive waves till $17\frac{1}{2}$ ^h (- '0014) and (- '0016), and by small fluctuations till 24 ^h. 13^h to 20^h Fluctuations in Dec. $(\pm z')$. 16^h to 18^h Double wave in Dec. $(+ 3'$ to $- 5'$).
	- S^d ^{Ih} to 2^h Small double wave in Dec. and H.F. $I S^h$ to 22^h Small fluctuations in H.F. Z^h to $2I^h$ Wave in Dec. $(-4')$.
	- 9^d 21^h to 22^h Decrease of Dec. (-3) : small wave in H.F.
	- II^d 20^h to 24^h Small fluctuations in H.F.
	- 12^d O_9^{h} to 2^h Wave in Dec. (+ 7') : in H.F. and V.F. small. I_9^{h} to I_8^{h} Wave in H.F. (- '0012).
	- 12^d 22^h to 13^d $0\frac{1}{2}$ ^h Wave in Dec. (- 4').
	- $\frac{1}{13}$ ⁿ $\frac{1}{2}$ ⁿ to 3^h Double wave in Dec. (+ 3^t to 5^t): wave in H.F. (+ '0018): in V.F. (- '0004). 4^h to 7^h Shallow wave in Dec. $(+, 4)$. 20^h to 21^h Wave in Dec. $(-, 4)$: in H.F. small. 23^h to 24^h Wave Shallow wave in Dec. $(+, 4)$. 20^h to 21^h Wave in Dec. $(-, 4)$: in H.F. small. 23^h to 24^h Wave shallow wave in Dec. $(+)$ 4 $)$. 20¹ to 21¹ wave in Dec. $(-+)$
in Dec. $(+)$ in H.F. $(+)$ oo2): decrease of V.F. $(-)$ oo04).
	- 14^d 21^h to 22^h Wave in Dec. $(-4')$: in H.F. small.
	- 15^d o^h to 1^h Wave in Dec. $(+ 4')$: in H.F. (- '001): 19¹/₃h to 20¹/₃h Wave in Dec. (- 6')
	- 16^d o^h to 4^h Fluctuations in Dec. and H.F., with wave in Dec. $1\frac{1}{2}^h$ to 3^h (+ 9'): in V.F. small. 13^h to 19^h Occasional fluctuations in H.F. 20 $\frac{1}{2}^h$ to 21 $\frac{1}{2}^h$ Wave in Dec. (- 5').
	- 17^d o^h to 1^h Small double wave in H.F. 0¹₂^h to 1¹₂^h Wave in Dec. (+ 4'). 18¹₂^h to 19^h Sharp wave in H.F. (+ '0024). 20^h to 22¹₂^h Double-crested H.F. $(+ \csc 0.24)$. 20° to $22\frac{2}{3}$ Double wave in Dec.
wave in H.F. $(+ \csc 4)$: decrease of V.F. $(- \csc 0.6)$.
	- 18^d oh to 19^d oh. See Plate VII.
	- 20^d o^h to 21^d o^h. See Plate VII.
	- 21^d 19¹ to $21\frac{1}{2}$ ^h Two successive waves in Dec. (- 6') and (- 3'): wave in H.F. (+ '0019).
	- 22^d 17^h to 20^h Small fluctuations in H.F. 19^k to 19¹₂^h Decrease of Dec. (-4'). 21^h to 22¹₂^h Doublecrested wave in Dec. $(-4')$. 22^h to 23^h Wave in H.F. (+ '0014).
	- 23^d 16^h to 24^h Small fluctuations in H.F.
	- \cdot 24^d 1^h to 3^h Wave in Dec. (-5'). 1¹/₂^h to 2^h Decrease of H.F. (- '0014). 16^h to 19^h Long wave in H.F. $(-\text{10024})$: small fluctuations in Dec.
	- 26^d $I_{\frac{1}{2}}$ ^h to 2^h Wave in Dec. (+ 3'). 23^h to 23^h Wave in H.F. (+ '001): in Dec. and V.F. small.
	- 29^d 12^h to 13^h Wave in Dec. (+ 3'): in H.F. small. $16\frac{1}{2}^h$ to $18\frac{1}{2}^h$ Small double wave in H.F. $21\frac{1}{2}^h$ to $22\frac{1}{2}^h$ Double wave in Dec. (-4' to + 3'). 22^h to 23^h Wave in H.F. (- '001)
- October I^d o^h to 18^h Small fluctuations in Dec. and H.F. 18^h to 20^{1h} Two successive waves in Dec. (- 13') and $(-8')$. Double wave in H.F. $(+\infty 26 \text{ to } -\infty 14)$, followed by a wave $(-\infty 12)$: small fluctuations in V.F. 22 $\frac{1}{2}$ ^h to 23¹₂^h Wave in Dec. (+4').
	- 3^d 15^h to 16¹/₂h Wave in H.F. (- '0012). 20^h to 22^h Fluctuations in Dec. (\pm 2'): in H.F. (\pm '001).
	- S^1 is to $15^{\frac{1}{2}}$ to $17^{\frac{1}{2}}$ Wave in Dec. $(-6')$: in H.F. $(-\cot 2)$. 20^h to 22^h Shallow wave in Dec. $(-5')$. 22^{h} to 17^{h} wave in Dec. (-0): in H.F. (-0012). 20 to 22 Shanow wave in Dec. (-5).

	20^h to 23^h Double wave in H.F. (-001 to +0027). 22^h to 23^h Wave in Dec. (-8'): decrease of V.F. (- *'0007).*
	- 9^d I^h to 4^h Double wave in Dec. (+ I^{I'} to $-4'$). I^h to 3^h Two successive waves in H.F. (+ '0024) and (+ '0008). I^h to 4^h Wave in V.F. (- '0006). I^{6h} to $17\frac{1}{2}^h$ Wave in Dec. (- 12'): double wave in H.F. (- '0014 to + '0012). Ish to z_4 ^h Fluctuations in Dec. (\pm 3') : in H.F. (\pm '001), wave in H.F. (\pm '0014 to + '0012). Ish to z_4 ^h Fluctuations in Dec. (\pm 3') : in H.F. (\pm '001), with wave $2I^h$ to 23^h (+ 0026).
	- 10^d o^h to I^h Increase of Dec. (+ 12'), followed by wave (- 4') till 3^h and by fluctuations (\pm 3') till 5^h . S_h to I_1^h Mave in H.F. (- '0036). $I_4^{\frac{1}{2}h}$ to $I_5^{\frac{1}{2}h}$ Wave in H.F. (- '0024). I_5^h to $I_6^{\frac{1}{2}h}$ Shallow α ¹ to 11^{*a*} wave in H.F. (- α - α). I $\frac{1}{2}$ to $1, \frac{1}{2}$ wave in H.F. (- α - α). I₅^a to 10^{$\frac{1}{2}$} shallow double-crested wave in Dec. (- 4'). I^{8h} to 21^h Irregular wave in Dec. (- 7'). Double wave in H.F. $(-\text{const to } + \text{const.})$.
	- $\mathbf{10}^d$ 23^h to $\mathbf{11}^d$ 2^h Double wave in Dec. (- $5'$ to + $\mathbf{11}'$).
	- I_1^d oh to I_2^h Two successive waves in H.F. (+ '0014) and (+ '0014): wave in V.F. (- '0006). $3\frac{1}{2}$ ^h to $5\frac{1}{2}$ ^h Wave in Dec. (+ 8'). 4^h to 8^h Long double wave in H.F. (+ '002 to - '001).
	- $I1^d$ 12^h to $I3^d$ 12^h. See Plate VIII.
	- 13^d 14^h to 15^h . Wave in H.F. (- '0016). 17^h to 18^h . Wave in Dec. (- 6'). 18^h to 19^{1h} Serrated wave in H.F. (- '0016), followed by fluctuations till z^{0h} . I_3^{1h} to z^{1h} Long irregular wave in $H.F.$ (- '0016), followed by fluctuations till z^{0h} . I_3^{1h} to z^{1h} Long irregular wave in In H.F. (-3010), followed by indictinations the 25° . $16\frac{1}{2}^\circ$ to 22° Long irregular wave in Dec. (-8). $20^{\rm h}$ to $22\frac{\rm h}{2}$ Double wave in H.F. (+3001 to -30018). $22^{\rm h}$ to $24^{\rm h}$ Wave in Dec. $(-4')$.

- October 14^d 14^h to 15^h Decrease of Dec. (-5'). 14^h to 16^h Wave in H.F. (- '0016). 19^h to 20^h^h Wave in $\sum_{i=1}^{n}$ to $i = 1, 2, \ldots$ becrease of Dec. (-5). $14\frac{1}{2}$ to 10^{2} Wave in H.P. (- '0010). 19^{2} to $20\frac{1}{2}$ Wave in Dec. (-8) : in H.F. (+ '001).
	- 15^d $15^{\frac{1}{2}h}$ to 17^h Wave in Dec. $(-7')$: small double wave in H.F. $17^{\frac{1}{2}h}$ to 19^h Wave in Dec. $(-9')$: double wave in H.F. $(-\infty)$: small double wave in H.F. $(\frac{1}{2})^{\frac{1}{2}}$ to 19⁻ wave in Dec. $(-9)^{\frac{1}{2}}$.
double-vave in H.F. $(-\infty)$ to $+\infty$. $20^{\frac{1}{2}h}$ to 22^h Double-crested wave in Dec. (-5^{\prime}) . 21^h to $21\frac{1}{2}$ ^h Sharp wave in H.F. (+ ·0018).
	- 16^d o^h to 12^h Fluctuations in Dec. and H.F. 13^h to 14^h Small wave in Dec. $(-3')$: in H.F. (- '0012). 20^h to $21\frac{h}{2}$ ^h Wave in H.F. (+ ·002). 21^h to 22^h Double-crested wave in Dec. (- 4').
	- 17^d $2\frac{1}{2}$ ^h to 5^h Double wave in Dec. $(-3'$ to $+3')$: in H.F. $(+ \text{`o}$ ot to `o or4).
	- 19^d 4^h to 8^h Double wave in H.F. (+ '001 to '0025). 10^h to $10^{\frac{1}{2}h}$ Sharp wave in H.F. (+ '0014): in Dec. small.
	- z^{od} 17^h to 19^h Double wave in H.F. (- '0012 to + '001) : small wave in Dec. z^{od} to $z1\frac{1}{2}$ ^h Double $\frac{1}{2}$ is 19⁻ bounce wave in H.F. (- $\frac{1}{2}$ or $\frac{1}{2}$ to $\frac{1}{2}$ = $\frac{1}{2}$ Wave in Dec. (+ 6'), followed by fluctuations wave in H.F. ($=$ $\frac{1}{200}$, $\frac{1}{10}$ + $\frac{1}{200}$, $\frac{20}{3}$ to $\frac{21}{3}$ wave in Dec. (+ 0), followed by fluctuations in Dec. and H.F. till z_4 ^h. z_1 ^h Decrease of V.F. ($\frac{1}{200}$). z_0 ^d $z_3\frac{1$ $(-9')$: in H.F. $(+ 0)$.
	- 21^d 21^h to 22^h Wave in H.F. (+ '0014): in Dec. small.
	- 23^d $2\frac{1}{2}^h$ to 4^h Shallow wave in Dec. (+ 3'). $6\frac{1}{2}^h$ to $7\frac{1}{2}^h$ Wave in Dec. (+ 4').
	- 24^d 17^h to 22^h Occasional small fluctuations in H.F.
	- 31^d I^{$1\frac{1}{2}$ h to $4\frac{1}{2}$ h Double wave in Dec. $(+ 4'$ to $4')$. I^Ih to 4^h Shallow wave in H.F. $(+ \cdot \text{cot}_4)$.}

November 4^d 18 $\frac{1}{2}$ ^h to 19 $\frac{1}{2}$ ^h Decrease of Dec. (-6'). zo^h to 21 $\frac{1}{2}$ ^h Wave in Dec. (-5'): in H.F. small.

- 5^d 18 $\frac{1}{2}$ ^h to 19 $\frac{1}{2}$ ^h Wave in H.F. (- '0014): in Dec. small, followed by fluctuations till 22^h. $z_2\overline{z}_1^{\text{b}}$ to $z_2\overline{z}_1^{\text{b}}$ Wave in Dec. (-4): increase of H.F. (+ '0017). z^d $z_2\overline{z}_1^{\text{b}}$ to 6^d z^{b} Double-crested $22\frac{1}{2}$ to $23\frac{1}{2}$ wave in Dec. (- 4): increase of H.F. (+ -0.01). 5^2 $23\frac{1}{2}$ to 6^4 I^h Two successive waves in wave in Dec. (- 13), with sharp commencement. 5^4 $23\frac{1}{2}$ to 6^4 I^h Two succes wave in Dec. (-13) , with sharp commencement. $5^2 23\frac{3}{2}$ to 0^4 1^2 I
H.F. $(+\infty)$ and $(+\infty)$ of $\frac{3}{4}$ and 24^h Decrease of V.F. $(-\infty)$.
- 6^d 4^h to 12^h Fluctuations in Dec. $(\pm 4')$. 7^h to 9^h Double-crested wave in H.F. (+ '003), followed by rapid fluctuations till 10^h. 10^h to 14^h Two successive waves in H.F. (- '003) and (- '0016). by rapid interdations (ii) 10². 10²/₂² to 14² 1 wo successive waves in H.F.
19¹/₂^h to 21^h. Wave in Dec. (- 9'). 20^h to 21¹/₂^h Wave in H.F. (+ '0024).
- 7^d $3\frac{1}{2}^h$ to $5\frac{1}{2}^h$ Wave in Dec. (- 6'). 5^h to 8^h Long double wave in H.F. (+ '0014 to '0016).
- 7^d I^{2h} to 8^d I^{2h}. See Plate IX.
- 8^d 13^h to 14^h Wave in H.F. (+ '0016). 14^h to 16^h Double wave in H.F. (+ '0019 to 0012). $13\frac{1}{2}$ h to 15^{h} Double wave in Dec. $(+4'$ to $-8')$. 18^{h} to 19^{h} Wave in Dec. $(-5')$: in H.F. $(+\infty)$. 19^{h} to 20^{h} Wave in Dec. $(-14')$: double-crested wave in H.F. $(+\infty)$. $\mathbf{L}.\mathbf{L}$. (+ coro). The to zon wave in Dec. (-14): double-crested wave in H.F.
20^h to 21^h Double-crested wave in Dec. (-4): two successive small waves in H.F.
- 9^d 0^h to $1\frac{1}{2}^h$ Wave in Dec. (+6'), followed by fluctuations in Dec. and H.F. till 11^h . $18\frac{1}{2}^h$ to $19\frac{1}{2}^h$
Sharp wave in Dec. (-14'): double wave in H.F. (- '002 to + '001): in V.F. small. $20\frac{1}{2}$ h to $21\frac{1}{2}$ h Wave in Dec. $(+4')$: in H.F. $(+\infty)$ $(-\infty)$. 9^d $23\frac{1}{2}$ h to 10^d $1\frac{1}{2}$ h Double wave in Dec. $(+3' \text{ to } -6')$: wave in H.F. $(+ \text{ 'ool}).$
- 10^d 17^h to 18^h Wave in Dec. $(-6')$. 23^h to 24^h Wave in Dec. $(+ 4')$: in H.F. $(+ 0.016)$.
- 13^d 2^h to 4^h Wave in Dec. $(+ 4')$: in H.F. small.
- 14^d 20 $\frac{1}{2}$ ^h to 22 $\frac{1}{2}$ ^h Double wave in Dec. (- 5' to + 3').
- 15^d Ish to 17^h Shallow wave in H.F. (- '0012).
- 16^d 20^h to 2¹^h Wave in Dec. (- 10'), with sharp commencement: in H.F (+ '0026): in V.F. small.
- 17^d ^{2h} to 4^h Shallow wave in Dec. $(-4')$.
- I^{8d} Sh to II^h Small fluctuations in Dec. and H.F. $20\frac{1}{2}$ to 22^h Wave in Dec. $(-7')$: double wave in $H.F. (- \cdot \text{const to } + \cdot \text{oot}).$
- $2c^d$ 23^h to 21^d ^h Fluctuations in Dec. (\pm $2')$: small double wave in H.F.
- 21^d 19^h to 22^h Fluctuations in Dec. ($\pm 3'.$) $21\frac{h}{2}$ ^h to 23^h Wave in H.F. (+ ∞ 018). 22^h to $23\frac{h}{2}$ ^h Wave in Dec. $(-4')$.
- 2^{6d} $2^{0\frac{1}{2}h}$ to 2^{2h} Wave in Dec. $(-3')$.
- 27^d 19^h to 21^h Shallow wave in Dec. (- 4').
- 2^{8d} 20^h to 24^h Small fluctuations in Dec. and H.F.

December 1^d 17 $\frac{1}{2}^h$ to 19^h Wave in Dec. $(-6')$: in H.F. $(-\infty)$, followed by a shallow wave till 20^h . $23\frac{h}{2}$ to 24^h Small wave in Dec. $(-3')$.

- 3^d I2h to 5^d I2h. See Plate IX.
- 5^d 22^h to 23^h Wave in Dec. (- 6').
- 6^d c^h to 1^h Small double wave in Dec. and H.F. 15^h to 23^h Fluctuations in Dec. $(\pm 2')$: in H.F. small, with wave $18\frac{1}{9}$ ^h to 20^h (+ '0018).
- 10^d $19^{\frac{1}{2}h}$ to 21^h Wave in Dec. $(-7')$.
- $\mathbf{I} \mathbf{I}^d$ oh to $\mathbf{2}^h$ Irregular shallow wave in H.F. (+ '0014).
- 13^d $5\frac{1}{2}$ ^h to 11^h Two successive shallow waves in H.F. (+ '0012) and (+ '0014). 7¹/₂h to 9^h Wave in Dec. $(1+4')$. 12^h to 13¹/₂h Wave in H.F. (-'002). 15^h to 16^h Small rapid fluctuations in Dec. and H.F. 20¹/₂h to 21¹/₂h Wave in H.F. (-'0012), followed by double wave (+'0014 to -'0018). 21^{h} to $22^{\frac{1}{2}^{\text{h}}}$ Two successive waves in Dec. (-12') and (-5'). 13^{d} 21^{h} to 14^{d} 5^{h} Small fluctuations 21⁻ to 22⁷/₂⁻ 1 wo successive waves in Dec. (-12) and (-15). 13⁻¹/₂1⁻¹ to 14⁻¹/₂⁻ Small fluctuation in V.F. 13^d 23¹/₂^h to 14^d 1¹/₂^h Double wave in Dec. (+ 7' to -11') : in H.F. (-1002 t
- 14^d 2^h to 3^h Wave in H.F. (-'0016), followed by fluctuations till 7^h . $2\frac{1}{2}^h$ to 4^h Wave in Dec. (+ 8'). 12h to 13h Wave in Dec. $(+5')$. 12^h to 14^h Wave in H.F. $(-\infty)$. 17^h to 18^h Wave in Dec. $(-4')$. 17^h to 18^h Wave in H.F. $(-\infty)$. 22^h to 24^h Fluctuations in Dec. $(\pm 3')$. 14^d 23^h to $(-4')$. $14^$ $i 5^d i^h$ Wave in H.F. $(+ \text{const}).$
- 15^d 8^h to 16^h Small fluctuations in Dec. 13^h to 15^h Wave in H.F. (- '0016). 15¹/₂h to 16^h Wave in Dec. $(+3')$ $17\frac{1}{2}$ ^h to $20\frac{1}{2}$ ^h. Two successive waves in Dec. $(-10')$ and $(-11')$, followed by small Dec. $(+ 3)$ $17\frac{1}{2}$ to $20\frac{1}{2}$ and the value of the value of the value of the small fluctuations till 24^h . $17\frac{1}{2}^h$ to 19^h Wave in H.F. (- '0016), followed by a double wave (- '0016 to + '003) till 21
- 16^d $3\frac{1}{2}^h$ to 5^h Wave in Dec. $(+5')$.
- 17^d 20¹/₁h to 22¹/₂h Small double wave in Dec. $(+ 2'$ to $3')$: in H.F. $(- \text{const } 0 + \text{const}).$
- 20^d IOh to 21^h ; 21^d IOh to 15^h and 21^d I8h to 22^d I2^h Loss of V.F. register.
- 24^d $23\frac{1}{2}$ ^h to 25^d $0\frac{1}{2}$ ^h Wave in Dec. (- 4').
- 25^d 21^h to 23^h Shallow wave in Dec. $(-4')$: serrated wave in H.F. $(+ \text{ 'oor}).$
- 26^d 1^h to 2^h Shallow wave in Dec. $(-3')$.

 27^d 20^h to 24^h Two successive irregular waves in Dec. (- 5') and (- 8'). 20¹/₂^h to 21¹/₂^h Double wave $\sum_{i=1}^{\infty}$ to 24^{π} Two successive firegular waves in Dec. (-5^{π}) and (-5^{π}) . $20\frac{1}{2}^{\pi}$ to $2\frac{1}{2}$ in H.F. $(-\infty)$ to $+ \infty$ 1), followed by long serrated wave $(-\infty)$ till $23\frac{1}{2}$ ^h.

- 28^d 3^h to $4\frac{1}{2}$ ^h Sharp wave in Dec. (+ 14'): decrease of V.F. (- '0005).
- 29^d I₅h to 18h Fluctuations in Dec. $(\pm 2')$: shallow wave in H.F. (- '0016).
- 30^d $0^{\frac{1}{2}h}$ to $2^{\frac{1}{2}h}$ Small double wave in Dec.

EXPLANATION OF THE PLATES.

The magnetic motions figured on the Plates are-

- (I.) Those for days of great disturbance-None in 1896.
- (2.) Those for days of lesser disturbance-January $3, 4, 5, 3$ I-February I, $4-5$, 28 , 29 , March $4-5$, $26-27$, :May 2-3, 3-4, 17-18, July 11-12, 23-24, August 1-2, 6-7, 29-30, September 18, 20, October 11-12, 12-13, November 7-8, December 3-4, 4-5.
- (3.) Those for four quiet days, January I, April 20, August 16, November 22, which are given as types of the ordinary diurnal movement at four seasons of the year.

The time is Greenwich Civil Time (commencing at midnight, and counting the hours from \circ to 24).

The magnetic declination, horizontal force, and vertical force, are indicated by the letters D., H., and V. respectively; the declination (west) is expressed in minutes of arc, the units for horizontal and vertical force are ·00001 of the whole horizontal and vertical forces respectively, the corresponding scales being given on the sides of each diagram. Equal changes of amplitude in the several registers correspond nearly to equal changes of absolute magnetic force, $\circ \circ \circ \circ$ of a C. G. S. unit being represented by $\circ^{in} \cdot 8\circ = 2\circ^2$ in the declination curve, by $o^{in.75} = 19.1$ in the horizontal force curve, and by $o^{in.77} = 19.6$ in the vertical force curve.

Downward motion indicates increase of declination and of horizontal and vertical force.

The earth current registers are not given on the plates in consequence of interference with the records caused by the running of trains on the City and South London Electric Railway.

An arrow (\uparrow) indicates that the register was out of range of registration in the direction of the arrow head.

The temperatures (Fahrenheit) of the horizontal and vertical force magnets at each hour are given in small figures on the Diagrams.

Magnetic Disturbances recorded at the Royal Observatory, Greenwich, 1896.

$\mathcal{L}^{(1)}$

 $\label{eq:2.1} \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\$

 $\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2.$

 $\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{\mathbb{R}^3} \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2$

 $\label{eq:2.1} \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\$

Magnetic Distarbances recorded at the Royal Observatory, Greenwich, 1896.

 $\label{eq:2.1} \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\$ $\label{eq:2.1} \frac{1}{\sqrt{2\pi}}\int_{0}^{\infty}\frac{1}{\sqrt{2\pi}}\left(\frac{1}{\sqrt{2\pi}}\right)^{2}d\mu\left(\frac{1}{\sqrt{2\pi}}\right)dx$ $\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2.$ $\mathcal{L}(\mathcal{L})$ and $\mathcal{L}(\mathcal{L})$ are the set of the set $\label{eq:2.1} \mathcal{L}(\mathcal{L}^{\text{max}}_{\mathcal{L}}(\mathcal{L}^{\text{max}}_{\mathcal{L}})) \leq \mathcal{L}(\mathcal{L}^{\text{max}}_{\mathcal{L}}(\mathcal{L}^{\text{max}}_{\mathcal{L}}))$ $\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2.$

Magnetic Disturbances recorded at the Royal Observatory, Greenwich, 1896.

 $\label{eq:2.1} \frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}^3}\frac{1$

 $\label{eq:2.1} \frac{1}{\sqrt{2\pi}}\int_{0}^{\infty}\frac{1}{\sqrt{2\pi}}\left(\frac{1}{\sqrt{2\pi}}\right)^{2\alpha}e^{-\frac{1}{2\alpha}}\left(\frac{1}{\sqrt{2\pi}}\right)^{\alpha}e^{-\frac{1}{2\alpha}}\left(\frac{1}{\sqrt{2\pi}}\right)^{\alpha}e^{-\frac{1}{2\alpha}}.$

 $\label{eq:2.1} \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\$

 \mathcal{L}_{max} , \mathcal{L}_{max}

 $\mathcal{O}(\mathcal{O}(\log n))$. The set of $\mathcal{O}(\log n)$

Magnetic Disturbances recorded at the Royal Observatory, Greenwich, 1896.

 $\mathcal{A}^{\text{max}}_{\text{max}}$ $\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}$

 $\mathcal{L}(\mathcal{L}^{\mathcal{L}})$ and $\mathcal{L}^{\mathcal{L}}$ and $\mathcal{L}^{\mathcal{L}}$ and $\mathcal{L}^{\mathcal{L}}$

 $\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2.$

 $\mathcal{L}^{\text{max}}_{\text{max}}$ $\mathcal{L}(\mathcal{A})$ and $\mathcal{L}(\mathcal{A})$

 $\label{eq:2.1} \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\$

 $\sim 10^{-10}$ $\label{eq:2.1} \frac{1}{\sqrt{2\pi}}\int_{0}^{\infty}\frac{1}{\sqrt{2\pi}}\left(\frac{1}{\sqrt{2\pi}}\right)^{2\alpha} \frac{1}{\sqrt{2\pi}}\int_{0}^{\infty}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{$

Magnetic Disturbances recorded at the Royal Observatory, Greenwich, 1896.

 $\mathcal{L}(\mathcal{A})$ and $\mathcal{L}(\mathcal{A})$. In the $\mathcal{L}(\mathcal{A})$ $\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}$ \mathcal{L}_{max} $\sim 10^{11}$ $\label{eq:2} \frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1$ \sim

Magnetic Disturbances recorded at the Royal Observatory, Greenwich, 1896.

 $\label{eq:2.1} \frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2\pi}}\left(\frac{1}{\sqrt{2\pi}}\right)^2\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{$ $\label{eq:2.1} \frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}^3}\frac{1$ $\label{eq:2.1} \mathcal{L}(\mathcal{L}^{\text{max}}_{\text{max}}(\mathcal{L}^{\text{max}}_{\text{max}})) = 0.1$ $\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2.$ $\label{eq:2.1} \frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}^3}\frac{1$

Magnetic Disturbances recorded at the Royal Observatory, Greenwich, 1896.

 $\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\right)\frac{1}{\sqrt{2}}\right)\frac{1}{\sqrt{2}}\right)=\frac{1}{2}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\left(\frac{1$

 $\label{eq:2.1} \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\$

Magnetic Distarbances recorded at the Royal Observatory, Greenwich, 1896.

 $\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2.$ $\mathcal{L}(\mathcal{L})$ and $\mathcal{L}(\mathcal{L})$. The set of $\mathcal{L}(\mathcal{L})$ $\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2.$ $\label{eq:2.1} \frac{1}{2} \sum_{i=1}^n \frac{1}{2} \sum_{j=1}^n \frac{$

Types of Magnetic Diurnal Variations at four Seasons of the year recorded at the Royal Observatory, Greenwich. 1896.

ROYAL OBSERVATORY, GREENWICH.

RESULTS

OF

METEOROLOGICAL OBSERVATIONS.

1896.

$(xxxviii)$

DAILY RESULTS OF THE METEOROLOGICAL OBSERVATIONS

The results apply to the civil day.

The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records.
The average temperature (Column 7) is deduced from the 50 years

 $\bar{\lambda}$

The values given in Columns 3, 4, 5, 14, and 15 are derived from eye-readings of self-registering thermometers.

The mean reading of the Barometer for the month was 30in 172, being 0in 394 higher than the average for the 50 years, 1841-1890.

TEMPERATURE OF THE AIR.

THEATURE OF THE AIR.
The highest in the month was 52° 9 on January 17; the lowest in the month was 28° 3 on January 20; and the range was 24° 6.
The mean of all the highest daily readings in the month was 4

mean *Temperature of Exaporation* for the month was 39"1,

The mean *Temperature of the Dew Point* for the month was $37^\circ 4$, being 2° o higher than

The mean *Degree of Humidity* for the month was 890, being 0.2 greater than

The mean Elastic Force of Vapour for the month was $oⁱⁿ$ 224, being $oⁱⁿ$ 017 greater than

The mean Weight of Vapour in a Cubic Foot of Air for the month was $2^{grs \cdot 6}$, being $0^{gr \cdot 2}$ greater than

The mean Weight of a Cubic Foot of Air for the month was 559 grains, being 5 grains greater than

The mean amount of *Cloud* for the month (a clear sky being represented by o and an overcast sky by 10) was 8.0.

The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0.051. The maximum daily amount of Sunshine was 3.6 hours on January 24.

the average for the 50 years, $1841 - 1890$.

The highest reading of the Solar Radiation Thermometer was 84° 3 on January 24; and the lowest reading of the Terrestrial Radiation Thermometer was 22° 2 on January 20. The mean daily distribution of Ozone for the 12 hours ending 9h. was 0.6; for the 6 hours ending 15h. was 0.1; and for the 6 hours ending 21h. was 0.0.

The Proportions of Wind referred to the cardinal points were N. 7, E. 7, S. 7, and W. 9. One day was calm.

The Pressure Apparatus of Osler's Anemometer was under repair until January 15. The mean daily Horizontal Movement of the Air for the month was 251 miles; the greatest daily value was 591 miles on January 15; and the least

Rain fell on 9 days in the month, amounting to o'n.640, as measured by gauge No. 6 partly sunk below the ground; being $Iⁱⁿ349$ less than the average fall for the 50 years, $1841 - 1890$.

 $(xxxix)$

(xl)

DAILY RESULTS OF THE METEOROLOGICAL OBSERVATIONS

The results apply to the civil day,
The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records.
The mean reading of the Ba Differences (Columns II and 12) are deduced from the 24 hourly photographic measures of the Dry-bulb and Wet-bulb Thermometers,

 \Box

The values given in Columns 3, 4, 5, 14, and 15 are derived from eye-readings of self-registering thermometers.

The mean reading of the *Barometer* for the month was 30ⁱⁿ'154, being oⁱⁿ'355 *higher* than the average for the 50 years, 1841-1890.

TEMPERATURE OF THE AIR,

The highest in the month was 56° 2 on February 12; the lowest in the month was 24° ; 3 on February 25; and the range was 31° .
The mean of all the highest daily readings in the month was 45° ;, being $\circ^$

The mean *Temperature of Evaporation* for the month was 38°7, being 0°9 higher than

The mean Temperature of the Dew Point for the month was 36° -2, being 0° -6 higher than

The mean Degree of Humidity for the month was 85'3, being 0'7 less than

The mean Elastic Force of Vapour for the month was $oⁱⁿ$ 214, being $oⁱⁿ$ 006 greater than

The mean Weight of Vapour in a Cubic Foot of Air for the month was 2^{srs} ; being 0^{srs} and r and then

The mean Weight of a Cubic Foot of Air for the month was 559 grains, being 6 grains greater than

The mean amount of Cloud for the month (a clear sky being represented by o and an overcast sky by 10) was 6.3.

The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0.196. The maximum daily amount of Sunshine was 8.2 hours on February 24. The highest reading of the Solar Radiation Thermometer was 96° on February 12; and the lowest reading of the Terrestrial Radiation Thermometer was 17°4 on February 25.

the average for the 50 years, 1841-1890.

The mean daily distribution of Ozone for the 12 hours ending 9h was 0.9; for the 6 hours ending 15h was 0.0; and for the 6 hours ending 21h was 0.0. The Proportions of Wind referred to the cardinal points were N. 4, E. 10, S. 7, and W. 8.

The Greatest Pressure of the Wind in the month was 6.2 lbs. on the square foot on February 8. The mean daily Horizontal Movement of the Air for the month was

232 miles; the greatest daily value was 430 miles on February 8; and the least daily value was 78 miles on February 1. Rain fell on 6 days in the month, amounting to oⁱⁿ 355, as measured by gauge No. 6 partly sunk below the ground; being 1¹ⁿ 129 less than the average fall for

the 50 years, 1841-1890.

 \pmb{F}

 (xli)

DAILY RESULTS OF THE METEOROLOGICAL OBSERVATIONS

The results apply to the civil day.

The nean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records.
The average temperature (Column 7) is deduced from the 50 years

 $\lambda_{\rm{max}}$

The values given in Columns 3, 4, 5, 14, and 15 are derived from eye-readings of self-registering thermometers.

The mean reading of the Barometer for the month was 29in 640, being oin 113 lower than the average for the 50 years, 1841-1890.

TEMPERATURE OF THE AIR.

The highest in the month was 67° 7 on March 22; the lowest in the month was 32 I on March 15; and the range was 35^o.6.
The mean of all the highest daily readings in the month was 53° 1, being $3^{\circ}4$ *higher* t

 (xli)

The mean Temperature of Evaporation for the month was 43° , being 4° . *higher* than

The mean Temperature of the Dew Point for the month was 40° ;, being 4° -2 higher than

The mean Degree of Humidity for the month was 81.6, being 0.5 greater than

The mean Elastic Force of Vapour for the month was o^{in} 252, being o^{in} 038 greater than

The mean Weight of Vapour in a Cubic Foot of Air for the month was 2818 .9, being 081 .4 greater than

The mean Weight of a Cubic Foot of Air for the month was 543 grains, being 7 grains less than

The mean amount of *Cloud* for the month (a clear sky being represented by o and an overcast sky by 10) was 7.3.

The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0'136. The maximum daily amount of Sunshine was 8.6 hours on March 22.

The highest reading of the Solar Radiation Thermometer was 120°2 on March 22; and the lowest reading of the Terrestrial Radiation Thermometer was 25°3 on March 15. The mean daily distribution of Ozone for the 12 hours ending 9h. was 17; for the 6 hours ending 15h. was 0.2; and for the 6 hours ending 21h. was 0.0.

the average for the 50 years, 1841-1890.

The Proportions of Wind referred to the cardinal points were N. 6, E. 3, S. 9, and W. 13.

The Greatest Pressure of the Wind in the month was 27'5 lbs. on the square foot on March 16. The mean daily Horizontal Movement of the Air for the month was 376 miles; the greatest daily value was 754 miles on March 6; and

Rain fell on 22 days in the month, amounting to 2ⁱⁿ 996, as measured by gauge No. 6 partly sunk below the ground; being 1ⁱⁿ 535 greater than the average fall for the 50 years, 1841-1890.

 F_{2}

 $(xliii)$

 $(x$ liv $)$

DAILY RESULTS OF THE METEOROLOGICAL OBSERVATIONS

The results apply to the civil day.

The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records.
The average temperature (Column 7) is deduced from the 50 years

The values given in Columns 3, 4, 5, 14, and 15 are derived from eye-readings of self-registering thermometers.

The mean reading of the Barometer for the month was 29ⁱⁿ 979, being 0ⁱⁿ 238 higher than the average for the 50 years, 1841-1890.

TEMPERATURE OF THE AIR.

The highest in the month was 69° o on April 27; the lowest in the month was 33° 6 on April 2; and the range was 35° 4.
The mean of all the highest daily readings in the month was 57° 4, being \circ° 2 hig

The mean Temperature of Evaporation for the month was 45° 2, being 1° 3 higher than

The mean Temperature of the Dew Point for the month was 41° . being 1° o higher than

The mean Degree of Humidity for the month was 750, being 16 less than

The mean Elastic Force of Vapour for the month was 0ⁱⁿ 259, being cinoto greater than

The mean Weight of Vapour in a Cubic Foot of Air for the month was281s .9, being the same as

The mean Weight of a Cubic Foot of Air for the month was 546 grains, being 3 grains greater than

The mean amount of Cloud for the month (a clear sky being represented by o and an overcast sky by 10) was 6.9.

The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0.161. The maximum daily amount of Sunshine was 8.0 hours on April 28. The highest reading of the Solar Radiation Thermometer was 125°7 on April 28; and the lowest reading of the Terrestrial Radiation Thermometer was 27°5 on April 2. The mean daily distribution of Ozone for the 12 hours ending 9^h was 0.5 ; for the 6 hours ending 15^h was 0.5 ; and for the 6 hours ending 21^h was 0.3 .

the average for the 50 years, 1841-1890.

The Proportions of Wind referred to the cardinal points were N. II, E. 4, S. 4, and W. II.

The Greatest Pressure of the Wind in the month was 22'5 lbs. on the square foot on April 12. The mean daily Horizontal Morement of the Air for the month was 265 miles :
the greatest daily value was 559 miles on April 11; a

Rain fell on 10 days in the month, amounting to o^{ia} 560, as measured by gauge No. 6 partly sunk below the ground; being 1ⁱⁿ 101 less than the average fall for the 50 years, 1841-1890.

 $(x|v)$

DAILY RESULTS OF THE METEOROLOGICAL OBSERVATIONS

The results apply to the civil day.

The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records.
The average temperature (Column 7) is deduced from the 50 year

 Δ

The values given in Columns 3, 4, 5, 14, and 15 are derived from eye-readings of self-registering thermometers.

The mean reading of the Barometer for the month was 30ⁱⁿ 048, being 0ⁱⁿ 262 higher than the average for the 50 years, 1841-1890.

TEMPERATURE OF THE AIR.

The highest in the month was $78^{\circ}4$ on May 18; the lowest in the month was $35^{\circ}8$ on May 4; and the range was $42^{\circ}6$.
The mean of all the highest daily readings in the month was 66° r, being $2^{\circ}c$ *higher*

 $(x!$ vi

The mean Temperature of Evaporation for the month was $49^{\circ}4$, being $0^{\circ}2$ higher than

The mean Temperature of the Dew Point for the month was 44° ; being 1° o lower than

The mean Degree of Humidity for the month was 68.4, being 6.6 less than

The mean Elastic Force of Vapour for the month was o^{in} 292, being o^{in} or I less than

The mean Weight of Vapour in a Cubic Foot of Air for the month was 38rs .3, being ost .1 less than

The mean Weight of a Cubic Foot of Air for the month was 541 grains, being 3 grains greater than

The mean amount of *Cloud* for the month (a clear sky being represented by o and an overcast sky by 10) was 5.0.

The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0.370. The maximum daily amount of Sunshine was 13.7 hours on May 10. The highest reading of the Solar Radiation Thermometer was 143°5 on May 12; and the lowest reading of the Terrestrial Radiation Thermometer was 27°2 on May 4. The mean daily distribution of Ozone for the 12 hours ending 9h. was 0.9; for the 6 hours ending 15h. was 0.1; and for the 6 hours ending 21h. was 0.1.

the average for the 50 years, 1841-1890.

The Proportions of Wind referred to the cardinal points were N. 14, E. 10, S. 3, and W. 3. One day was calm.

The Greatest Pressure of the Wind in the month was 150 lbs. on the square foot on May 20. The mean daily Horizontal Movement of the Air for the month was 263 miles; the greatest daily value was 525 miles on May 20; and the least daily value was 110 miles on May 17.

Rain fell on 5 days in the month, amounting to oin-266, as measured by gauge No. 6 partly sunk below the ground; being 1ⁱⁿ 737 less than the average fall for the 50 years, 1841-1890.

 $(xivii)$

(xlviii)

DAILY RESULTS OF THE METEOROLOGICAL OBSERVATIONS

The results apply to the civil day.

The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records.
The average temperature (Column 7) is deduced from the 50 year

The values given in Columns 3, 4, 5, 14, and 15 are derived from eye-readings of self-registering thermometers.

The mean reading of the Barometer for the month was 29in.770, being oin.041 lower than the average for the 50 years, 1841-1890.

TRMPERATURE OF THE AIR.

The highest in the month was 86°7 on June 16; the lowest in the month was 39°8 on June 1; and the range was 46° 9.
The highest in the month was 86°7 on June 16; the lowest in the month was 39° 8 on June 1; and the

The mean *Temperature of Evaporation* for the month was 57° 7, being 2° 7 *higher* than

The mean *Temperature of the Dew Point* for the month was 53[°] o, being I^o¹9 *higher* than

The mean *Degree of Humidity* for the month was 69'8, being 4'2 less than the average for the 50 years, 1841-1890.

The mean *Elastic Force of Vapour* for the month was o^{in} 403, being o^{in} 028 *greater* than

The mean *Weight of Vapour in a Cubic Foot of Air* for the month was 4^{grs}'5, being o^{gr} '3 *greater* than

The mean *Weight of a Cubic Foot of Air* for the month was 526 grains, being 5 grains *less* than

The mean amount of *Cloud* for the month (a clear sky being represented by o and an overcast sky by 10) was 5'5.

The mean proportion of *Sunshine* for the month (constant sunshine being represented by I) was 0'386. The maximum daily amount of *Sunshine* was 12'8 hours on June 1. The highest reading of the *Solar Radiation Thernwmeter* was 145°8 on June 15; and the lowest reading of the *Terrestrial Radiation Thermometer* was 37°2 on June 1.

The mean daily distribution of *Ozone* for the 12 hours ending 9^h . was 1'7; for the 6 hours ending 15^h . was 0'6; and for the 6 hours ending 21^h . was 0'I.

The *Proportions of W'ind* referred to the cardinal points were N. 7, E. 5, S. 7, and W. 10. One day was calm.

The Greatest Pressure of the Wind in the month was 93 lbs. on the square foot on June 30. The mean daily Horizontal Movement of the Air for the month was 233 miles; the greatest daily value was 462 miles on June 30; and th

Rain fell on 14 days in the month, amounting to $Iⁱⁿ$ 939, as measured by gauge No. 6 partly sunk below the ground; being \circ ⁱⁿ \circ 83 *less* than the average fall for the 50 years, $1841 - 1890$.

(xlix)

 (1)

DAILY RESULTS OF THE METEOROLOGICAL OBSERVATIONS

The results apply to the civil day.

The near reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records.
The average temperature (Column 7) is deduced from the 50 years

The values given in Columns 3, 4, 5, 14, and 15 are derived from eye-readings of self-registering thermometers.

The mean reading of the Barometer for the month was 29ⁱⁿ 844, being 0ⁱⁿ 051 higher than the average for the 50 years, 1841-1890.

TEMPERATURE OF THE AIR.

The highest in the month was 91° i on July 14; the lowest in the month was 47° ; on July 29; and the range was 43° 8.
The mean of all the highest daily readings in the month was 77° 6, being 3° 6 *kig*

The mean Temperature of Evaporation for the month was 58° , being \circ^{6} -6 higher than

The mean *Temperature of the Dew Point* for the month was 53° o, being 0° g lower than

The mean Degree of Humidity for the month was 65.1, being 8.7 less than

The mean Elastic Force of Vapour for the month was $oⁱⁿ$ 403, being $oⁱⁿ$ 013 less than

The mean Weight of Vapour in a Cubic Foot of Air for the month was 4^{gs*} 4, being 0^{st*} less than

The mean Weight of a Cubic Foot of Air for the month was 526 grains, being I grain less than

The mean amount of *Cloud* for the month (a clear sky being represented by o and an overcast sky by 10) was 5.3.

The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0.382. The maximum daily amount of Sunshine was 14'I hours on July 6. The highest reading of the Solar Radiation Thermometer was 157°'s on July 9; and the lowest reading of the Terrestrial Radiation Thermometer was 42°8 on July 23. The mean daily distribution of Ozone for the 12 hours ending 9h. was 0.3; for the 6 hours ending 15h. was 0.5; and for the 6 hours ending 21h. was 0.2.

The Proportions of Wind referred to the cardinal points were N. 7, E. 3, S. 9, and W. II. One day was calm.

The Greatest Pressure of the Wind in the month was 11'2 lbs. on the square foot on July 25. The mean daily Horizontal Movement of the Air for the month was 242 miles; the greatest daily value was 555 miles on July 4; and t

the average for the 50 years, 1841-1890.

Rain fell on 7 days in the month, amounting to $Iⁱⁿ$ -065, as measured by gauge No. 6 partly sunk below the ground; being $Iⁱⁿ$ -405 less than the average fall for the 50 years, 1841-1890.

 (i)

(iii)

DAILY RESULTS OF THE METEOROLOGICAL OBSERVATIONS

The results apply to the civil day.

The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records.
The average temperature (Column 7) is deduced from the 50 years

 \ddot{i}

 $\ddot{}$

The values given in Columns 3, 4, 5, 14, and 15 are derived from eye-readings of self-registering thermometers.

The mean reading of the Barometer for the month was 29ⁱⁿ'850, being 0ⁱⁿ'068 higher than the average for the 50 years, 1841-1890.

TEMPERATURE OF THE AIR.

The highest in the month was 76° 2 on August 13; the lowest in the month was 45° 7 on August 27; and the range was 30° 5.
The mean of all the highest daily readings in the month was 69° 0, being $3^{\circ}8$

The mean *Temperature of Evaporation* for the month was 55°'3, being 2°'3 *lower* than

The mean *Temperature of the Dew Point* for the month was 51° ; being 2° ₇ *lower* than

The mean *Degree of Humidity* for the month was 75'6, being 1'2 less than the average for the So years, 1841-1890.

The mean *Elastic Force of Vapour* for the month was $Oⁱⁿ381$, being $Oⁱⁿ040$ less than The mean *Weight of Vapour in a Cubic Foot of Air* for the month was 4^{grs} ², being 0^{gr} ² 4 *less* than

The mean *Weight of a Cubic Foot of Air* for the month was 532 grains, being 4 grains *greater* than

The mean amount of *Cloud* for the month (a clear sky being represented by o and an overcast sky by 10) was 6.9.

The mean proportion of *Sunshine* for the month (constant sunshine being represented by I) was 0'162. The maximum daily amount of *Sunshine* was 6'5 hours on August 16. The highest reading of the *Solar Radiation Thermometer* was 134°3 on August 1; and the lowest reading of the *Terrestrial Radiation Thermometer* was 42°5 on August 27. The mean daily distribution of *Ozone* for the 12 hours ending 9h. was 0.6; for the 6 hours ending 15^h· was 0.2; and for the 6 hours ending 21^h· was 0.2. The *Proportions of Wind* referred to the cardinal points were N. 13, E. 3, S.4, and W, 10. One day was calm,

The Greatest Pressure of the Wind in the month was 6.5 lbs. on the square foot on August 24. The mean daily Horizontal Movement of the Air for the month was 224 miles; the greatest daily value was 380 miles on August 24;

Rain fell on 15 days in the month, amounting to 2ⁱⁿ⁻⁰⁶3, as measured by gauge No. 6 partly, sunk below the ground; being oⁱⁿ⁻²⁸⁷ *less* than the average fall for the 50 years, 1841-1890.
DAILY RESULTS OF THE METEOROLOGICAL OBSERVATIONS

The results apply to the civil day.

The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records.
The average temperature (Column 7) is deduced from the 50 years

The values given in Columns 3, 4, 5, 14, and 15 are derived from eye-readings of self-registering thermometers.

The mean reading of the Barometer for the month was 29ⁱⁿ 593, being oⁱⁿ 213 lower than the average for the 50 years, 1841-1890.

TEMPERATURE OF THE AIR.

The highest in the month was $71^{\circ}5$ on September 5; the lowest in the month was $40^{\circ}3$ on September 21; and the range was $31^{\circ}2$.
The mean of all the highest daily readings in the month was $64^{\circ}5$, being 2°

 (iiv)

MADE AT THE ROYAL OBSERVATORY, GREENWICH, IN THE YEAR 1896. $(1v)$

The mean *Temperature of Exaperation* for the month was 54° ; being 0° ; *Migher* than

The mean *Temperature of the Dew Point* for the month was 52° , being \circ °8 *higher* than

The mean *Degree of Humidity* for the month was 84.9, being \uparrow I greater than $\qquad \qquad$ the average for the 50 years, $1\frac{S}{11} - 1\frac{S}{20}$.

The mean *Elastic Force of Vapour* for the month was $Oⁱⁿ391$, being $OⁱⁿO12$ greater than

The mean *Weight of Vapour in a Cubic Foot of Air* for the month was 4^{grs} '4, being o^{gr} '2 *greater* than

The mean *Weight of a Cubic Foot of Air* for the month was 530 grains, being 3 grains less than

The mean amount of *Cloud* for the month (a clear sky being represented by 0 and an overcast sky by 10) was 7'5.

The mean proportion of *Sunshine* for the month (constant sunshine being represented by I) was 0'200. The maximum daily amount of *Sunshine* was 8'1 hours on September 19- The highest reading of the *Solar Radiation Thermometer* was 125°² on September 9; and the lowest reading of the *Terrestrial Radiation Thermometer* was 38°² on September 21.

The mean daily distribution of *Ozone* for the 12 hours ending 9h. was 2'5; for the 6 hours ending 15h. was 0'9; and for the 6 hours ending 2Ih. was 0'3.

The *Proportions of lVind* referred to the cardinal points were N. 3, E. 4, S. 10, and W. 13.

The Greatest Pressure of the Wind in the month was 240 lbs. on the square foot on September 25. The mean daily Horizontal Movement of the Air for the month was
29 miles ; the greatest daily value was 830 miles on Septembe

Uain fell on 23 days in the month, amounting to 5ⁱⁿ 542, as measured by gauge No. 6 partly sunk below the ground; being 3ⁱⁿ 291 *greater* than the average fall for the 50 years, 1841-1890. **---**

(lvi) DAILY RESULTS OF THE METEOROLOGICAL OBSERVATIONS

The results apply to the civil day.

The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records.
The average temperature (Column 7) is deduced from the 50 years Differences (Columns II and 12) are deduced from the 24 hourly photographic measures of the Dry-bulb and Wet-bulb Thermometers.

The values given in Columns 3,4,5, 14, and IS are derived from eye-readings of self-registering thermometers.

The mean reading of the *Barometer* for the month was 29ⁱⁿ'559, being oⁱⁿ'157 *lower* than the average for the 50 years, 1841-1890.

TEMPERATURE OF THE AIR,

The highest in the month was $63^{\circ}4$ on October 9; the lowest in the month was $31^{\circ}5$ on October 29; and the range was $31^{\circ}9$.
The mean of all the highest daily readings in the month was $53^{\circ}5$, being $4^{\circ}2$

MADE AT THE ROYAL OBSERVATORY, GREENWICH, IN THE YEAR 1896.

The mean Temperature of Exaporation for the month was 44° 6, being $3^{\circ}4$ lower than

The mean Temperature of the Dew Point for the month was $42^{\circ}4$, being $3^{\circ}5$ lower than

The mean Degree of Humidity for the month was 85.8, being \circ 2 greater than

The mean Elastic Force of Vapour for the month was o^{in} -271, being o^{in} -038 less than

The mean Weight of Vapour in a Cubic Foot of Air for the month was 3srs. 1, being our 4 less than

The mean Weight of a Cubic Foot of Air for the month was 541 grains, being 2 grains greater than

The mean amount of *Cloud* for the month (a clear sky being represented by o and an overcast sky by 10) was 6.8.

The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0.194. The maximum daily amount of Sunshine was 8.0 hours on October 5. The highest reading of the Solar Radiation Thermometer was 113°0 on October 9; and the lowest reading of the Terrestrial Radiation Thermometer was 28°7 on October 28. The mean daily distribution of Ozone for the 12 hours ending 9h. was 1'1; for the 6 hours ending 15h. was 0'4; and for the 6 hours ending 21h. was 0'4.

The Proportions of Wind referred to the cardinal points were N. 9, E. 3, S. 8, and W. 10. One day was calm.

The Greatest Pressure of the Wind in the month was 160 lbs. on the square foot on October 6. The mean daily Horizontal Movement of the Air for the month was
3¹² miles; the greatest daily value was 587 miles on October 16

Rain fell on 19 days in the month, amounting to 2ⁱⁿ⁻⁸⁰3, as measured by gauge No. 6 partly sunk below the ground; being oⁱⁿ⁻⁰⁰⁸ less than the average fall for the
50 years, 1841-1890.

the average for the 50 years, 1841-1890.

 $(lvii)$

 $(iviii)$

DAILY RESULTS OF THE METEOROLOGICAL OBSERVATIONS

The results apply to the civil day.

The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records.
The average temperature (Column 7) is deduced from the 50 year

The values given in Columns 3, 4, 5, 14, and 15 are derived from eye-readings of self-registering thermometers.

The mean reading of the Barometer for the month was 29ⁱⁿ'951, being oⁱⁿ'207 higher than the average for the 50 years, 1841-1890.

TEMPERATURE OF THE AIR.

The highest in the month was 50° g on November 12; the lowest in the month was 26° g on November 30; and the range was 24° 4.
The highest in the month was 50° g on November 12; the lowest in the month was

MADE AT THE ROYAL OBSERVATORY, GREENWICH, IN THE YEAR 1896.

The mean *Temperature of Evaporation* for the month was 38° .7, being 2° .9 lower than

The mean *Temperature of the Dew Point* for the month was 36° -2, being 3° -5 lower than

The mean *Degree of Humidity* for the month was 84'6, being 2'9 *less* than the average for the 50 years, r841-1890.

The mean *Elastic Force of Vapour* for the month was $Oⁱⁿ214$, being $OⁱⁿO3O$ less than

The mean *Weight of Vapour in a Cubic Foot of Air* for the month was 2^{grs} ; being o^{gr} ; *less* than

The mean *Weight of a Cubic Foot of Air* for the month was 555 grains, being 7 grains *greater* than.

The mean amount of *Cloud* for the month (a clear sky being represented by \circ and an overcast sky by 10) was 6.4.

The mean proportion of *Sunshine* for the month (constant sunshine being represented by 1) was 0'190. The maximum daily amount of *Sunshine* was 6'9 hours on November 5.

The highest reading of the *Solar Radiation Thermometer* was 84° 5 on November 5; and the lowest reading of the *Terrestrial Radiation Thermometer* was 24[°]0 on November 30.

The mean daily distribution of *Ozone* for the 12 hours ending 9^h was 0.8; for the 6 hours ending 15^h was 0'1; and for the 6 hours ending 2I^h was 0'0.

The *Proportions of Wind* referred to the cardinal points were N. 9, E. 9, S. 4, and W. 7. One day was calm.

The Greatest Pressure of the Wind in the month was $11'2$ lbs. on the square foot on November 27. The mean daily Horizontal Movement of the Air for the month was 277 miles; the greatest daily value was 536 miles on Novemb

Rain fell on 9 days in the month, amounting to I^{in} 194, as measured by gauge *Nc.* 6 partly sunk below the ground; being I^{in} 072 *less* than the average fall for the 50 years, $1841-1890$. $50 \text{ years}, 1841-1890.$

 $I\!I$ 2

(lix)

(Ix)

DAILY RESULTS OF THE METEOROLOGIOAL OBSERVATIONS

The results apply to the civil day,

The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records.
The average temperature (Column 7) is deduced from the 50 year

 $\bar{\lambda}$

I

I I \Box

The values given in Columns 3, 4, 5, 14, and 15 are derived from eye-readings of self-registering thermometers.

The mean reading of the *Barometer* for the month was 29ⁱⁿ'606, being ^{oin}'185 *lower* than the average for the 50 years, 1841-1890.

TEMPERATURE OF THE AIR,

The highest in the month was 51° ; on December 26; the lowest in the month was 26° ; on December 17; and the range was 24° ; The mean of all the highest daily readings in the month was 43° ; being \circ°

MADE AT THE ROYAL OBSERVATORY, GREENWICH, IN THE YEAR 1896.

The mean Temperature of Evaporation for the month was $38^{\circ}\cdot 8$, being $0^{\circ}\cdot 5$ higher than

The mean Temperature of the Dew Point for the month was 37° o, being o^o's higher than

The mean Degree of Humidity for the month was 88.6, being 0.1 greater than

The mean Elastic Force of Vapour for the month was cin 220, being cin co4 greater than

The mean Weight of Vapour in a Cubic Foot of Air for the month was 25rs 5, being the same as

The mean Weight of a Cubic Foot of Air for the month was 549 grains, being 4 grains less than

The mean amount of *Cloud* for the month (a clear sky being represented by o and an overcast sky by 10) was 8'1.

The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0.036. The maximum daily amount of Sunshine was 1.9 hours on December 31. The highest reading of the Solar Radiation Thermometer was 79° 2 on December 6; and the lowest reading of the Terrestrial Radiation Thermometer was 25°3 on December 1.

the average for the 50 years, 1841-1890.

The mean daily distribution of Ozone for the 12 hours ending 9h. was 1.6; for the 6 hours ending 15h. was 0.2; and for the 6 hours ending 21h. was 0.2.

The Proportions of Wind referred to the cardinal points were N. 7, E. 3, S. 10, and W. 11.

The Greatest Pressure of the Wind in the month was 18'0 lbs. on the square foot on December 5. The mean daily Horizontal Movement of the Air for the month was 311 miles; the greatest daily value was 547 miles on December 3

Rain fell on 22 days in the month, amounting to 2ⁱⁿ*997, as measured by gauge No. 6 partly sunk below the ground; being 1ⁱⁿ*27 greater than the average fall for the 50 years, 1841-1890.

 (lxi)

HIGHEST and LOWEST READINGS of the BAROMETER, reduced to 32° Fahrenheit, as extracted from the PHOTOGRAPHIC RECORDS.

HIGHEST and LOWEST READINGS of the BAROMETER, reduced to 32° Fahrenheit, as extracted from the PHOTOGRAPHIO

The readings in the above table are accurate, but the times are occasionally liable to uncertainty, as the barometer will sometimes remain at its extreme reading without sensible change for a considerable interval of time The height of the barometer cistern above mean sea level is 159 feet: no correction has been applied to the readings to reduce to sea level .

,

.. -

(lxiv) ABSOLUTE MAXIMA. AND MINIMA BAROMETER READINGS, AND MONTHLY METEOROLOGICAL MEANS,

HIGHEST and LOWEST READINGS of the BAROMETER in each Month for the YEAR 1896.

 $\overline{\mathbf{I}}$

 $\ddot{}$

The greatest recorded pressure of the wind on the square foot in the year was 27:5 lbs. on March 16.
The greatest recorded daily horizontal movement of the air in the year was 830 miles on September 23.
The least recorded

 $\ddot{}$

HOURLY PHOTOGRAPHIC VALUES OF METEOROLOGICAL ELEMENTS,

AT THE ROYAL OBSERVATORY, GREENWICH, IN THE YEAR 1896. (Ixvii)

MONTHLY MEAN TEMPERATURE of the DEW POINT at every HOUR of the DAY, as deduced by GLAISHER'S TABLES from the corresponding AIR and EVAPORATION TEMPERATURES, $\overline{}$

I2

 $(lxviii)$

HUMIDITY, SUNSHINE, AND READINGS OF THERMOMETERS IN A STEVENSON'S SCREEN AND ON THE ROOF OF THE MAGNET HOUSE,

TOTAL AMOUNT of SUNSHINE registered in each HOUR of the DAY in each MONTH, as derived from the RECORDS of the CAMPBELL-STOKES SELF-REGISTERING INSTRUMENT, for the YEAR 1896.

The hours are reckoned from apparent midnight.

READINGS of DRY-BULB THERMOMETERS placed in a STEVENSON'S SCREEN near the Ordinary Stand, and of those mounted in a louvre-boarded shed on the ROOF of the MAGNET HOUSE at an elevation of 20 feet above the GROUND; and EXCES

(The readings of the maximum and minimum thermometers apply to the twenty-four hours ending at 21^h)
[Observations of the maximum and minimum thermometers only have been made on Sundays, Good Friday, Christmas Day, and P

 $\ddot{}$

 \bar{a}

 ω

 \mathcal{A}^{\pm}

 \mathbf{r} and \overline{r} \mathbf{r} \mathbf{r}

4

 \sim

 $(lxxi)$

 $(lxxi)$

 $\label{eq:2.1} \frac{1}{\sqrt{2\pi}}\sum_{i=1}^N\frac{1}{\sqrt{2\pi}}\sum_{i=1}^N\frac{1}{\sqrt{2\pi}}\sum_{i=1}^N\frac{1}{\sqrt{2\pi}}\sum_{i=1}^N\frac{1}{\sqrt{2\pi}}\sum_{i=1}^N\frac{1}{\sqrt{2\pi}}\sum_{i=1}^N\frac{1}{\sqrt{2\pi}}\sum_{i=1}^N\frac{1}{\sqrt{2\pi}}\sum_{i=1}^N\frac{1}{\sqrt{2\pi}}\sum_{i=1}^N\frac{1}{\sqrt{2\pi}}\sum_{i=1}^N\$

 \mathcal{A}^{\pm}

 $(l$ xxiii)

٦

GREENWICH MAGNETICAL AND METEOROLOGICAL OBSERVATIONS, 1896.

 \sim

ł

7 $\mathcal{A}^{\mathcal{A}}$

 $\hat{\mathbf{v}}$

READINGS of DRY-BULB THERMOMETERS in a STEVENSON'S SCREEN and on the ROOF of the MAGNET HOUSE-continued.

 \mathbf{I} *K2*

$(lxxvi)$

 $(lxxvii)$

READINGS of DRY-BULB THERMOMETERS in a STEVENSON'S SCREEN and on the ROOF of the MAGNET HOUSE-continued.

 $(lxxviii)$

 $3¹$

Means $52.5 | 40.8$

 $\bar{ }$

 -1 '2

 -1.0

 45.7 50.4 50.8 46.5

–∘4∣

 -0.5

 -0.7

 -0.5

 $-$ 0.2 + 0.2 Means 53.1 40.4 46.2 51.0 51.1 46.2 - 0.4

o.o

 -0.1

−o·6 | + o·3

-01

READINGS of DRY-BULB THERMOMETERS in a STEVENSON'S SCREEN and on the ROOF of the MAGNET HOUSE-continued.

 $\varphi^1=\varphi^2$, $\psi^1=\varphi^1$

READINGS of DRY-BULB THERMOMETERS in a STEVENSON'S SCREEN and on the ROOF of the MAGNET HOUSE-continued.

AT THE ROYAL OBSERVATORY, GREENWICH, IN THE YEAR 1896. (1xxxi)

 $\overline{}$

r

٦

- GREENWICH MAGNETICAL A.ND METEOROLOGICAL OBSERVATIONS, 1896, *^L*

$(lxxxi)$

ľ

 $\bar{\mathbf{r}}$

 \bar{u}

READINGS OF THE WET-BULB THERMOMETER PLACED IN A STEVENSON'S SCREEN,

 $\mathcal{I}^{\mathbb{R}}$

 ϵ

.£2

$(lxxxiv)$

EARTH TEMPERATURE,

(I.)—Reading of a Thermometer whose bulb is sunk to the depth of 25.6 feet (24 French feet) below the surface of the soil, at Noon on every Day of the Year.

(II.)—Reading of a Thermometer whose bulb is sunk to the depth of 12.8 feet (12 French feet) below the surface of the soil, at Noon on every Day of the Year.

AT THE ROYAL OBSERVATORY, GREENWICH, IN THE YEAR 1896. (1xxxv)

(II.)-Reading of a Thermometer whose bulb is sunk to the depth of 12°8 feet (12 French feet) below the surface of the soil, at Noon on every Day of the Year-concluded.

(III.)—Reading of a Thermometer whose bulb is sunk to the depth of 6.4 feet (6 French feet) below the surface of the soil, at Noon on every Day of the Year.

1896.												
Days of $_{\rm the}$ Month.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
d	\circ	\mathbf{o}	\bullet	\mathbf{o}	\circ	\circ	o	\circ	o	\mathbf{o}	\bullet	\mathbf{o}
1	47.32	46.61	45.59	47.51	49.00	53.58	58.93	62 .00	60.30	58.27	53'10	49 .00
2	47.40	46.54	45.50	47.143	49.13	53.75	58.97	61.91	60.27	58.16	52.90	48.76
$\overline{\mathbf{3}}$	47 '49	46.48	45.48	47.40	49.28	53.87	59.10	62.04	60.20	58.08	52.69	48.22
4	47.58	46.40	45.51	47.34	49.32	54 10	59.09	62.00	60 · 11	57.92	52.52	48.21
5.	47.67	46.29	45.60	47.30	49.42	54.28	59.03	62 .00	60.09	57.77	52.40	47.90
6 8 9 10	47.71 47 .73 47 .77 47.70 47.63	46.18 46.07 45.98 45.93 45.87	45.60 45.60 45.62 45.62 45.67	47.30 47.26 47.30 47.33 47.50	49.46 49.52 49.61 49.76 49.93	54.59 54 77 55.10 55.33 55.50	59.12 59.19 59.26 59.38 59.51	61.98 61.93 61.83 61.80 61.80	60.02 60.03 60.05 60.05 60.09	57.70 6I 57 57.50 57 '46 57.29	52.20 52.00 $\cdot 67$ 51 51.53 51.33	47.83 $\cdot 8z$ 47 .89 47 47.89 47.92
\mathbf{I} I ₂ 13 14 15	47.59 47.49 47.35. 47.27 47.19	45.90 45.91 45.98 46.02 46.09	45.86 46 .00 46.10 46.28 46.37	47.61 47.76 89۰ 47 47.98 47.98	50.12 50.33 50.57 50.85 51.12	55.97 56 .09 56.20 56.30 56.50	59.71 59.99 60.21 60.43 60.61	61.65 61.57 61.49 61.39 61.30	60.20 60.15 60.22 60.18 01.09	57.10 56.92 56.91 56.61 56.48	51'14 50.97 50.75 50.48 50.40	47.87 87 47 [°] .go 47 $47 \cdot 82$ 47.75

(lxxxvi) EARTH TEMPERATURE,

(III.)-Reading of a Thermometer whose bulb is sunk to the depth of 6.4 feet (6. French feet) below the surface of the soil, at Noon on every Day of the *Year-concluded, .*

 \bar{x}

 $\bar{\gamma}$

 $\bar{\zeta}$

1896.												
Days of the Month.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
d	o	\bullet	\circ	\mathbf{o}	۰	\mathbf{o}	\circ	\circ	\circ	\mathbf{o}	\circ	\circ
2I 22 23 24 25 26 27 28 29 3°	43.50 43'15 42.91 42.70 42.68 42.99 $43*1$ 43.75 43.95 43.63	43.33 43.70 43.70 43'29 42.70 42 '13 41.60 41.38 41.63	44.93 45.20 45.63 46.26 46.73 47.15 47.40 47.21 46.50 46.12	47.37 47.68 47.77 47.93 47 *90 48.10 48.50 49 .00 49.49 49.62	$55 \cdot 16$ 54.72 54.44 54.40 54 * 45 54.55 54.69 54.85 55 '12 55.50 55.84	62.75 62.70 62.50 62.45 62.50 62.35 62.25 62.17 62.23 62.27	65.33 65.42 65.72 65.62 65.62 65.65 65.62 65.30 65.00 64.80	62.01 61.80 61.61 61.60 61.72 61.69 61.32 60.00 60.62 60.33 60.30	59.21 58.60 58.47 58.31 57.70 57.50 57 '43 57.35 57.10 56.81	51.98 51.60 51.26 50.OS 50.49 50.22 49.82 49.55 49 '05 48.70 48.25	45.72 $45 \cdot 58$ 45.68 45.70 45.60 45.42 45.21 44.96 44.55 44.13	41.46 41.32 41'12 40.93 40.95 41 .00 41.39 41.97 42 '30 42.44
3 ₁ Means	43'20 43.66	42.77	45.70 44.85	47 '05	53.08	60.70	64.90 64.37	62.57	59.61	53.24	46.11	42.63 42.81
The mean of the twelve monthly values is 51° -74.												

(IV.)—Reading of a Thermometer whose bulb is sunk to the depth of 3.2 feet (3 French feet) below the surface of the soil, at Noon on every Day of the Year—concluded.

(V.)-Reading of a Thermometer whose bulb is sunk to the depth of 1 inch below the surface of the soil, at Noon on every Day of the Year.

1896.												
Days of the Month.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
d	\circ	\mathbf{o}	\bullet	\bullet	\circ	\mathbf{o}	\mathbf{o}	\circ	\bullet	\circ	\circ	\circ
1	44.3	39.9	46.0	45.7	48.2	59.0	61 ⁻ 1	64.2	58.9	52.2	43 9	35.1
2	46.3	38.7	42.2	42.74	48.7	63.4	58.9	63.1	58.4	54.0	44.9	37.8
3	44.0	37.0	43.0	43.9	49.2	65.0	63.2	63 .0	58.1	56.1	43.8	42.0
$\overline{4}$	43.2	38 .0	4I'	44.0	49.1	64.9	63 ∙0	63.0	60 го	57.3	40.2	43.2
5	42.0	39.2	40.2	47.2	51'	63.5	63.9	61 ⁻ 1	60.8	51.3	40.8	43.8
6	41'	41.0	44.3	ە 48	52.2	63.7	66.0	61.7	59.8	52.0	39.0	43'
7	38.8	40.9	44.0	49.0	54.0	61.1	69.4	62.0	60.1	52.0	38.0	42.6
8	41 '2	41.2	48.0	51.0	54.0	61.9	68.9	61.2	61.9	56.0	41°	40.6
9	38.9	45.1	49.0	50.7	55°	64.1	69.0	60 ю	62.3	53.2	40 °	43.9
ΙO	38.4	41.8	45.0	49.9	56.0	60.9	69.2	61 0	59.0	54.0	39.0	43 '1
п	40.0	43.1	47.2	48.0	57.0	61.5	66.3	60.8	59.0	48.7	41'3	45°
I2	39.4	42.5	45.5	47°	58.7	64.0	66.7	62.3	60.3	46.2	43.2	41.7
13	39.8	44.0	43.0	44.2	$.58$.0	66.1	68.4	63.2	60 0	44.8	42.0	40.2
14	41.8	41.8	45.0	45.2	58.7	66.0	70.4	63.2	59.8	47.5	43.9	39.7
15	43°	42.8	42.9	45.2	59.0	67.2	71.7	61 ° 0	59.2	51.8	42.7	40.2
16	41.1	41.9	47.4	45.9	58.9	70.0	62.0	60.0	58.1	53 '1	43'	37.2
17	44.0	40.7	46.1	46.7	57.3	68.0	62.1	60.7	59.0	50.0	43'1	35°
I8	43.9	38.9	47.2	48.0	61.9	63.8	64 °	61.9	60.1	47.5	43°	34.2
19	44 °	41°	42.2	$48 - 1$	58.0	65.3	66.8	60.9	56°	45.1	40.6	35 '2
20	37.7	44.9	44.0	50 °O	55°	64.8	69.2	60.7	54.2	45°	44.0	35.5
2I	39.1	45°	47.0	48.0	52.5	63.8	69.4	61.5	53'2	45.5	41.1	36.2
22	38.2	41°	49.0	47.8	54.0	63.2	67.3	59.2	55.9	45°	44.0	35.8
23	37.5	37°	49.0	49.0	56.1	66.2	67.5	60.8	56 ° 0	44.7	42.2	35.3
24	40.1	36.6	49.8	47.2	55 '3	65.9	66.9	62.9	54.0	45.9	41.5	35 '7
25	43.8	35 '1	50.9	50.0	551	62.7	68.7	61.8	55°	44.8	41.6	37.0

 \sim

$(lxxxviii)$ EARTH TEMPERATURE, AND ABSTRACT OF THE CHANGES OF THE DIRECTION OF THE WIND,

(V.)—Reading of a Thermometer whose bulb is sunk to the depth of ι inch below the surface of the soil, at Noon on every Day of the Year—concluded.

(VI.)—Reading of a Thermometer within the case covering the deep-sunk Thermometers, whose bulb is placed on a level
with their scales, at Noon on every Day of the Year.

M

ABSTRACT of the CHANGES of the DIRECTION of the WIND, as derived from the Records of OSLER'S ANEMOMETER in the Year 1896.

(It is to be understood that the direction of the wind was nearly constant in the intervals between the times given in the second column and those next following in the first column.)

Note.-The time is expressed in civil reckoning, commencing at midnight and counting from o^h to a_4^h .

GREENWICH MAGNETICAL AND METEOROLOGICAL OBSERVATIONS, 1896.

 \overline{t}
$\bar{\beta}$

ABSTRACT of the CHANGES of the DIRECTION of the WIND-continued.

 \sim

ł

 \pmb{M} 2

 \sim $^{-1}$

 \bar{a}

ABSTRACT OF THE CHANGES OF THE DIRECTION OF THE WIND,

 $\hat{\boldsymbol{r}}$

ABSTRACT of the CHANGES of the DIRECTION of the WIND-continued.

AT THE ROYAL OBSERVATORY, GREENWICH, IN THE YEAR 1896.

 $(xciii)$

$(xci**v**)$

 $\sqrt{ }$

 \bar{z}

 \sim

 $\hat{\boldsymbol{\gamma}}$

 $\bar{\bar{c}}$

 $\sim 10^{11}$

 $\langle \cdot, \cdot \rangle$

 \mathcal{A}

 \bar{z}

 \mathbb{Z}^2

ABSTRACT of the CHANGES of the DIRECTION of the *WIND-continued.*

ABSTRACT of the CHANGES of the DIRECTION of the WIND-concluded. EXCESS of MOTION in each MONTH. Direct. Retrograde. Direct. Retrograde. $\overline{}$ $\overline{\cdot}$ $\overline{\cdot}$ $\overline{\bullet}$ 1896. 1896. January $1282\frac{1}{2}$ 1575 February 630 1035 August March $382\frac{1}{2}$ 1845 September $1507\frac{1}{2}$ October $697\frac{1}{2}$ November May $2632\frac{1}{2}$ 225 $\begin{minipage}{.4\linewidth} \textbf{December} \hspace{0.03cm} \textbf{........} \hspace{0.03cm} \textbf{........} \hspace{0.03cm} \textbf{a} \textbf{a} \textbf{b} \end{minipage}$ $607\frac{1}{2}$ June 2655 The whole excess of direct motion for the year was 13410°.

ABSTRACT OF THE CHANGES OF THE DIRECTION OF THE WIND, AND HORIZONTAL MOVEMENT OF THE AIR,

 (x_cvi)

E

 \overline{N}

 $\ddot{}$

 $\overline{1}$

 $\mathcal{L}_{\mathcal{A}}$

MEAN ELECTRICAL POTENTIAL of the ATMOSPHERE, from THOMSON'S ELECTROMETER, for each CIVIL DAY.

 \mathbb{R}^2

(Each result is the mean of Twenty-four Hourly Ordinates from the Photographic Register. The scale employed is arbitrary: the sign + indicates positive potential.) \sim \sim $\sim 10^7$

 $(xcix)$

 $N₂$

 $\frac{1}{\sqrt{2\pi}}\left(\frac{1}{\sqrt{2\pi}}\right)^{1/2}$

 (e)

 \sim α

 $\bar{\beta}$ \sim

<u>ا</u>
-

J

ROYAL OBSERVATORY, GREENWICH.

OBSERV ATIONS

LUMINOUS METEORS.

OF

1896.

 (civ)

J,

OBSERVATIONS OF LUMINOUS METEORS,

The time is expressed in civil reckoning, commencing at midnight and counting from o^h to a^h

AT THE ROYAL OBSERVATORY, GREENWICH, IN THE YEAR 1896.

 $\bar{1}$

(cv)

 \mathbf{I} \perp OBSERVATIONS OF LUMINOUS METEORS.

The time is expressed in civil reckoning, commencing at midnight and counting from o^{p} to 24^h

 (cvi)

AT THE ROYAL OBSERVATORY, GREENWICH, IN THE YEAR 1896. (cvii)

 $\ddot{}$

 \sim

I

(cviii) . OBSERVATIONS OF LUMINOUS METEORS,

The time is expressed in civil reckoning, commencing at midnight and counting from o^h to 24^h .

AT THE ROYAL OBSERVATORY, GREENWICH, IN THE YEAR 1896.

 $\ddot{}$

 $\ddot{}$

(cix)

(cx) OBSERVATIONS OF LUMINOUS METEORS.

The time is expressed in civil reckoning, commencing at midnight and counting from o^h to 24^h

 $\ddot{}$

 $\boldsymbol{\lambda}$

(cxi)

 (cxi)

OBSERVATIONS OF LUMINOUS METEORS,

 $\ddot{}$

 \mathbb{Z}^2

The time is expressed in civil reckoning, commencing at midnight and counting from o^{h} to 24^{h} .

AT THE ROYAL OBSERVATORY, GREENWICH, IN THE YEAR 1896.

 $\bar{\beta}$

 \mathbb{R}^3

GREENWICH MAGNETICAL AND METEOROLOGICAL OBSERVATIONS, 1896.

(cxiii)

(cxiv) OBSERVATIONS OF LUMINOUS METEORS,

 $\Delta \sim 10^{-10}$

 \sim

The time is expressed in civil reckoning, commencing at midnight and counting from o^{h} to 24^{h}

 $\ddot{}$

 $\hat{\mathcal{A}}$

 $\overline{}$

AT THE ROYAL OBSERVATORY, GREENWICH, IN THE YEAR 1896. (CXV)

-

 $\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2.$ $\label{eq:2.1} \frac{1}{\sqrt{2\pi}}\int_{0}^{\infty}\frac{1}{\sqrt{2\pi}}\left(\frac{1}{\sqrt{2\pi}}\int_{0}^{\infty}\frac{1}{\sqrt{2\pi}}\left(\frac{1}{\sqrt{2\pi}}\int_{0}^{\infty}\frac{1}{\sqrt{2\pi}}\right)\frac{1}{\sqrt{2\pi}}\right)\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\int_{0}^{\infty}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi$ $\frac{d}{dt} \sum_{i=1}^n \frac{d}{dt} \left(\frac{d}{dt} \right)^2 \left(\frac{d}{dt} \right)^2 \left(\frac{d}{dt} \right)^2$

 $\sim 10^{-10}$

 $\label{eq:1.1} \frac{1}{\left\| \mathbf{w}^{\mathbf{p}}_{\mathbf{p}}\right\|_{\mathcal{L}^{2}}}\leq \frac{1}{\left\| \mathbf{w}^{\mathbf{p}}_{\mathbf{p}}\right\|_{\mathcal{L}^{2}}}\leq \frac{1}{\left\| \mathbf{w}^{\mathbf{p}}_{\mathbf{p}}\right\|_{\mathcal{L}^{2}}}\leq \frac{1}{\left\| \mathbf{w}^{\mathbf{p}}_{\mathbf{p}}\right\|_{\mathcal{L}^{2}}}\leq \frac{1}{\left\| \mathbf{w}^{\mathbf{p}}_{\mathbf{$

 $\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2.$